| @@ -0,0 +1,254 @@ | |||||
| #!/usr/bin/env python3 | |||||
| # -*- coding: utf-8 -*- | |||||
| """ | |||||
| Created on Thu Jun 18 16:01:24 2020 | |||||
| @author: ljia | |||||
| """ | |||||
| import numpy as np | |||||
| import networkx as nx | |||||
| from gklearn.ged.methods import GEDMethod | |||||
| from gklearn.ged.util import LSAPESolver, misc | |||||
| from gklearn.ged.env import NodeMap | |||||
| class LSAPEBasedMethod(GEDMethod): | |||||
| def __init__(self, ged_data): | |||||
| super().__init__(ged_data) | |||||
| self._lsape_model = None # @todo: LSAPESolver::ECBP | |||||
| self._greedy_method = None # @todo: LSAPESolver::BASIC | |||||
| self._compute_lower_bound = True | |||||
| self._solve_optimally = True | |||||
| self._num_threads = 1 | |||||
| self._centrality_method = 'NODE' # @todo | |||||
| self._centrality_weight = 0.7 | |||||
| self._centralities = {} | |||||
| self._max_num_solutions = 1 | |||||
| def populate_instance_and_run_as_util(self, g, h): #, lsape_instance): | |||||
| """ | |||||
| /*! | |||||
| * @brief Runs the method with options specified by set_options() and provides access to constructed LSAPE instance. | |||||
| * @param[in] g Input graph. | |||||
| * @param[in] h Input graph. | |||||
| * @param[out] result Result variable. | |||||
| * @param[out] lsape_instance LSAPE instance. | |||||
| */ | |||||
| """ | |||||
| result = {'node_maps': [], 'lower_bound': 0, 'upper_bound': np.inf} | |||||
| # Populate the LSAPE instance and set up the solver. | |||||
| nb1, nb2 = nx.number_of_nodes(g), nx.number_of_nodes(h) | |||||
| lsape_instance = np.ones((nb1 + nb2, nb1 + nb2)) * np.inf | |||||
| # lsape_instance = np.empty((nx.number_of_nodes(g) + 1, nx.number_of_nodes(h) + 1)) | |||||
| self.populate_instance(g, h, lsape_instance) | |||||
| # nb1, nb2 = nx.number_of_nodes(g), nx.number_of_nodes(h) | |||||
| # lsape_instance_new = np.empty((nb1 + nb2, nb1 + nb2)) * np.inf | |||||
| # lsape_instance_new[nb1:, nb2:] = 0 | |||||
| # lsape_instance_new[0:nb1, 0:nb2] = lsape_instance[0:nb1, 0:nb2] | |||||
| # for i in range(nb1): # all u's neighbor | |||||
| # lsape_instance_new[i, nb2 + i] = lsape_instance[i, nb2] | |||||
| # for i in range(nb2): # all u's neighbor | |||||
| # lsape_instance_new[nb1 + i, i] = lsape_instance[nb2, i] | |||||
| # lsape_solver = LSAPESolver(lsape_instance_new) | |||||
| lsape_solver = LSAPESolver(lsape_instance) | |||||
| # Solve the LSAPE instance. | |||||
| if self._solve_optimally: | |||||
| lsape_solver.set_model(self._lsape_model) | |||||
| else: | |||||
| lsape_solver.set_greedy_method(self._greedy_method) | |||||
| lsape_solver.solve(self._max_num_solutions) | |||||
| # Compute and store lower and upper bound. | |||||
| if self._compute_lower_bound and self._solve_optimally: | |||||
| result['lower_bound'] = lsape_solver.minimal_cost() * self._lsape_lower_bound_scaling_factor(g, h) # @todo: test | |||||
| for solution_id in range(0, lsape_solver.num_solutions()): | |||||
| result['node_maps'].append(NodeMap(nx.number_of_nodes(g), nx.number_of_nodes(h))) | |||||
| misc.construct_node_map_from_solver(lsape_solver, result['node_maps'][-1], solution_id) | |||||
| self._ged_data.compute_induced_cost(g, h, result['node_maps'][-1]) | |||||
| # Add centralities and reoptimize. | |||||
| if self._centrality_weight > 0 and self._centrality_method != 'NODE': | |||||
| print('This is not implemented.') | |||||
| pass # @todo | |||||
| # Sort the node maps and set the upper bound. | |||||
| if len(result['node_maps']) > 1 or len(result['node_maps']) > self._max_num_solutions: | |||||
| print('This is not implemented.') # @todo: | |||||
| pass | |||||
| if len(result['node_maps']) == 0: | |||||
| result['upper_bound'] = np.inf | |||||
| else: | |||||
| result['upper_bound'] = result['node_maps'][0].induced_cost() | |||||
| return result | |||||
| def populate_instance(self, g, h, lsape_instance): | |||||
| """ | |||||
| /*! | |||||
| * @brief Populates the LSAPE instance. | |||||
| * @param[in] g Input graph. | |||||
| * @param[in] h Input graph. | |||||
| * @param[out] lsape_instance LSAPE instance. | |||||
| */ | |||||
| """ | |||||
| if not self._initialized: | |||||
| pass | |||||
| # @todo: if (not this->initialized_) { | |||||
| self._lsape_populate_instance(g, h, lsape_instance) | |||||
| lsape_instance[nx.number_of_nodes(g):, nx.number_of_nodes(h):] = 0 | |||||
| # lsape_instance[nx.number_of_nodes(g), nx.number_of_nodes(h)] = 0 | |||||
| ########################################################################### | |||||
| # Member functions inherited from GEDMethod. | |||||
| ########################################################################### | |||||
| def _ged_init(self): | |||||
| self._lsape_pre_graph_init(False) | |||||
| for graph in self._ged_data._graphs: | |||||
| self._init_graph(graph) | |||||
| self._lsape_init() | |||||
| def _ged_run(self, g, h): | |||||
| # lsape_instance = np.empty((0, 0)) | |||||
| result = self.populate_instance_and_run_as_util(g, h) # , lsape_instance) | |||||
| return result | |||||
| def _ged_parse_option(self, option, arg): | |||||
| is_valid_option = False | |||||
| if option == 'threads': # @todo: try.. catch... | |||||
| self._num_threads = arg | |||||
| is_valid_option = True | |||||
| elif option == 'lsape_model': | |||||
| self._lsape_model = arg # @todo | |||||
| is_valid_option = True | |||||
| elif option == 'greedy_method': | |||||
| self._greedy_method = arg # @todo | |||||
| is_valid_option = True | |||||
| elif option == 'optimal': | |||||
| self._solve_optimally = arg # @todo | |||||
| is_valid_option = True | |||||
| elif option == 'centrality_method': | |||||
| self._centrality_method = arg # @todo | |||||
| is_valid_option = True | |||||
| elif option == 'centrality_weight': | |||||
| self._centrality_weight = arg # @todo | |||||
| is_valid_option = True | |||||
| elif option == 'max_num_solutions': | |||||
| if arg == 'ALL': | |||||
| self._max_num_solutions = -1 | |||||
| else: | |||||
| self._max_num_solutions = arg # @todo | |||||
| is_valid_option = True | |||||
| is_valid_option = is_valid_option or self._lsape_parse_option(option, arg) | |||||
| is_valid_option = True # @todo: this is not in the C++ code. | |||||
| return is_valid_option | |||||
| def _ged_set_default_options(self): | |||||
| self._lsape_model = None # @todo: LSAPESolver::ECBP | |||||
| self._greedy_method = None # @todo: LSAPESolver::BASIC | |||||
| self._solve_optimally = True | |||||
| self._num_threads = 1 | |||||
| self._centrality_method = 'NODE' # @todo | |||||
| self._centrality_weight = 0.7 | |||||
| self._max_num_solutions = 1 | |||||
| ########################################################################### | |||||
| # Private helper member functions. | |||||
| ########################################################################### | |||||
| def _init_graph(self, graph): | |||||
| if self._centrality_method != 'NODE': | |||||
| self._init_centralities(graph) # @todo | |||||
| self._lsape_init_graph(graph) | |||||
| ########################################################################### | |||||
| # Virtual member functions to be overridden by derived classes. | |||||
| ########################################################################### | |||||
| def _lsape_init(self): | |||||
| """ | |||||
| /*! | |||||
| * @brief Initializes the method after initializing the global variables for the graphs. | |||||
| * @note Must be overridden by derived classes of ged::LSAPEBasedMethod that require custom initialization. | |||||
| */ | |||||
| """ | |||||
| pass | |||||
| def _lsape_parse_option(self, option, arg): | |||||
| """ | |||||
| /*! | |||||
| * @brief Parses one option that is not among the ones shared by all derived classes of ged::LSAPEBasedMethod. | |||||
| * @param[in] option The name of the option. | |||||
| * @param[in] arg The argument of the option. | |||||
| * @return Returns true if @p option is a valid option name for the method and false otherwise. | |||||
| * @note Must be overridden by derived classes of ged::LSAPEBasedMethod that have options that are not among the ones shared by all derived classes of ged::LSAPEBasedMethod. | |||||
| */ | |||||
| """ | |||||
| return False | |||||
| def _lsape_set_default_options(self): | |||||
| """ | |||||
| /*! | |||||
| * @brief Sets all options that are not among the ones shared by all derived classes of ged::LSAPEBasedMethod to default values. | |||||
| * @note Must be overridden by derived classes of ged::LSAPEBasedMethod that have options that are not among the ones shared by all derived classes of ged::LSAPEBasedMethod. | |||||
| */ | |||||
| """ | |||||
| pass | |||||
| def _lsape_populate_instance(self, g, h, lsape_instance): | |||||
| """ | |||||
| /*! | |||||
| * @brief Populates the LSAPE instance. | |||||
| * @param[in] g Input graph. | |||||
| * @param[in] h Input graph. | |||||
| * @param[out] lsape_instance LSAPE instance of size (n + 1) x (m + 1), where n and m are the number of nodes in @p g and @p h. The last row and the last column represent insertion and deletion. | |||||
| * @note Must be overridden by derived classes of ged::LSAPEBasedMethod. | |||||
| */ | |||||
| """ | |||||
| pass | |||||
| def _lsape_init_graph(self, graph): | |||||
| """ | |||||
| /*! | |||||
| * @brief Initializes global variables for one graph. | |||||
| * @param[in] graph Graph for which the global variables have to be initialized. | |||||
| * @note Must be overridden by derived classes of ged::LSAPEBasedMethod that require to initialize custom global variables. | |||||
| */ | |||||
| """ | |||||
| pass | |||||
| def _lsape_pre_graph_init(self, called_at_runtime): | |||||
| """ | |||||
| /*! | |||||
| * @brief Initializes the method at runtime or during initialization before initializing the global variables for the graphs. | |||||
| * @param[in] called_at_runtime Equals @p true if called at runtime and @p false if called during initialization. | |||||
| * @brief Must be overridden by derived classes of ged::LSAPEBasedMethod that require default initialization at runtime before initializing the global variables for the graphs. | |||||
| */ | |||||
| """ | |||||
| pass | |||||