| @@ -0,0 +1,96 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Fri Sep 28 16:37:29 2018 | |||
| @author: ljia | |||
| """ | |||
| import functools | |||
| from libs import * | |||
| import multiprocessing | |||
| from gklearn.kernels.structuralspKernel import structuralspkernel | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| dslist = [ | |||
| # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
| # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||
| # # contains single node graph, node symb | |||
| # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
| # 'task': 'regression'}, # node symb | |||
| # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||
| # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||
| # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||
| # {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
| # # node nsymb | |||
| # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
| # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||
| # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||
| # {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
| # # node symb/nsymb | |||
| {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||
| # {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt'}, | |||
| # # node nsymb symb | |||
| # | |||
| # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | |||
| # # node/edge symb | |||
| # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||
| # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||
| # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||
| # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'}, | |||
| # | |||
| # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | |||
| # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | |||
| # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb | |||
| # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb | |||
| # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | |||
| # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||
| # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||
| # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||
| # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||
| # # not working below | |||
| # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | |||
| # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',}, | |||
| # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',}, | |||
| # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | |||
| ] | |||
| estimator = structuralspkernel | |||
| ## for non-symbolic labels. | |||
| #gkernels = [functools.partial(gaussiankernel, gamma=1 / ga) | |||
| # for ga in np.logspace(0, 10, num=11, base=10)] | |||
| #mixkernels = [functools.partial(kernelproduct, deltakernel, gk) for gk in gkernels] | |||
| #sub_kernels = [{'symb': deltakernel, 'nsymb': gkernels[i], 'mix': mixkernels[i]} | |||
| # for i in range(len(gkernels))] | |||
| # for symbolic labels only. | |||
| #gaussiankernel = functools.partial(gaussiankernel, gamma=0.5) | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernels = [{'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}] | |||
| param_grid_precomputed = {'node_kernels': sub_kernels, 'edge_kernels': sub_kernels, | |||
| 'compute_method': ['naive']} | |||
| param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | |||
| {'alpha': np.logspace(-10, 10, num=41, base=10)}] | |||
| for ds in dslist: | |||
| print() | |||
| print(ds['name']) | |||
| model_selection_for_precomputed_kernel( | |||
| ds['dataset'], | |||
| estimator, | |||
| param_grid_precomputed, | |||
| (param_grid[1] if ('task' in ds and ds['task'] | |||
| == 'regression') else param_grid[0]), | |||
| (ds['task'] if 'task' in ds else 'classification'), | |||
| NUM_TRIALS=30, | |||
| datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), | |||
| extra_params=(ds['extra_params'] if 'extra_params' in ds else None), | |||
| ds_name=ds['name'], | |||
| n_jobs=multiprocessing.cpu_count(), | |||
| read_gm_from_file=False, | |||
| verbose=True) | |||
| print() | |||