| @@ -0,0 +1,239 @@ | |||
| #include <stdio.h> | |||
| #include <ctype.h> | |||
| #include <stdlib.h> | |||
| #include <string.h> | |||
| #include <errno.h> | |||
| #include "svm.h" | |||
| int print_null(const char *s,...) {return 0;} | |||
| static int (*info)(const char *fmt,...) = &printf; | |||
| struct svm_node *x; | |||
| int max_nr_attr = 64; | |||
| struct svm_model* model; | |||
| int predict_probability=0; | |||
| static char *line = NULL; | |||
| static int max_line_len; | |||
| static char* readline(FILE *input) | |||
| { | |||
| int len; | |||
| if(fgets(line,max_line_len,input) == NULL) | |||
| return NULL; | |||
| while(strrchr(line,'\n') == NULL) | |||
| { | |||
| max_line_len *= 2; | |||
| line = (char *) realloc(line,max_line_len); | |||
| len = (int) strlen(line); | |||
| if(fgets(line+len,max_line_len-len,input) == NULL) | |||
| break; | |||
| } | |||
| return line; | |||
| } | |||
| void exit_input_error(int line_num) | |||
| { | |||
| fprintf(stderr,"Wrong input format at line %d\n", line_num); | |||
| exit(1); | |||
| } | |||
| void predict(FILE *input, FILE *output) | |||
| { | |||
| int correct = 0; | |||
| int total = 0; | |||
| double error = 0; | |||
| double sump = 0, sumt = 0, sumpp = 0, sumtt = 0, sumpt = 0; | |||
| int svm_type=svm_get_svm_type(model); | |||
| int nr_class=svm_get_nr_class(model); | |||
| double *prob_estimates=NULL; | |||
| int j; | |||
| if(predict_probability) | |||
| { | |||
| if (svm_type==NU_SVR || svm_type==EPSILON_SVR) | |||
| info("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g\n",svm_get_svr_probability(model)); | |||
| else | |||
| { | |||
| int *labels=(int *) malloc(nr_class*sizeof(int)); | |||
| svm_get_labels(model,labels); | |||
| prob_estimates = (double *) malloc(nr_class*sizeof(double)); | |||
| fprintf(output,"labels"); | |||
| for(j=0;j<nr_class;j++) | |||
| fprintf(output," %d",labels[j]); | |||
| fprintf(output,"\n"); | |||
| free(labels); | |||
| } | |||
| } | |||
| max_line_len = 1024; | |||
| line = (char *)malloc(max_line_len*sizeof(char)); | |||
| while(readline(input) != NULL) | |||
| { | |||
| int i = 0; | |||
| double target_label, predict_label; | |||
| char *idx, *val, *label, *endptr; | |||
| int inst_max_index = -1; // strtol gives 0 if wrong format, and precomputed kernel has <index> start from 0 | |||
| label = strtok(line," \t\n"); | |||
| if(label == NULL) // empty line | |||
| exit_input_error(total+1); | |||
| target_label = strtod(label,&endptr); | |||
| if(endptr == label || *endptr != '\0') | |||
| exit_input_error(total+1); | |||
| while(1) | |||
| { | |||
| if(i>=max_nr_attr-1) // need one more for index = -1 | |||
| { | |||
| max_nr_attr *= 2; | |||
| x = (struct svm_node *) realloc(x,max_nr_attr*sizeof(struct svm_node)); | |||
| } | |||
| idx = strtok(NULL,":"); | |||
| val = strtok(NULL," \t"); | |||
| if(val == NULL) | |||
| break; | |||
| errno = 0; | |||
| x[i].index = (int) strtol(idx,&endptr,10); | |||
| if(endptr == idx || errno != 0 || *endptr != '\0' || x[i].index <= inst_max_index) | |||
| exit_input_error(total+1); | |||
| else | |||
| inst_max_index = x[i].index; | |||
| errno = 0; | |||
| x[i].value = strtod(val,&endptr); | |||
| if(endptr == val || errno != 0 || (*endptr != '\0' && !isspace(*endptr))) | |||
| exit_input_error(total+1); | |||
| ++i; | |||
| } | |||
| x[i].index = -1; | |||
| if (predict_probability && (svm_type==C_SVC || svm_type==NU_SVC)) | |||
| { | |||
| predict_label = svm_predict_probability(model,x,prob_estimates); | |||
| fprintf(output,"%g",predict_label); | |||
| for(j=0;j<nr_class;j++) | |||
| fprintf(output," %g",prob_estimates[j]); | |||
| fprintf(output,"\n"); | |||
| } | |||
| else | |||
| { | |||
| predict_label = svm_predict(model,x); | |||
| fprintf(output,"%g\n",predict_label); | |||
| } | |||
| if(predict_label == target_label) | |||
| ++correct; | |||
| error += (predict_label-target_label)*(predict_label-target_label); | |||
| sump += predict_label; | |||
| sumt += target_label; | |||
| sumpp += predict_label*predict_label; | |||
| sumtt += target_label*target_label; | |||
| sumpt += predict_label*target_label; | |||
| ++total; | |||
| } | |||
| if (svm_type==NU_SVR || svm_type==EPSILON_SVR) | |||
| { | |||
| info("Mean squared error = %g (regression)\n",error/total); | |||
| info("Squared correlation coefficient = %g (regression)\n", | |||
| ((total*sumpt-sump*sumt)*(total*sumpt-sump*sumt))/ | |||
| ((total*sumpp-sump*sump)*(total*sumtt-sumt*sumt)) | |||
| ); | |||
| } | |||
| else | |||
| info("Accuracy = %g%% (%d/%d) (classification)\n", | |||
| (double)correct/total*100,correct,total); | |||
| if(predict_probability) | |||
| free(prob_estimates); | |||
| } | |||
| void exit_with_help() | |||
| { | |||
| printf( | |||
| "Usage: svm-predict [options] test_file model_file output_file\n" | |||
| "options:\n" | |||
| "-b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0); for one-class SVM only 0 is supported\n" | |||
| "-q : quiet mode (no outputs)\n" | |||
| ); | |||
| exit(1); | |||
| } | |||
| int main(int argc, char **argv) | |||
| { | |||
| FILE *input, *output; | |||
| int i; | |||
| // parse options | |||
| for(i=1;i<argc;i++) | |||
| { | |||
| if(argv[i][0] != '-') break; | |||
| ++i; | |||
| switch(argv[i-1][1]) | |||
| { | |||
| case 'b': | |||
| predict_probability = atoi(argv[i]); | |||
| break; | |||
| case 'q': | |||
| info = &print_null; | |||
| i--; | |||
| break; | |||
| default: | |||
| fprintf(stderr,"Unknown option: -%c\n", argv[i-1][1]); | |||
| exit_with_help(); | |||
| } | |||
| } | |||
| if(i>=argc-2) | |||
| exit_with_help(); | |||
| input = fopen(argv[i],"r"); | |||
| if(input == NULL) | |||
| { | |||
| fprintf(stderr,"can't open input file %s\n",argv[i]); | |||
| exit(1); | |||
| } | |||
| output = fopen(argv[i+2],"w"); | |||
| if(output == NULL) | |||
| { | |||
| fprintf(stderr,"can't open output file %s\n",argv[i+2]); | |||
| exit(1); | |||
| } | |||
| if((model=svm_load_model(argv[i+1]))==0) | |||
| { | |||
| fprintf(stderr,"can't open model file %s\n",argv[i+1]); | |||
| exit(1); | |||
| } | |||
| x = (struct svm_node *) malloc(max_nr_attr*sizeof(struct svm_node)); | |||
| if(predict_probability) | |||
| { | |||
| if(svm_check_probability_model(model)==0) | |||
| { | |||
| fprintf(stderr,"Model does not support probabiliy estimates\n"); | |||
| exit(1); | |||
| } | |||
| } | |||
| else | |||
| { | |||
| if(svm_check_probability_model(model)!=0) | |||
| info("Model supports probability estimates, but disabled in prediction.\n"); | |||
| } | |||
| predict(input,output); | |||
| svm_free_and_destroy_model(&model); | |||
| free(x); | |||
| free(line); | |||
| fclose(input); | |||
| fclose(output); | |||
| return 0; | |||
| } | |||