| @@ -0,0 +1,104 @@ | |||
| #ifndef _LIBSVM_H | |||
| #define _LIBSVM_H | |||
| #define LIBSVM_VERSION 322 | |||
| #ifdef __cplusplus | |||
| extern "C" { | |||
| #endif | |||
| extern int libsvm_version; | |||
| struct svm_node | |||
| { | |||
| int index; | |||
| double value; | |||
| }; | |||
| struct svm_problem | |||
| { | |||
| int l; | |||
| double *y; | |||
| struct svm_node **x; | |||
| }; | |||
| enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */ | |||
| enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */ | |||
| struct svm_parameter | |||
| { | |||
| int svm_type; | |||
| int kernel_type; | |||
| int degree; /* for poly */ | |||
| double gamma; /* for poly/rbf/sigmoid */ | |||
| double coef0; /* for poly/sigmoid */ | |||
| /* these are for training only */ | |||
| double cache_size; /* in MB */ | |||
| double eps; /* stopping criteria */ | |||
| double C; /* for C_SVC, EPSILON_SVR and NU_SVR */ | |||
| int nr_weight; /* for C_SVC */ | |||
| int *weight_label; /* for C_SVC */ | |||
| double* weight; /* for C_SVC */ | |||
| double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */ | |||
| double p; /* for EPSILON_SVR */ | |||
| int shrinking; /* use the shrinking heuristics */ | |||
| int probability; /* do probability estimates */ | |||
| }; | |||
| // | |||
| // svm_model | |||
| // | |||
| struct svm_model | |||
| { | |||
| struct svm_parameter param; /* parameter */ | |||
| int nr_class; /* number of classes, = 2 in regression/one class svm */ | |||
| int l; /* total #SV */ | |||
| struct svm_node **SV; /* SVs (SV[l]) */ | |||
| double **sv_coef; /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */ | |||
| double *rho; /* constants in decision functions (rho[k*(k-1)/2]) */ | |||
| double *probA; /* pariwise probability information */ | |||
| double *probB; | |||
| int *sv_indices; /* sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set */ | |||
| /* for classification only */ | |||
| int *label; /* label of each class (label[k]) */ | |||
| int *nSV; /* number of SVs for each class (nSV[k]) */ | |||
| /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */ | |||
| /* XXX */ | |||
| int free_sv; /* 1 if svm_model is created by svm_load_model*/ | |||
| /* 0 if svm_model is created by svm_train */ | |||
| }; | |||
| struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param); | |||
| void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target); | |||
| int svm_save_model(const char *model_file_name, const struct svm_model *model); | |||
| struct svm_model *svm_load_model(const char *model_file_name); | |||
| int svm_get_svm_type(const struct svm_model *model); | |||
| int svm_get_nr_class(const struct svm_model *model); | |||
| void svm_get_labels(const struct svm_model *model, int *label); | |||
| void svm_get_sv_indices(const struct svm_model *model, int *sv_indices); | |||
| int svm_get_nr_sv(const struct svm_model *model); | |||
| double svm_get_svr_probability(const struct svm_model *model); | |||
| double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values); | |||
| double svm_predict(const struct svm_model *model, const struct svm_node *x); | |||
| double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates); | |||
| void svm_free_model_content(struct svm_model *model_ptr); | |||
| void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr); | |||
| void svm_destroy_param(struct svm_parameter *param); | |||
| const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param); | |||
| int svm_check_probability_model(const struct svm_model *model); | |||
| void svm_set_print_string_function(void (*print_func)(const char *)); | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||
| #endif /* _LIBSVM_H */ | |||