| @@ -39,15 +39,15 @@ def marginalizedkernel(*args, | |||
| n_jobs=None, | |||
| chunksize=None, | |||
| verbose=True): | |||
| """Calculate marginalized graph kernels between graphs. | |||
| """Compute marginalized graph kernels between graphs. | |||
| Parameters | |||
| ---------- | |||
| Gn : List of NetworkX graph | |||
| List of graphs between which the kernels are calculated. | |||
| List of graphs between which the kernels are computed. | |||
| G1, G2 : NetworkX graphs | |||
| Two graphs between which the kernel is calculated. | |||
| Two graphs between which the kernel is computed. | |||
| node_label : string | |||
| Node attribute used as symbolic label. The default node label is 'atom'. | |||
| @@ -59,7 +59,7 @@ def marginalizedkernel(*args, | |||
| The termination probability in the random walks generating step. | |||
| n_iteration : integer | |||
| Time of iterations to calculate R_inf. | |||
| Time of iterations to compute R_inf. | |||
| remove_totters : boolean | |||
| Whether to remove totterings by method introduced in [2]. The default | |||
| @@ -83,11 +83,11 @@ def marginalizedkernel(*args, | |||
| Gn, | |||
| attr_names=['node_labeled', 'edge_labeled', 'is_directed'], | |||
| node_label=node_label, edge_label=edge_label) | |||
| if not ds_attrs['node_labeled'] or node_label == None: | |||
| if not ds_attrs['node_labeled'] or node_label is None: | |||
| node_label = 'atom' | |||
| for G in Gn: | |||
| nx.set_node_attributes(G, '0', 'atom') | |||
| if not ds_attrs['edge_labeled'] or edge_label == None: | |||
| if not ds_attrs['edge_labeled'] or edge_label is None: | |||
| edge_label = 'bond_type' | |||
| for G in Gn: | |||
| nx.set_edge_attributes(G, '0', 'bond_type') | |||
| @@ -133,7 +133,7 @@ def marginalizedkernel(*args, | |||
| # # ---- direct running, normally use single CPU core. ---- | |||
| ## pbar = tqdm( | |||
| ## total=(1 + len(Gn)) * len(Gn) / 2, | |||
| ## desc='calculating kernels', | |||
| ## desc='Computing kernels', | |||
| ## file=sys.stdout) | |||
| # for i in range(0, len(Gn)): | |||
| # for j in range(i, len(Gn)): | |||
| @@ -152,12 +152,12 @@ def marginalizedkernel(*args, | |||
| def _marginalizedkernel_do(g1, g2, node_label, edge_label, p_quit, n_iteration): | |||
| """Calculate marginalized graph kernel between 2 graphs. | |||
| """Compute marginalized graph kernel between 2 graphs. | |||
| Parameters | |||
| ---------- | |||
| G1, G2 : NetworkX graphs | |||
| 2 graphs between which the kernel is calculated. | |||
| 2 graphs between which the kernel is computed. | |||
| node_label : string | |||
| node attribute used as label. | |||
| edge_label : string | |||
| @@ -165,7 +165,7 @@ def _marginalizedkernel_do(g1, g2, node_label, edge_label, p_quit, n_iteration): | |||
| p_quit : integer | |||
| the termination probability in the random walks generating step. | |||
| n_iteration : integer | |||
| time of iterations to calculate R_inf. | |||
| time of iterations to compute R_inf. | |||
| Return | |||
| ------ | |||
| @@ -188,12 +188,12 @@ def _marginalizedkernel_do(g1, g2, node_label, edge_label, p_quit, n_iteration): | |||
| # # matrix to save all the R_inf for all pairs of nodes | |||
| # R_inf = np.zeros([num_nodes_G1, num_nodes_G2]) | |||
| # | |||
| # # calculate R_inf with a simple interative method | |||
| # # Compute R_inf with a simple interative method | |||
| # for i in range(1, n_iteration): | |||
| # R_inf_new = np.zeros([num_nodes_G1, num_nodes_G2]) | |||
| # R_inf_new.fill(r1) | |||
| # | |||
| # # calculate R_inf for each pair of nodes | |||
| # # Compute R_inf for each pair of nodes | |||
| # for node1 in g1.nodes(data=True): | |||
| # neighbor_n1 = g1[node1[0]] | |||
| # # the transition probability distribution in the random walks | |||
| @@ -219,7 +219,7 @@ def _marginalizedkernel_do(g1, g2, node_label, edge_label, p_quit, n_iteration): | |||
| # neighbor2] # ref [1] equation (8) | |||
| # R_inf[:] = R_inf_new | |||
| # | |||
| # # add elements of R_inf up and calculate kernel | |||
| # # add elements of R_inf up and compute kernel. | |||
| # for node1 in g1.nodes(data=True): | |||
| # for node2 in g2.nodes(data=True): | |||
| # s = p_init_G1 * p_init_G2 * deltakernel( | |||
| @@ -267,11 +267,11 @@ def _marginalizedkernel_do(g1, g2, node_label, edge_label, p_quit, n_iteration): | |||
| neighbor_n1[neighbor1][edge_label], | |||
| neighbor_n2[neighbor2][edge_label]) | |||
| # calculate R_inf with a simple interative method | |||
| # Compute R_inf with a simple interative method | |||
| for i in range(2, n_iteration + 1): | |||
| R_inf_old = R_inf.copy() | |||
| # calculate R_inf for each pair of nodes | |||
| # Compute R_inf for each pair of nodes | |||
| for node1 in g1.nodes(): | |||
| neighbor_n1 = g1[node1] | |||
| # the transition probability distribution in the random walks | |||
| @@ -288,7 +288,7 @@ def _marginalizedkernel_do(g1, g2, node_label, edge_label, p_quit, n_iteration): | |||
| (t_dict[(node1, node2, neighbor1, neighbor2)] * \ | |||
| R_inf_old[(neighbor1, neighbor2)]) # ref [1] equation (8) | |||
| # add elements of R_inf up and calculate kernel | |||
| # add elements of R_inf up and compute kernel. | |||
| for (n1, n2), value in R_inf.items(): | |||
| s = p_init_G1 * p_init_G2 * deltakernel( | |||
| g1.nodes[n1][node_label], g2.nodes[n2][node_label]) | |||