| @@ -0,0 +1,83 @@ | |||||
| import functools | |||||
| from libs import * | |||||
| import multiprocessing | |||||
| from gklearn.kernels.spKernel import spkernel | |||||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||||
| #from gklearn.utils.model_selection_precomputed import trial_do | |||||
| # datasets | |||||
| dslist = [ | |||||
| # {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||||
| # 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt'}, | |||||
| # # contains single node graph, node symb | |||||
| # {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||||
| # 'task': 'regression'}, # node symb | |||||
| # {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds'}, # node/edge symb | |||||
| # {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds'}, # unlabeled | |||||
| # {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG_A.txt'}, # node/edge symb | |||||
| # {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||||
| # # node nsymb | |||||
| # {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||||
| # # node symb/nsymb | |||||
| # {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||||
| {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1_A.txt'}, # node symb | |||||
| {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109_A.txt'}, # node symb | |||||
| {'name': 'D&D', 'dataset': '../datasets/DD/DD_A.txt'}, # node symb | |||||
| # {'name': 'monoterpenoides', 'dataset': '../datasets/monoterpenoides/dataset_10+.ds'}, # node/edge | |||||
| # {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt'}, | |||||
| # # node nsymb symb | |||||
| # | |||||
| # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | |||||
| # # node/edge symb | |||||
| # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||||
| # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||||
| # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||||
| # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'}, | |||||
| # | |||||
| # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | |||||
| # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | |||||
| # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb | |||||
| # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb | |||||
| # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | |||||
| # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||||
| # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||||
| # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||||
| # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||||
| # # not working below | |||||
| # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | |||||
| # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',}, | |||||
| # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',}, | |||||
| # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | |||||
| ] | |||||
| estimator = spkernel | |||||
| # hyper-parameters | |||||
| #gaussiankernel = functools.partial(gaussiankernel, gamma=0.5) | |||||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
| param_grid_precomputed = {'node_kernels': [ | |||||
| {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel}]} | |||||
| param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | |||||
| {'alpha': np.logspace(-10, 10, num=41, base=10)}] | |||||
| # for each dataset, do model selection. | |||||
| for ds in dslist: | |||||
| print() | |||||
| print(ds['name']) | |||||
| model_selection_for_precomputed_kernel( | |||||
| ds['dataset'], | |||||
| estimator, | |||||
| param_grid_precomputed, | |||||
| (param_grid[1] if ('task' in ds and ds['task'] | |||||
| == 'regression') else param_grid[0]), | |||||
| (ds['task'] if 'task' in ds else 'classification'), | |||||
| NUM_TRIALS=30, | |||||
| datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), | |||||
| extra_params=(ds['extra_params'] if 'extra_params' in ds else None), | |||||
| ds_name=ds['name'], | |||||
| n_jobs=multiprocessing.cpu_count(), | |||||
| # n_jobs=7, | |||||
| read_gm_from_file=False, | |||||
| verbose=True) | |||||
| print() | |||||