| @@ -0,0 +1,774 @@ | |||||
| #!/usr/bin/env python3 | |||||
| # -*- coding: utf-8 -*- | |||||
| """ | |||||
| Created on Thu Mar 26 18:48:27 2020 | |||||
| @author: ljia | |||||
| """ | |||||
| import numpy as np | |||||
| import networkx as nx | |||||
| from gklearn.utils.graph_files import load_dataset | |||||
| import os | |||||
| class Dataset(object): | |||||
| def __init__(self, filename=None, filename_targets=None, **kwargs): | |||||
| if filename is None: | |||||
| self.__graphs = None | |||||
| self.__targets = None | |||||
| self.__node_labels = None | |||||
| self.__edge_labels = None | |||||
| self.__node_attrs = None | |||||
| self.__edge_attrs = None | |||||
| else: | |||||
| self.load_dataset(filename, filename_targets=filename_targets, **kwargs) | |||||
| self.__substructures = None | |||||
| self.__node_label_dim = None | |||||
| self.__edge_label_dim = None | |||||
| self.__directed = None | |||||
| self.__dataset_size = None | |||||
| self.__total_node_num = None | |||||
| self.__ave_node_num = None | |||||
| self.__min_node_num = None | |||||
| self.__max_node_num = None | |||||
| self.__total_edge_num = None | |||||
| self.__ave_edge_num = None | |||||
| self.__min_edge_num = None | |||||
| self.__max_edge_num = None | |||||
| self.__ave_node_degree = None | |||||
| self.__min_node_degree = None | |||||
| self.__max_node_degree = None | |||||
| self.__ave_fill_factor = None | |||||
| self.__min_fill_factor = None | |||||
| self.__max_fill_factor = None | |||||
| self.__node_label_nums = None | |||||
| self.__edge_label_nums = None | |||||
| self.__node_attr_dim = None | |||||
| self.__edge_attr_dim = None | |||||
| self.__class_number = None | |||||
| def load_dataset(self, filename, filename_targets=None, **kwargs): | |||||
| self.__graphs, self.__targets, label_names = load_dataset(filename, filename_targets=filename_targets, **kwargs) | |||||
| self.__node_labels = label_names['node_labels'] | |||||
| self.__node_attrs = label_names['node_attrs'] | |||||
| self.__edge_labels = label_names['edge_labels'] | |||||
| self.__edge_attrs = label_names['edge_attrs'] | |||||
| self.clean_labels() | |||||
| def load_graphs(self, graphs, targets=None): | |||||
| # this has to be followed by set_labels(). | |||||
| self.__graphs = graphs | |||||
| self.__targets = targets | |||||
| # self.set_labels_attrs() # @todo | |||||
| def load_predefined_dataset(self, ds_name): | |||||
| current_path = os.path.dirname(os.path.realpath(__file__)) + '/' | |||||
| if ds_name == 'Acyclic': | |||||
| ds_file = current_path + '../../datasets/Acyclic/dataset_bps.ds' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'AIDS': | |||||
| ds_file = current_path + '../../datasets/AIDS/AIDS_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'Alkane': | |||||
| ds_file = current_path + '../../datasets/Alkane/dataset.ds' | |||||
| fn_targets = current_path + '../../datasets/Alkane/dataset_boiling_point_names.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file, filename_targets=fn_targets) | |||||
| elif ds_name == 'COIL-DEL': | |||||
| ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'COIL-RAG': | |||||
| ds_file = current_path + '../../datasets/COIL-RAG/COIL-RAG_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'COLORS-3': | |||||
| ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'Cuneiform': | |||||
| ds_file = current_path + '../../datasets/Cuneiform/Cuneiform_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'DD': | |||||
| ds_file = current_path + '../../datasets/DD/DD_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'ENZYMES': | |||||
| ds_file = current_path + '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'Fingerprint': | |||||
| ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'FRANKENSTEIN': | |||||
| ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'Letter-high': # node non-symb | |||||
| ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'Letter-low': # node non-symb | |||||
| ds_file = current_path + '../../datasets/Letter-low/Letter-low_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'Letter-med': # node non-symb | |||||
| ds_file = current_path + '../../datasets/Letter-med/Letter-med_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'MAO': | |||||
| ds_file = current_path + '../../datasets/MAO/dataset.ds' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'Monoterpenoides': | |||||
| ds_file = current_path + '../../datasets/Monoterpenoides/dataset_10+.ds' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'MUTAG': | |||||
| ds_file = current_path + '../../datasets/MUTAG/MUTAG_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'NCI1': | |||||
| ds_file = current_path + '../../datasets/NCI1/NCI1_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'NCI109': | |||||
| ds_file = current_path + '../../datasets/NCI109/NCI109_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'PAH': | |||||
| ds_file = current_path + '../../datasets/PAH/dataset.ds' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'SYNTHETIC': | |||||
| pass | |||||
| elif ds_name == 'SYNTHETICnew': | |||||
| ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt' | |||||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||||
| elif ds_name == 'Synthie': | |||||
| pass | |||||
| else: | |||||
| raise Exception('The dataset name "', ds_name, '" is not pre-defined.') | |||||
| self.__node_labels = label_names['node_labels'] | |||||
| self.__node_attrs = label_names['node_attrs'] | |||||
| self.__edge_labels = label_names['edge_labels'] | |||||
| self.__edge_attrs = label_names['edge_attrs'] | |||||
| self.clean_labels() | |||||
| def set_labels(self, node_labels=[], node_attrs=[], edge_labels=[], edge_attrs=[]): | |||||
| self.__node_labels = node_labels | |||||
| self.__node_attrs = node_attrs | |||||
| self.__edge_labels = edge_labels | |||||
| self.__edge_attrs = edge_attrs | |||||
| def set_labels_attrs(self, node_labels=None, node_attrs=None, edge_labels=None, edge_attrs=None): | |||||
| # @todo: remove labels which have only one possible values. | |||||
| if node_labels is None: | |||||
| self.__node_labels = self.__graphs[0].graph['node_labels'] | |||||
| # # graphs are considered node unlabeled if all nodes have the same label. | |||||
| # infos.update({'node_labeled': is_nl if node_label_num > 1 else False}) | |||||
| if node_attrs is None: | |||||
| self.__node_attrs = self.__graphs[0].graph['node_attrs'] | |||||
| # for G in Gn: | |||||
| # for n in G.nodes(data=True): | |||||
| # if 'attributes' in n[1]: | |||||
| # return len(n[1]['attributes']) | |||||
| # return 0 | |||||
| if edge_labels is None: | |||||
| self.__edge_labels = self.__graphs[0].graph['edge_labels'] | |||||
| # # graphs are considered edge unlabeled if all edges have the same label. | |||||
| # infos.update({'edge_labeled': is_el if edge_label_num > 1 else False}) | |||||
| if edge_attrs is None: | |||||
| self.__edge_attrs = self.__graphs[0].graph['edge_attrs'] | |||||
| # for G in Gn: | |||||
| # if nx.number_of_edges(G) > 0: | |||||
| # for e in G.edges(data=True): | |||||
| # if 'attributes' in e[2]: | |||||
| # return len(e[2]['attributes']) | |||||
| # return 0 | |||||
| def get_dataset_infos(self, keys=None): | |||||
| """Computes and returns the structure and property information of the graph dataset. | |||||
| Parameters | |||||
| ---------- | |||||
| keys : list | |||||
| List of strings which indicate which informations will be returned. The | |||||
| possible choices includes: | |||||
| 'substructures': sub-structures graphs contains, including 'linear', 'non | |||||
| linear' and 'cyclic'. | |||||
| 'node_label_dim': whether vertices have symbolic labels. | |||||
| 'edge_label_dim': whether egdes have symbolic labels. | |||||
| 'directed': whether graphs in dataset are directed. | |||||
| 'dataset_size': number of graphs in dataset. | |||||
| 'total_node_num': total number of vertices of all graphs in dataset. | |||||
| 'ave_node_num': average number of vertices of graphs in dataset. | |||||
| 'min_node_num': minimum number of vertices of graphs in dataset. | |||||
| 'max_node_num': maximum number of vertices of graphs in dataset. | |||||
| 'total_edge_num': total number of edges of all graphs in dataset. | |||||
| 'ave_edge_num': average number of edges of graphs in dataset. | |||||
| 'min_edge_num': minimum number of edges of graphs in dataset. | |||||
| 'max_edge_num': maximum number of edges of graphs in dataset. | |||||
| 'ave_node_degree': average vertex degree of graphs in dataset. | |||||
| 'min_node_degree': minimum vertex degree of graphs in dataset. | |||||
| 'max_node_degree': maximum vertex degree of graphs in dataset. | |||||
| 'ave_fill_factor': average fill factor (number_of_edges / | |||||
| (number_of_nodes ** 2)) of graphs in dataset. | |||||
| 'min_fill_factor': minimum fill factor of graphs in dataset. | |||||
| 'max_fill_factor': maximum fill factor of graphs in dataset. | |||||
| 'node_label_nums': list of numbers of symbolic vertex labels of graphs in dataset. | |||||
| 'edge_label_nums': list number of symbolic edge labels of graphs in dataset. | |||||
| 'node_attr_dim': number of dimensions of non-symbolic vertex labels. | |||||
| Extracted from the 'attributes' attribute of graph nodes. | |||||
| 'edge_attr_dim': number of dimensions of non-symbolic edge labels. | |||||
| Extracted from the 'attributes' attribute of graph edges. | |||||
| 'class_number': number of classes. Only available for classification problems. | |||||
| All informations above will be returned if `keys` is not given. | |||||
| Return | |||||
| ------ | |||||
| dict | |||||
| Information of the graph dataset keyed by `keys`. | |||||
| """ | |||||
| infos = {} | |||||
| if keys == None: | |||||
| keys = [ | |||||
| 'substructures', | |||||
| 'node_label_dim', | |||||
| 'edge_label_dim', | |||||
| 'directed', | |||||
| 'dataset_size', | |||||
| 'total_node_num', | |||||
| 'ave_node_num', | |||||
| 'min_node_num', | |||||
| 'max_node_num', | |||||
| 'total_edge_num', | |||||
| 'ave_edge_num', | |||||
| 'min_edge_num', | |||||
| 'max_edge_num', | |||||
| 'ave_node_degree', | |||||
| 'min_node_degree', | |||||
| 'max_node_degree', | |||||
| 'ave_fill_factor', | |||||
| 'min_fill_factor', | |||||
| 'max_fill_factor', | |||||
| 'node_label_nums', | |||||
| 'edge_label_nums', | |||||
| 'node_attr_dim', | |||||
| 'edge_attr_dim', | |||||
| 'class_number', | |||||
| ] | |||||
| # dataset size | |||||
| if 'dataset_size' in keys: | |||||
| if self.__dataset_size is None: | |||||
| self.__dataset_size = self.__get_dataset_size() | |||||
| infos['dataset_size'] = self.__dataset_size | |||||
| # graph node number | |||||
| if any(i in keys for i in ['total_node_num', 'ave_node_num', 'min_node_num', 'max_node_num']): | |||||
| all_node_nums = self.__get_all_node_nums() | |||||
| if 'total_node_num' in keys: | |||||
| if self.__total_node_num is None: | |||||
| self.__total_node_num = self.__get_total_node_num(all_node_nums) | |||||
| infos['total_node_num'] = self.__total_node_num | |||||
| if 'ave_node_num' in keys: | |||||
| if self.__ave_node_num is None: | |||||
| self.__ave_node_num = self.__get_ave_node_num(all_node_nums) | |||||
| infos['ave_node_num'] = self.__ave_node_num | |||||
| if 'min_node_num' in keys: | |||||
| if self.__min_node_num is None: | |||||
| self.__min_node_num = self.__get_min_node_num(all_node_nums) | |||||
| infos['min_node_num'] = self.__min_node_num | |||||
| if 'max_node_num' in keys: | |||||
| if self.__max_node_num is None: | |||||
| self.__max_node_num = self.__get_max_node_num(all_node_nums) | |||||
| infos['max_node_num'] = self.__max_node_num | |||||
| # graph edge number | |||||
| if any(i in keys for i in ['total_edge_num', 'ave_edge_num', 'min_edge_num', 'max_edge_num']): | |||||
| all_edge_nums = self.__get_all_edge_nums() | |||||
| if 'total_edge_num' in keys: | |||||
| if self.__total_edge_num is None: | |||||
| self.__total_edge_num = self.__get_total_edge_num(all_edge_nums) | |||||
| infos['total_edge_num'] = self.__total_edge_num | |||||
| if 'ave_edge_num' in keys: | |||||
| if self.__ave_edge_num is None: | |||||
| self.__ave_edge_num = self.__get_ave_edge_num(all_edge_nums) | |||||
| infos['ave_edge_num'] = self.__ave_edge_num | |||||
| if 'max_edge_num' in keys: | |||||
| if self.__max_edge_num is None: | |||||
| self.__max_edge_num = self.__get_max_edge_num(all_edge_nums) | |||||
| infos['max_edge_num'] = self.__max_edge_num | |||||
| if 'min_edge_num' in keys: | |||||
| if self.__min_edge_num is None: | |||||
| self.__min_edge_num = self.__get_min_edge_num(all_edge_nums) | |||||
| infos['min_edge_num'] = self.__min_edge_num | |||||
| # label number | |||||
| if 'node_label_dim' in keys: | |||||
| if self.__node_label_dim is None: | |||||
| self.__node_label_dim = self.__get_node_label_dim() | |||||
| infos['node_label_dim'] = self.__node_label_dim | |||||
| if 'node_label_nums' in keys: | |||||
| if self.__node_label_nums is None: | |||||
| self.__node_label_nums = {} | |||||
| for node_label in self.__node_labels: | |||||
| self.__node_label_nums[node_label] = self.__get_node_label_num(node_label) | |||||
| infos['node_label_nums'] = self.__node_label_nums | |||||
| if 'edge_label_dim' in keys: | |||||
| if self.__edge_label_dim is None: | |||||
| self.__edge_label_dim = self.__get_edge_label_dim() | |||||
| infos['edge_label_dim'] = self.__edge_label_dim | |||||
| if 'edge_label_nums' in keys: | |||||
| if self.__edge_label_nums is None: | |||||
| self.__edge_label_nums = {} | |||||
| for edge_label in self.__edge_labels: | |||||
| self.__edge_label_nums[edge_label] = self.__get_edge_label_num(edge_label) | |||||
| infos['edge_label_nums'] = self.__edge_label_nums | |||||
| if 'directed' in keys or 'substructures' in keys: | |||||
| if self.__directed is None: | |||||
| self.__directed = self.__is_directed() | |||||
| infos['directed'] = self.__directed | |||||
| # node degree | |||||
| if any(i in keys for i in ['ave_node_degree', 'max_node_degree', 'min_node_degree']): | |||||
| all_node_degrees = self.__get_all_node_degrees() | |||||
| if 'ave_node_degree' in keys: | |||||
| if self.__ave_node_degree is None: | |||||
| self.__ave_node_degree = self.__get_ave_node_degree(all_node_degrees) | |||||
| infos['ave_node_degree'] = self.__ave_node_degree | |||||
| if 'max_node_degree' in keys: | |||||
| if self.__max_node_degree is None: | |||||
| self.__max_node_degree = self.__get_max_node_degree(all_node_degrees) | |||||
| infos['max_node_degree'] = self.__max_node_degree | |||||
| if 'min_node_degree' in keys: | |||||
| if self.__min_node_degree is None: | |||||
| self.__min_node_degree = self.__get_min_node_degree(all_node_degrees) | |||||
| infos['min_node_degree'] = self.__min_node_degree | |||||
| # fill factor | |||||
| if any(i in keys for i in ['ave_fill_factor', 'max_fill_factor', 'min_fill_factor']): | |||||
| all_fill_factors = self.__get_all_fill_factors() | |||||
| if 'ave_fill_factor' in keys: | |||||
| if self.__ave_fill_factor is None: | |||||
| self.__ave_fill_factor = self.__get_ave_fill_factor(all_fill_factors) | |||||
| infos['ave_fill_factor'] = self.__ave_fill_factor | |||||
| if 'max_fill_factor' in keys: | |||||
| if self.__max_fill_factor is None: | |||||
| self.__max_fill_factor = self.__get_max_fill_factor(all_fill_factors) | |||||
| infos['max_fill_factor'] = self.__max_fill_factor | |||||
| if 'min_fill_factor' in keys: | |||||
| if self.__min_fill_factor is None: | |||||
| self.__min_fill_factor = self.__get_min_fill_factor(all_fill_factors) | |||||
| infos['min_fill_factor'] = self.__min_fill_factor | |||||
| if 'substructures' in keys: | |||||
| if self.__substructures is None: | |||||
| self.__substructures = self.__get_substructures() | |||||
| infos['substructures'] = self.__substructures | |||||
| if 'class_number' in keys: | |||||
| if self.__class_number is None: | |||||
| self.__class_number = self.__get_class_number() | |||||
| infos['class_number'] = self.__class_number | |||||
| if 'node_attr_dim' in keys: | |||||
| if self.__node_attr_dim is None: | |||||
| self.__node_attr_dim = self.__get_node_attr_dim() | |||||
| infos['node_attr_dim'] = self.__node_attr_dim | |||||
| if 'edge_attr_dim' in keys: | |||||
| if self.__edge_attr_dim is None: | |||||
| self.__edge_attr_dim = self.__get_edge_attr_dim() | |||||
| infos['edge_attr_dim'] = self.__edge_attr_dim | |||||
| return infos | |||||
| def print_graph_infos(self, infos): | |||||
| from collections import OrderedDict | |||||
| keys = list(infos.keys()) | |||||
| print(OrderedDict(sorted(infos.items(), key=lambda i: keys.index(i[0])))) | |||||
| def remove_labels(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]): | |||||
| node_labels = [item for item in node_labels if item in self.__node_labels] | |||||
| edge_labels = [item for item in edge_labels if item in self.__edge_labels] | |||||
| node_attrs = [item for item in node_attrs if item in self.__node_attrs] | |||||
| edge_attrs = [item for item in edge_attrs if item in self.__edge_attrs] | |||||
| for g in self.__graphs: | |||||
| for nd in g.nodes(): | |||||
| for nl in node_labels: | |||||
| del g.nodes[nd][nl] | |||||
| for na in node_attrs: | |||||
| del g.nodes[nd][na] | |||||
| for ed in g.edges(): | |||||
| for el in edge_labels: | |||||
| del g.edges[ed][el] | |||||
| for ea in edge_attrs: | |||||
| del g.edges[ed][ea] | |||||
| if len(node_labels) > 0: | |||||
| self.__node_labels = [nl for nl in self.__node_labels if nl not in node_labels] | |||||
| if len(edge_labels) > 0: | |||||
| self.__edge_labels = [el for el in self.__edge_labels if el not in edge_labels] | |||||
| if len(node_attrs) > 0: | |||||
| self.__node_attrs = [na for na in self.__node_attrs if na not in node_attrs] | |||||
| if len(edge_attrs) > 0: | |||||
| self.__edge_attrs = [ea for ea in self.__edge_attrs if ea not in edge_attrs] | |||||
| def clean_labels(self): | |||||
| labels = [] | |||||
| for name in self.__node_labels: | |||||
| label = set() | |||||
| for G in self.__graphs: | |||||
| label = label | set(nx.get_node_attributes(G, name).values()) | |||||
| if len(label) > 1: | |||||
| labels.append(name) | |||||
| break | |||||
| if len(label) < 2: | |||||
| for G in self.__graphs: | |||||
| for nd in G.nodes(): | |||||
| del G.nodes[nd][name] | |||||
| self.__node_labels = labels | |||||
| labels = [] | |||||
| for name in self.__edge_labels: | |||||
| label = set() | |||||
| for G in self.__graphs: | |||||
| label = label | set(nx.get_edge_attributes(G, name).values()) | |||||
| if len(label) > 1: | |||||
| labels.append(name) | |||||
| break | |||||
| if len(label) < 2: | |||||
| for G in self.__graphs: | |||||
| for ed in G.edges(): | |||||
| del G.edges[ed][name] | |||||
| self.__edge_labels = labels | |||||
| labels = [] | |||||
| for name in self.__node_attrs: | |||||
| label = set() | |||||
| for G in self.__graphs: | |||||
| label = label | set(nx.get_node_attributes(G, name).values()) | |||||
| if len(label) > 1: | |||||
| labels.append(name) | |||||
| break | |||||
| if len(label) < 2: | |||||
| for G in self.__graphs: | |||||
| for nd in G.nodes(): | |||||
| del G.nodes[nd][name] | |||||
| self.__node_attrs = labels | |||||
| labels = [] | |||||
| for name in self.__edge_attrs: | |||||
| label = set() | |||||
| for G in self.__graphs: | |||||
| label = label | set(nx.get_edge_attributes(G, name).values()) | |||||
| if len(label) > 1: | |||||
| labels.append(name) | |||||
| break | |||||
| if len(label) < 2: | |||||
| for G in self.__graphs: | |||||
| for ed in G.edges(): | |||||
| del G.edges[ed][name] | |||||
| self.__edge_attrs = labels | |||||
| def cut_graphs(self, range_): | |||||
| self.__graphs = [self.__graphs[i] for i in range_] | |||||
| if self.__targets is not None: | |||||
| self.__targets = [self.__targets[i] for i in range_] | |||||
| self.clean_labels() | |||||
| def trim_dataset(self, edge_required=False): | |||||
| if edge_required: | |||||
| trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if (nx.number_of_nodes(g) != 0 and nx.number_of_edges(g) != 0)] | |||||
| else: | |||||
| trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if nx.number_of_nodes(g) != 0] | |||||
| idx = [p[0] for p in trimed_pairs] | |||||
| self.__graphs = [p[1] for p in trimed_pairs] | |||||
| self.__targets = [self.__targets[i] for i in idx] | |||||
| self.clean_labels() | |||||
| def copy(self): | |||||
| dataset = Dataset() | |||||
| graphs = [g.copy() for g in self.__graphs] if self.__graphs is not None else None | |||||
| target = self.__targets.copy() if self.__targets is not None else None | |||||
| node_labels = self.__node_labels.copy() if self.__node_labels is not None else None | |||||
| node_attrs = self.__node_attrs.copy() if self.__node_attrs is not None else None | |||||
| edge_labels = self.__edge_labels.copy() if self.__edge_labels is not None else None | |||||
| edge_attrs = self.__edge_attrs.copy() if self.__edge_attrs is not None else None | |||||
| dataset.load_graphs(graphs, target) | |||||
| dataset.set_labels(node_labels=node_labels, node_attrs=node_attrs, edge_labels=edge_labels, edge_attrs=edge_attrs) | |||||
| # @todo: clean_labels and add other class members? | |||||
| return dataset | |||||
| def get_all_node_labels(self): | |||||
| node_labels = [] | |||||
| for g in self.__graphs: | |||||
| for n in g.nodes(): | |||||
| nl = tuple(g.nodes[n].items()) | |||||
| if nl not in node_labels: | |||||
| node_labels.append(nl) | |||||
| return node_labels | |||||
| def get_all_edge_labels(self): | |||||
| edge_labels = [] | |||||
| for g in self.__graphs: | |||||
| for e in g.edges(): | |||||
| el = tuple(g.edges[e].items()) | |||||
| if el not in edge_labels: | |||||
| edge_labels.append(el) | |||||
| return edge_labels | |||||
| def __get_dataset_size(self): | |||||
| return len(self.__graphs) | |||||
| def __get_all_node_nums(self): | |||||
| return [nx.number_of_nodes(G) for G in self.__graphs] | |||||
| def __get_total_node_nums(self, all_node_nums): | |||||
| return np.sum(all_node_nums) | |||||
| def __get_ave_node_num(self, all_node_nums): | |||||
| return np.mean(all_node_nums) | |||||
| def __get_min_node_num(self, all_node_nums): | |||||
| return np.amin(all_node_nums) | |||||
| def __get_max_node_num(self, all_node_nums): | |||||
| return np.amax(all_node_nums) | |||||
| def __get_all_edge_nums(self): | |||||
| return [nx.number_of_edges(G) for G in self.__graphs] | |||||
| def __get_total_edge_nums(self, all_edge_nums): | |||||
| return np.sum(all_edge_nums) | |||||
| def __get_ave_edge_num(self, all_edge_nums): | |||||
| return np.mean(all_edge_nums) | |||||
| def __get_min_edge_num(self, all_edge_nums): | |||||
| return np.amin(all_edge_nums) | |||||
| def __get_max_edge_num(self, all_edge_nums): | |||||
| return np.amax(all_edge_nums) | |||||
| def __get_node_label_dim(self): | |||||
| return len(self.__node_labels) | |||||
| def __get_node_label_num(self, node_label): | |||||
| nl = set() | |||||
| for G in self.__graphs: | |||||
| nl = nl | set(nx.get_node_attributes(G, node_label).values()) | |||||
| return len(nl) | |||||
| def __get_edge_label_dim(self): | |||||
| return len(self.__edge_labels) | |||||
| def __get_edge_label_num(self, edge_label): | |||||
| el = set() | |||||
| for G in self.__graphs: | |||||
| el = el | set(nx.get_edge_attributes(G, edge_label).values()) | |||||
| return len(el) | |||||
| def __is_directed(self): | |||||
| return nx.is_directed(self.__graphs[0]) | |||||
| def __get_all_node_degrees(self): | |||||
| return [np.mean(list(dict(G.degree()).values())) for G in self.__graphs] | |||||
| def __get_ave_node_degree(self, all_node_degrees): | |||||
| return np.mean(all_node_degrees) | |||||
| def __get_max_node_degree(self, all_node_degrees): | |||||
| return np.amax(all_node_degrees) | |||||
| def __get_min_node_degree(self, all_node_degrees): | |||||
| return np.amin(all_node_degrees) | |||||
| def __get_all_fill_factors(self): | |||||
| """ | |||||
| Get fill factor, the number of non-zero entries in the adjacency matrix. | |||||
| Returns | |||||
| ------- | |||||
| list[float] | |||||
| List of fill factors for all graphs. | |||||
| """ | |||||
| return [nx.number_of_edges(G) / (nx.number_of_nodes(G) ** 2) for G in self.__graphs] | |||||
| def __get_ave_fill_factor(self, all_fill_factors): | |||||
| return np.mean(all_fill_factors) | |||||
| def __get_max_fill_factor(self, all_fill_factors): | |||||
| return np.amax(all_fill_factors) | |||||
| def __get_min_fill_factor(self, all_fill_factors): | |||||
| return np.amin(all_fill_factors) | |||||
| def __get_substructures(self): | |||||
| subs = set() | |||||
| for G in self.__graphs: | |||||
| degrees = list(dict(G.degree()).values()) | |||||
| if any(i == 2 for i in degrees): | |||||
| subs.add('linear') | |||||
| if np.amax(degrees) >= 3: | |||||
| subs.add('non linear') | |||||
| if 'linear' in subs and 'non linear' in subs: | |||||
| break | |||||
| if self.__directed: | |||||
| for G in self.__graphs: | |||||
| if len(list(nx.find_cycle(G))) > 0: | |||||
| subs.add('cyclic') | |||||
| break | |||||
| # else: | |||||
| # # @todo: this method does not work for big graph with large amount of edges like D&D, try a better way. | |||||
| # upper = np.amin([nx.number_of_edges(G) for G in Gn]) * 2 + 10 | |||||
| # for G in Gn: | |||||
| # if (nx.number_of_edges(G) < upper): | |||||
| # cyc = list(nx.simple_cycles(G.to_directed())) | |||||
| # if any(len(i) > 2 for i in cyc): | |||||
| # subs.add('cyclic') | |||||
| # break | |||||
| # if 'cyclic' not in subs: | |||||
| # for G in Gn: | |||||
| # cyc = list(nx.simple_cycles(G.to_directed())) | |||||
| # if any(len(i) > 2 for i in cyc): | |||||
| # subs.add('cyclic') | |||||
| # break | |||||
| return subs | |||||
| def __get_class_num(self): | |||||
| return len(set(self.__targets)) | |||||
| def __get_node_attr_dim(self): | |||||
| return len(self.__node_attrs) | |||||
| def __get_edge_attr_dim(self): | |||||
| return len(self.__edge_attrs) | |||||
| @property | |||||
| def graphs(self): | |||||
| return self.__graphs | |||||
| @property | |||||
| def targets(self): | |||||
| return self.__targets | |||||
| @property | |||||
| def node_labels(self): | |||||
| return self.__node_labels | |||||
| @property | |||||
| def edge_labels(self): | |||||
| return self.__edge_labels | |||||
| @property | |||||
| def node_attrs(self): | |||||
| return self.__node_attrs | |||||
| @property | |||||
| def edge_attrs(self): | |||||
| return self.__edge_attrs | |||||
| def split_dataset_by_target(dataset): | |||||
| from gklearn.preimage.utils import get_same_item_indices | |||||
| graphs = dataset.graphs | |||||
| targets = dataset.targets | |||||
| datasets = [] | |||||
| idx_targets = get_same_item_indices(targets) | |||||
| for key, val in idx_targets.items(): | |||||
| sub_graphs = [graphs[i] for i in val] | |||||
| sub_dataset = Dataset() | |||||
| sub_dataset.load_graphs(sub_graphs, [key] * len(val)) | |||||
| node_labels = dataset.node_labels.copy() if dataset.node_labels is not None else None | |||||
| node_attrs = dataset.node_attrs.copy() if dataset.node_attrs is not None else None | |||||
| edge_labels = dataset.edge_labels.copy() if dataset.edge_labels is not None else None | |||||
| edge_attrs = dataset.edge_attrs.copy() if dataset.edge_attrs is not None else None | |||||
| sub_dataset.set_labels(node_labels=node_labels, node_attrs=node_attrs, edge_labels=edge_labels, edge_attrs=edge_attrs) | |||||
| datasets.append(sub_dataset) | |||||
| # @todo: clean_labels? | |||||
| return datasets | |||||