| @@ -11,3 +11,4 @@ from gklearn.kernels.graph_kernel import GraphKernel | |||
| from gklearn.kernels.structural_sp import StructuralSP | |||
| from gklearn.kernels.shortest_path import ShortestPath | |||
| from gklearn.kernels.path_up_to_h import PathUpToH | |||
| from gklearn.kernels.treelet import Treelet | |||
| @@ -176,7 +176,7 @@ class PathUpToH(GraphKernel): # @todo: add function for k_func == None | |||
| pool.close() | |||
| pool.join() | |||
| # compute Gram matrix. | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| def init_worker(p1_toshare, plist_toshare): | |||
| @@ -0,0 +1,505 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Mon Apr 13 18:02:46 2020 | |||
| @author: ljia | |||
| @references: | |||
| [1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in | |||
| chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47. | |||
| """ | |||
| import sys | |||
| from multiprocessing import Pool | |||
| from tqdm import tqdm | |||
| import numpy as np | |||
| import networkx as nx | |||
| from collections import Counter | |||
| from itertools import chain | |||
| from gklearn.utils.parallel import parallel_gm, parallel_me | |||
| from gklearn.utils.utils import find_all_paths, get_mlti_dim_node_attrs | |||
| from gklearn.kernels import GraphKernel | |||
| class Treelet(GraphKernel): | |||
| def __init__(self, **kwargs): | |||
| GraphKernel.__init__(self) | |||
| self.__node_labels = kwargs.get('node_labels', []) | |||
| self.__edge_labels = kwargs.get('edge_labels', []) | |||
| self.__sub_kernel = kwargs.get('sub_kernel', None) | |||
| self.__ds_infos = kwargs.get('ds_infos', {}) | |||
| if self.__sub_kernel is None: | |||
| raise Exception('Sub kernel not set.') | |||
| def _compute_gm_series(self): | |||
| self.__add_dummy_labels(self._graphs) | |||
| # get all canonical keys of all graphs before calculating kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| canonkeys = [] | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(self._graphs, desc='getting canonkeys', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| for g in iterator: | |||
| canonkeys.append(self.__get_canonkeys(g)) | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| for i, j in iterator: | |||
| kernel = self.__kernel_do(canonkeys[i], canonkeys[j]) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel # @todo: no directed graph considered? | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| self.__add_dummy_labels(self._graphs) | |||
| # get all canonical keys of all graphs before calculating kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| pool = Pool(self._n_jobs) | |||
| itr = zip(self._graphs, range(0, len(self._graphs))) | |||
| if len(self._graphs) < 100 * self._n_jobs: | |||
| chunksize = int(len(self._graphs) / self._n_jobs) + 1 | |||
| else: | |||
| chunksize = 100 | |||
| canonkeys = [[] for _ in range(len(self._graphs))] | |||
| get_fun = self._wrapper_get_canonkeys | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(pool.imap_unordered(get_fun, itr, chunksize), | |||
| desc='getting canonkeys', file=sys.stdout) | |||
| else: | |||
| iterator = pool.imap_unordered(get_fun, itr, chunksize) | |||
| for i, ck in iterator: | |||
| canonkeys[i] = ck | |||
| pool.close() | |||
| pool.join() | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| def init_worker(canonkeys_toshare): | |||
| global G_canonkeys | |||
| G_canonkeys = canonkeys_toshare | |||
| do_fun = self._wrapper_kernel_do | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| glbv=(canonkeys,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self.__add_dummy_labels(g_list + [g1]) | |||
| # get all canonical keys of all graphs before calculating kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| canonkeys_1 = self.__get_canonkeys(g1) | |||
| canonkeys_list = [] | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='getting canonkeys', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| for g in iterator: | |||
| canonkeys_list.append(self.__get_canonkeys(g)) | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| for i in iterator: | |||
| kernel = self.__kernel_do(canonkeys_1, canonkeys_list[i]) | |||
| kernel_list[i] = kernel | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self.__add_dummy_labels(g_list + [g1]) | |||
| # get all canonical keys of all graphs before calculating kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| canonkeys_1 = self.__get_canonkeys(g1) | |||
| canonkeys_list = [[] for _ in range(len(g_list))] | |||
| pool = Pool(self._n_jobs) | |||
| itr = zip(g_list, range(0, len(g_list))) | |||
| if len(g_list) < 100 * self._n_jobs: | |||
| chunksize = int(len(g_list) / self._n_jobs) + 1 | |||
| else: | |||
| chunksize = 100 | |||
| get_fun = self._wrapper_get_canonkeys | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(pool.imap_unordered(get_fun, itr, chunksize), | |||
| desc='getting canonkeys', file=sys.stdout) | |||
| else: | |||
| iterator = pool.imap_unordered(get_fun, itr, chunksize) | |||
| for i, ck in iterator: | |||
| canonkeys_list[i] = ck | |||
| pool.close() | |||
| pool.join() | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| def init_worker(ck_1_toshare, ck_list_toshare): | |||
| global G_ck_1, G_ck_list | |||
| G_ck_1 = ck_1_toshare | |||
| G_ck_list = ck_list_toshare | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=init_worker, glbv=(canonkeys_1, canonkeys_list), method='imap_unordered', | |||
| n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| return itr, self.__kernel_do(G_ck_1, G_ck_list[itr]) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| self.__add_dummy_labels([g1] + [g2]) | |||
| canonkeys_1 = self.__get_canonkeys(g1) | |||
| canonkeys_2 = self.__get_canonkeys(g2) | |||
| kernel = self.__kernel_do(canonkeys_1, canonkeys_2) | |||
| return kernel | |||
| def __kernel_do(self, canonkey1, canonkey2): | |||
| """Calculate treelet graph kernel between 2 graphs. | |||
| Parameters | |||
| ---------- | |||
| canonkey1, canonkey2 : list | |||
| List of canonical keys in 2 graphs, where each key is represented by a string. | |||
| Return | |||
| ------ | |||
| kernel : float | |||
| Treelet Kernel between 2 graphs. | |||
| """ | |||
| keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs | |||
| vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys]) | |||
| vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys]) | |||
| kernel = self.__sub_kernel(vector1, vector2) | |||
| return kernel | |||
| def _wrapper_kernel_do(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self.__kernel_do(G_canonkeys[i], G_canonkeys[j]) | |||
| def __get_canonkeys(self, G): | |||
| """Generate canonical keys of all treelets in a graph. | |||
| Parameters | |||
| ---------- | |||
| G : NetworkX graphs | |||
| The graph in which keys are generated. | |||
| Return | |||
| ------ | |||
| canonkey/canonkey_l : dict | |||
| For unlabeled graphs, canonkey is a dictionary which records amount of | |||
| every tree pattern. For labeled graphs, canonkey_l is one which keeps | |||
| track of amount of every treelet. | |||
| """ | |||
| patterns = {} # a dictionary which consists of lists of patterns for all graphlet. | |||
| canonkey = {} # canonical key, a dictionary which records amount of every tree pattern. | |||
| ### structural analysis ### | |||
| ### In this section, a list of patterns is generated for each graphlet, | |||
| ### where every pattern is represented by nodes ordered by Morgan's | |||
| ### extended labeling. | |||
| # linear patterns | |||
| patterns['0'] = list(G.nodes()) | |||
| canonkey['0'] = nx.number_of_nodes(G) | |||
| for i in range(1, 6): # for i in range(1, 6): | |||
| patterns[str(i)] = find_all_paths(G, i, self.__ds_infos['directed']) | |||
| canonkey[str(i)] = len(patterns[str(i)]) | |||
| # n-star patterns | |||
| patterns['3star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3] | |||
| patterns['4star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4] | |||
| patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5] | |||
| # n-star patterns | |||
| canonkey['6'] = len(patterns['3star']) | |||
| canonkey['8'] = len(patterns['4star']) | |||
| canonkey['d'] = len(patterns['5star']) | |||
| # pattern 7 | |||
| patterns['7'] = [] # the 1st line of Table 1 in Ref [1] | |||
| for pattern in patterns['3star']: | |||
| for i in range(1, len(pattern)): # for each neighbor of node 0 | |||
| if G.degree(pattern[i]) >= 2: | |||
| pattern_t = pattern[:] | |||
| # set the node with degree >= 2 as the 4th node | |||
| pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] | |||
| for neighborx in G[pattern[i]]: | |||
| if neighborx != pattern[0]: | |||
| new_pattern = pattern_t + [neighborx] | |||
| patterns['7'].append(new_pattern) | |||
| canonkey['7'] = len(patterns['7']) | |||
| # pattern 11 | |||
| patterns['11'] = [] # the 4th line of Table 1 in Ref [1] | |||
| for pattern in patterns['4star']: | |||
| for i in range(1, len(pattern)): | |||
| if G.degree(pattern[i]) >= 2: | |||
| pattern_t = pattern[:] | |||
| pattern_t[i], pattern_t[4] = pattern_t[4], pattern_t[i] | |||
| for neighborx in G[pattern[i]]: | |||
| if neighborx != pattern[0]: | |||
| new_pattern = pattern_t + [neighborx] | |||
| patterns['11'].append(new_pattern) | |||
| canonkey['b'] = len(patterns['11']) | |||
| # pattern 12 | |||
| patterns['12'] = [] # the 5th line of Table 1 in Ref [1] | |||
| rootlist = [] # a list of root nodes, whose extended labels are 3 | |||
| for pattern in patterns['3star']: | |||
| if pattern[0] not in rootlist: # prevent to count the same pattern twice from each of the two root nodes | |||
| rootlist.append(pattern[0]) | |||
| for i in range(1, len(pattern)): | |||
| if G.degree(pattern[i]) >= 3: | |||
| rootlist.append(pattern[i]) | |||
| pattern_t = pattern[:] | |||
| pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] | |||
| for neighborx1 in G[pattern[i]]: | |||
| if neighborx1 != pattern[0]: | |||
| for neighborx2 in G[pattern[i]]: | |||
| if neighborx1 > neighborx2 and neighborx2 != pattern[0]: | |||
| new_pattern = pattern_t + [neighborx1] + [neighborx2] | |||
| # new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ] | |||
| patterns['12'].append(new_pattern) | |||
| canonkey['c'] = int(len(patterns['12']) / 2) | |||
| # pattern 9 | |||
| patterns['9'] = [] # the 2nd line of Table 1 in Ref [1] | |||
| for pattern in patterns['3star']: | |||
| for pairs in [ [neighbor1, neighbor2] for neighbor1 in G[pattern[0]] if G.degree(neighbor1) >= 2 \ | |||
| for neighbor2 in G[pattern[0]] if G.degree(neighbor2) >= 2 if neighbor1 > neighbor2]: | |||
| pattern_t = pattern[:] | |||
| # move nodes with extended labels 4 to specific position to correspond to their children | |||
| pattern_t[pattern_t.index(pairs[0])], pattern_t[2] = pattern_t[2], pattern_t[pattern_t.index(pairs[0])] | |||
| pattern_t[pattern_t.index(pairs[1])], pattern_t[3] = pattern_t[3], pattern_t[pattern_t.index(pairs[1])] | |||
| for neighborx1 in G[pairs[0]]: | |||
| if neighborx1 != pattern[0]: | |||
| for neighborx2 in G[pairs[1]]: | |||
| if neighborx2 != pattern[0]: | |||
| new_pattern = pattern_t + [neighborx1] + [neighborx2] | |||
| patterns['9'].append(new_pattern) | |||
| canonkey['9'] = len(patterns['9']) | |||
| # pattern 10 | |||
| patterns['10'] = [] # the 3rd line of Table 1 in Ref [1] | |||
| for pattern in patterns['3star']: | |||
| for i in range(1, len(pattern)): | |||
| if G.degree(pattern[i]) >= 2: | |||
| for neighborx in G[pattern[i]]: | |||
| if neighborx != pattern[0] and G.degree(neighborx) >= 2: | |||
| pattern_t = pattern[:] | |||
| pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] | |||
| new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ] | |||
| patterns['10'].extend(new_patterns) | |||
| canonkey['a'] = len(patterns['10']) | |||
| ### labeling information ### | |||
| ### In this section, a list of canonical keys is generated for every | |||
| ### pattern obtained in the structural analysis section above, which is a | |||
| ### string corresponding to a unique treelet. A dictionary is built to keep | |||
| ### track of the amount of every treelet. | |||
| if len(self.__node_labels) > 0 or len(self.__edge_labels) > 0: | |||
| canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet. | |||
| # linear patterns | |||
| canonkey_t = Counter(get_mlti_dim_node_attrs(G, self.__node_labels)) | |||
| for key in canonkey_t: | |||
| canonkey_l[('0', key)] = canonkey_t[key] | |||
| for i in range(1, 6): # for i in range(1, 6): | |||
| treelet = [] | |||
| for pattern in patterns[str(i)]: | |||
| canonlist = [] | |||
| for idx, node in enumerate(pattern[:-1]): | |||
| canonlist.append(tuple(G.nodes[node][nl] for nl in self.__node_labels)) | |||
| canonlist.append(tuple(G[node][pattern[idx+1]][el] for el in self.__edge_labels)) | |||
| canonlist.append(tuple(G.nodes[pattern[-1]][nl] for nl in self.__node_labels)) | |||
| canonkey_t = canonlist if canonlist < canonlist[::-1] else canonlist[::-1] | |||
| treelet.append(tuple([str(i)] + canonkey_t)) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # n-star patterns | |||
| for i in range(3, 6): | |||
| treelet = [] | |||
| for pattern in patterns[str(i) + 'star']: | |||
| canonlist = [] | |||
| for leaf in pattern[1:]: | |||
| nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels) | |||
| elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels) | |||
| canonlist.append(tuple((nlabels, elabels))) | |||
| canonlist.sort() | |||
| canonlist = list(chain.from_iterable(canonlist)) | |||
| canonkey_t = tuple(['d' if i == 5 else str(i * 2)] + | |||
| [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] | |||
| + canonlist) | |||
| treelet.append(canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 7 | |||
| treelet = [] | |||
| for pattern in patterns['7']: | |||
| canonlist = [] | |||
| for leaf in pattern[1:3]: | |||
| nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels) | |||
| elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels) | |||
| canonlist.append(tuple((nlabels, elabels))) | |||
| canonlist.sort() | |||
| canonlist = list(chain.from_iterable(canonlist)) | |||
| canonkey_t = tuple(['7'] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] + canonlist | |||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels)] | |||
| + [tuple(G[pattern[3]][pattern[0]][el] for el in self.__edge_labels)] | |||
| + [tuple(G.nodes[pattern[4]][nl] for nl in self.__node_labels)] | |||
| + [tuple(G[pattern[4]][pattern[3]][el] for el in self.__edge_labels)]) | |||
| treelet.append(canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 11 | |||
| treelet = [] | |||
| for pattern in patterns['11']: | |||
| canonlist = [] | |||
| for leaf in pattern[1:4]: | |||
| nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels) | |||
| elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels) | |||
| canonlist.append(tuple((nlabels, elabels))) | |||
| canonlist.sort() | |||
| canonlist = list(chain.from_iterable(canonlist)) | |||
| canonkey_t = tuple(['b'] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] + canonlist | |||
| + [tuple(G.nodes[pattern[4]][nl] for nl in self.__node_labels)] | |||
| + [tuple(G[pattern[4]][pattern[0]][el] for el in self.__edge_labels)] | |||
| + [tuple(G.nodes[pattern[5]][nl] for nl in self.__node_labels)] | |||
| + [tuple(G[pattern[5]][pattern[4]][el] for el in self.__edge_labels)]) | |||
| treelet.append(canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 10 | |||
| treelet = [] | |||
| for pattern in patterns['10']: | |||
| canonkey4 = [tuple(G.nodes[pattern[5]][nl] for nl in self.__node_labels), | |||
| tuple(G[pattern[5]][pattern[4]][el] for el in self.__edge_labels)] | |||
| canonlist = [] | |||
| for leaf in pattern[1:3]: | |||
| nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels) | |||
| elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels) | |||
| canonlist.append(tuple((nlabels, elabels))) | |||
| canonlist.sort() | |||
| canonkey0 = list(chain.from_iterable(canonlist)) | |||
| canonkey_t = tuple(['a'] | |||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels)] | |||
| + [tuple(G.nodes[pattern[4]][nl] for nl in self.__node_labels)] | |||
| + [tuple(G[pattern[4]][pattern[3]][el] for el in self.__edge_labels)] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] | |||
| + [tuple(G[pattern[0]][pattern[3]][el] for el in self.__edge_labels)] | |||
| + canonkey4 + canonkey0) | |||
| treelet.append(canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 12 | |||
| treelet = [] | |||
| for pattern in patterns['12']: | |||
| canonlist0 = [] | |||
| for leaf in pattern[1:3]: | |||
| nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels) | |||
| elabels = tuple(G[leaf][pattern[0]][el] for el in self.__edge_labels) | |||
| canonlist0.append(tuple((nlabels, elabels))) | |||
| canonlist0.sort() | |||
| canonlist0 = list(chain.from_iterable(canonlist0)) | |||
| canonlist3 = [] | |||
| for leaf in pattern[4:6]: | |||
| nlabels = tuple(G.nodes[leaf][nl] for nl in self.__node_labels) | |||
| elabels = tuple(G[leaf][pattern[3]][el] for el in self.__edge_labels) | |||
| canonlist3.append(tuple((nlabels, elabels))) | |||
| canonlist3.sort() | |||
| canonlist3 = list(chain.from_iterable(canonlist3)) | |||
| # 2 possible key can be generated from 2 nodes with extended label 3, | |||
| # select the one with lower lexicographic order. | |||
| canonkey_t1 = tuple(['c'] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] + canonlist0 | |||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels)] | |||
| + [tuple(G[pattern[3]][pattern[0]][el] for el in self.__edge_labels)] | |||
| + canonlist3) | |||
| canonkey_t2 = tuple(['c'] | |||
| + [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels)] + canonlist3 | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] | |||
| + [tuple(G[pattern[0]][pattern[3]][el] for el in self.__edge_labels)] | |||
| + canonlist0) | |||
| treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 9 | |||
| treelet = [] | |||
| for pattern in patterns['9']: | |||
| canonkey2 = [tuple(G.nodes[pattern[4]][nl] for nl in self.__node_labels), | |||
| tuple(G[pattern[4]][pattern[2]][el] for el in self.__edge_labels)] | |||
| canonkey3 = [tuple(G.nodes[pattern[5]][nl] for nl in self.__node_labels), | |||
| tuple(G[pattern[5]][pattern[3]][el] for el in self.__edge_labels)] | |||
| prekey2 = [tuple(G.nodes[pattern[2]][nl] for nl in self.__node_labels), | |||
| tuple(G[pattern[2]][pattern[0]][el] for el in self.__edge_labels)] | |||
| prekey3 = [tuple(G.nodes[pattern[3]][nl] for nl in self.__node_labels), | |||
| tuple(G[pattern[3]][pattern[0]][el] for el in self.__edge_labels)] | |||
| if prekey2 + canonkey2 < prekey3 + canonkey3: | |||
| canonkey_t = [tuple(G.nodes[pattern[1]][nl] for nl in self.__node_labels)] \ | |||
| + [tuple(G[pattern[1]][pattern[0]][el] for el in self.__edge_labels)] \ | |||
| + prekey2 + prekey3 + canonkey2 + canonkey3 | |||
| else: | |||
| canonkey_t = [tuple(G.nodes[pattern[1]][nl] for nl in self.__node_labels)] \ | |||
| + [tuple(G[pattern[1]][pattern[0]][el] for el in self.__edge_labels)] \ | |||
| + prekey3 + prekey2 + canonkey3 + canonkey2 | |||
| treelet.append(tuple(['9'] | |||
| + [tuple(G.nodes[pattern[0]][nl] for nl in self.__node_labels)] | |||
| + canonkey_t)) | |||
| canonkey_l.update(Counter(treelet)) | |||
| return canonkey_l | |||
| return canonkey | |||
| def _wrapper_get_canonkeys(self, itr_item): | |||
| g = itr_item[0] | |||
| i = itr_item[1] | |||
| return i, self.__get_canonkeys(g) | |||
| def __add_dummy_labels(self, Gn): | |||
| if len(self.__node_labels) == 0: | |||
| for G in Gn: | |||
| nx.set_node_attributes(G, '0', 'dummy') | |||
| self.__node_labels.append('dummy') | |||
| if len(self.__edge_labels) == 0: | |||
| for G in Gn: | |||
| nx.set_edge_attributes(G, '0', 'dummy') | |||
| self.__edge_labels.append('dummy') | |||
| @@ -53,7 +53,7 @@ def xp_median_preimage_9_1(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} # | |||
| edge_required = False # | |||
| @@ -69,7 +69,7 @@ def xp_median_preimage_9_1(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -114,7 +114,7 @@ def xp_median_preimage_9_2(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = {'node_attrs': ['x', 'y', 'z'], 'edge_labels': ['bond_stereo']} # | |||
| edge_required = False # | |||
| @@ -130,7 +130,68 @@ def xp_median_preimage_9_2(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required) | |||
| def xp_median_preimage_9_3(): | |||
| """xp 9_3: MAO, Treelet, using CONSTANT. | |||
| """ | |||
| from gklearn.utils.kernels import polynomialkernel | |||
| # set parameters. | |||
| ds_name = 'MAO' # | |||
| mpg_options = {'fit_method': 'k-graphs', | |||
| 'init_ecc': [4, 4, 2, 1, 1, 1], # | |||
| 'ds_name': ds_name, | |||
| 'parallel': True, # False | |||
| 'time_limit_in_sec': 0, | |||
| 'max_itrs': 100, # | |||
| 'max_itrs_without_update': 3, | |||
| 'epsilon_residual': 0.01, | |||
| 'epsilon_ec': 0.1, | |||
| 'verbose': 2} | |||
| pkernel = functools.partial(polynomialkernel, d=4, c=1e+7) | |||
| kernel_options = {'name': 'Treelet', # | |||
| 'sub_kernel': pkernel, | |||
| 'parallel': 'imap_unordered', | |||
| # 'parallel': None, | |||
| 'n_jobs': multiprocessing.cpu_count(), | |||
| 'normalize': True, | |||
| 'verbose': 2} | |||
| ged_options = {'method': 'IPFP', | |||
| 'initialization_method': 'RANDOM', # 'NODE' | |||
| 'initial_solutions': 10, # 1 | |||
| 'edit_cost': 'CONSTANT', # | |||
| 'attr_distance': 'euclidean', | |||
| 'ratio_runs_from_initial_solutions': 1, | |||
| 'threads': multiprocessing.cpu_count(), | |||
| 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'} | |||
| mge_options = {'init_type': 'MEDOID', | |||
| 'random_inits': 10, | |||
| 'time_limit': 600, | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = False # | |||
| # print settings. | |||
| print('parameters:') | |||
| print('dataset name:', ds_name) | |||
| print('mpg_options:', mpg_options) | |||
| print('kernel_options:', kernel_options) | |||
| print('ged_options:', ged_options) | |||
| print('mge_options:', mge_options) | |||
| print('save_results:', save_results) | |||
| print('irrelevant_labels:', irrelevant_labels) | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -178,7 +239,7 @@ def xp_median_preimage_8_1(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = False # | |||
| @@ -194,7 +255,7 @@ def xp_median_preimage_8_1(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -239,7 +300,68 @@ def xp_median_preimage_8_2(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = False # | |||
| # print settings. | |||
| print('parameters:') | |||
| print('dataset name:', ds_name) | |||
| print('mpg_options:', mpg_options) | |||
| print('kernel_options:', kernel_options) | |||
| print('ged_options:', ged_options) | |||
| print('mge_options:', mge_options) | |||
| print('save_results:', save_results) | |||
| print('irrelevant_labels:', irrelevant_labels) | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required) | |||
| def xp_median_preimage_8_3(): | |||
| """xp 8_3: Monoterpenoides, Treelet, using CONSTANT. | |||
| """ | |||
| from gklearn.utils.kernels import polynomialkernel | |||
| # set parameters. | |||
| ds_name = 'Monoterpenoides' # | |||
| mpg_options = {'fit_method': 'k-graphs', | |||
| 'init_ecc': [4, 4, 2, 1, 1, 1], # | |||
| 'ds_name': ds_name, | |||
| 'parallel': True, # False | |||
| 'time_limit_in_sec': 0, | |||
| 'max_itrs': 100, # | |||
| 'max_itrs_without_update': 3, | |||
| 'epsilon_residual': 0.01, | |||
| 'epsilon_ec': 0.1, | |||
| 'verbose': 2} | |||
| pkernel = functools.partial(polynomialkernel, d=2, c=1e+5) | |||
| kernel_options = {'name': 'Treelet', | |||
| 'sub_kernel': pkernel, | |||
| 'parallel': 'imap_unordered', | |||
| # 'parallel': None, | |||
| 'n_jobs': multiprocessing.cpu_count(), | |||
| 'normalize': True, | |||
| 'verbose': 2} | |||
| ged_options = {'method': 'IPFP', | |||
| 'initialization_method': 'RANDOM', # 'NODE' | |||
| 'initial_solutions': 10, # 1 | |||
| 'edit_cost': 'CONSTANT', # | |||
| 'attr_distance': 'euclidean', | |||
| 'ratio_runs_from_initial_solutions': 1, | |||
| 'threads': multiprocessing.cpu_count(), | |||
| 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'} | |||
| mge_options = {'init_type': 'MEDOID', | |||
| 'random_inits': 10, | |||
| 'time_limit': 600, | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = False # | |||
| @@ -255,7 +377,7 @@ def xp_median_preimage_8_2(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -303,7 +425,7 @@ def xp_median_preimage_7_1(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = False # | |||
| @@ -319,7 +441,7 @@ def xp_median_preimage_7_1(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -364,7 +486,7 @@ def xp_median_preimage_7_2(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = False # | |||
| @@ -380,7 +502,68 @@ def xp_median_preimage_7_2(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save, irrelevant_labels=irrelevant_labels, edge_required=edge_required) | |||
| def xp_median_preimage_7_3(): | |||
| """xp 7_3: MUTAG, Treelet, using CONSTANT. | |||
| """ | |||
| from gklearn.utils.kernels import polynomialkernel | |||
| # set parameters. | |||
| ds_name = 'MUTAG' # | |||
| mpg_options = {'fit_method': 'k-graphs', | |||
| 'init_ecc': [4, 4, 2, 1, 1, 1], # | |||
| 'ds_name': ds_name, | |||
| 'parallel': True, # False | |||
| 'time_limit_in_sec': 0, | |||
| 'max_itrs': 100, # | |||
| 'max_itrs_without_update': 3, | |||
| 'epsilon_residual': 0.01, | |||
| 'epsilon_ec': 0.1, | |||
| 'verbose': 2} | |||
| pkernel = functools.partial(polynomialkernel, d=3, c=1e+8) | |||
| kernel_options = {'name': 'Treelet', | |||
| 'sub_kernel': pkernel, | |||
| 'parallel': 'imap_unordered', | |||
| # 'parallel': None, | |||
| 'n_jobs': multiprocessing.cpu_count(), | |||
| 'normalize': True, | |||
| 'verbose': 2} | |||
| ged_options = {'method': 'IPFP', | |||
| 'initialization_method': 'RANDOM', # 'NODE' | |||
| 'initial_solutions': 10, # 1 | |||
| 'edit_cost': 'CONSTANT', # | |||
| 'attr_distance': 'euclidean', | |||
| 'ratio_runs_from_initial_solutions': 1, | |||
| 'threads': multiprocessing.cpu_count(), | |||
| 'init_option': 'EAGER_WITHOUT_SHUFFLED_COPIES'} | |||
| mge_options = {'init_type': 'MEDOID', | |||
| 'random_inits': 10, | |||
| 'time_limit': 600, | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = False # | |||
| # print settings. | |||
| print('parameters:') | |||
| print('dataset name:', ds_name) | |||
| print('mpg_options:', mpg_options) | |||
| print('kernel_options:', kernel_options) | |||
| print('ged_options:', ged_options) | |||
| print('mge_options:', mge_options) | |||
| print('save_results:', save_results) | |||
| print('irrelevant_labels:', irrelevant_labels) | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -428,7 +611,7 @@ def xp_median_preimage_6_1(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = False # | |||
| @@ -444,7 +627,7 @@ def xp_median_preimage_6_1(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -490,7 +673,7 @@ def xp_median_preimage_6_2(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = True # | |||
| @@ -506,7 +689,7 @@ def xp_median_preimage_6_2(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -554,7 +737,7 @@ def xp_median_preimage_5_1(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = False # | |||
| @@ -570,7 +753,7 @@ def xp_median_preimage_5_1(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -618,7 +801,7 @@ def xp_median_preimage_4_1(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = False # | |||
| @@ -634,7 +817,7 @@ def xp_median_preimage_4_1(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -680,7 +863,7 @@ def xp_median_preimage_3_2(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = {'edge_attrs': ['orient', 'angle']} # | |||
| edge_required = True # | |||
| @@ -696,7 +879,7 @@ def xp_median_preimage_3_2(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -744,7 +927,7 @@ def xp_median_preimage_3_1(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = {'edge_attrs': ['orient', 'angle']} # | |||
| edge_required = False # | |||
| @@ -760,7 +943,7 @@ def xp_median_preimage_3_1(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -808,7 +991,7 @@ def xp_median_preimage_2_1(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = {'edge_labels': ['valence']} | |||
| # print settings. | |||
| @@ -827,7 +1010,7 @@ def xp_median_preimage_2_1(): | |||
| # compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, dir_save=dir_save, irrelevant_labels=irrelevant_labels) | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -875,6 +1058,7 @@ def xp_median_preimage_1_1(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| # print settings. | |||
| print('parameters:') | |||
| @@ -886,11 +1070,11 @@ def xp_median_preimage_1_1(): | |||
| print('save_results:', save_results) | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save='../results/xp_median_preimage/') | |||
| generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save) | |||
| def xp_median_preimage_1_2(): | |||
| @@ -932,7 +1116,7 @@ def xp_median_preimage_1_2(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = True # | |||
| @@ -948,7 +1132,7 @@ def xp_median_preimage_1_2(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -996,6 +1180,7 @@ def xp_median_preimage_10_1(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| # print settings. | |||
| print('parameters:') | |||
| @@ -1007,11 +1192,11 @@ def xp_median_preimage_10_1(): | |||
| print('save_results:', save_results) | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save='../results/xp_median_preimage/') | |||
| generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save) | |||
| def xp_median_preimage_10_2(): | |||
| @@ -1053,7 +1238,7 @@ def xp_median_preimage_10_2(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = True # | |||
| @@ -1069,7 +1254,7 @@ def xp_median_preimage_10_2(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -1117,6 +1302,7 @@ def xp_median_preimage_11_1(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| # print settings. | |||
| print('parameters:') | |||
| @@ -1128,11 +1314,11 @@ def xp_median_preimage_11_1(): | |||
| print('save_results:', save_results) | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save='../results/xp_median_preimage/') | |||
| generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=save_results, save_medians=True, plot_medians=True, load_gm='auto', dir_save=dir_save) | |||
| def xp_median_preimage_11_2(): | |||
| @@ -1174,7 +1360,7 @@ def xp_median_preimage_11_2(): | |||
| 'verbose': 2, | |||
| 'refine': False} | |||
| save_results = True | |||
| dir_save='../results/xp_median_preimage/' | |||
| dir_save = '../results/xp_median_preimage/' + ds_name + '.' + kernel_options['name'] + '/' | |||
| irrelevant_labels = None # | |||
| edge_required = True # | |||
| @@ -1190,7 +1376,7 @@ def xp_median_preimage_11_2(): | |||
| print() | |||
| # generate preimages. | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 10: | |||
| for fit_method in ['k-graphs', 'expert'] + ['random'] * 5: | |||
| print('\n-------------------------------------') | |||
| print('fit method:', fit_method, '\n') | |||
| mpg_options['fit_method'] = fit_method | |||
| @@ -1242,16 +1428,25 @@ if __name__ == "__main__": | |||
| # xp_median_preimage_7_1() | |||
| #### xp 7_2: MUTAG, PathUpToH, using CONSTANT. | |||
| xp_median_preimage_7_2() | |||
| # xp_median_preimage_7_2() | |||
| #### xp 7_3: MUTAG, Treelet, using CONSTANT. | |||
| # xp_median_preimage_7_3() | |||
| #### xp 8_1: Monoterpenoides, StructuralSP, using CONSTANT. | |||
| # xp_median_preimage_8_1() | |||
| #### xp 8_2: Monoterpenoides, PathUpToH, using CONSTANT. | |||
| # xp_median_preimage_8_2() | |||
| # xp_median_preimage_8_2() | |||
| #### xp 8_3: Monoterpenoides, Treelet, using CONSTANT. | |||
| # xp_median_preimage_8_3() | |||
| #### xp 9_1: MAO, StructuralSP, using CONSTANT, symbolic only. | |||
| # xp_median_preimage_9_1() | |||
| #### xp 9_2: MAO, PathUpToH, using CONSTANT, symbolic only. | |||
| # xp_median_preimage_9_2() | |||
| # xp_median_preimage_9_2() | |||
| #### xp 9_3: MAO, Treelet, using CONSTANT. | |||
| xp_median_preimage_9_3() | |||
| @@ -745,8 +745,14 @@ class MedianPreimageGenerator(PreimageGenerator): | |||
| edge_labels=self._dataset.edge_labels, | |||
| ds_infos=self._dataset.get_dataset_infos(keys=['directed']), | |||
| **self._kernel_options) | |||
| elif self._kernel_options['name'] == 'Treelet': | |||
| from gklearn.kernels import Treelet | |||
| self._graph_kernel = Treelet(node_labels=self._dataset.node_labels, | |||
| edge_labels=self._dataset.edge_labels, | |||
| ds_infos=self._dataset.get_dataset_infos(keys=['directed']), | |||
| **self._kernel_options) | |||
| else: | |||
| raise Exception('The graph kernel given is not defined. Possible choices include: "StructuralSP", "ShortestPath", "PathUpToH".') | |||
| raise Exception('The graph kernel given is not defined. Possible choices include: "StructuralSP", "ShortestPath", "PathUpToH", "Treelet".') | |||
| # def __clean_graph(self, G, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]): | |||
| @@ -22,6 +22,7 @@ from gklearn.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel | |||
| from gklearn.utils import Dataset | |||
| import csv | |||
| import networkx as nx | |||
| import os | |||
| def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged_options, mge_options, save_results=True, save_medians=True, plot_medians=True, load_gm='auto', dir_save='', irrelevant_labels=None, edge_required=False): | |||
| @@ -215,6 +216,8 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
| # save median graphs. | |||
| if save_medians: | |||
| if not os.path.exists(dir_save + 'medians/'): | |||
| os.makedirs(dir_save + 'medians/') | |||
| print('Saving median graphs to files...') | |||
| fn_pre_sm = dir_save + 'medians/set_median.' + mpg_options['fit_method'] + '.nbg' + str(num_graphs) + '.y' + str(target) + '.repeat' + str(1) | |||
| saveGXL(mpg.set_median, fn_pre_sm + '.gxl', method='default', | |||
| @@ -286,6 +289,8 @@ def generate_median_preimages_by_class(ds_name, mpg_options, kernel_options, ged | |||
| def __init_output_file(ds_name, gkernel, fit_method, dir_output): | |||
| if not os.path.exists(dir_output): | |||
| os.makedirs(dir_output) | |||
| # fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.' + fit_method + '.csv' | |||
| fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.csv' | |||
| f_detail = open(dir_output + fn_output_detail, 'a') | |||
| @@ -231,28 +231,31 @@ def test_PathUpToH(ds_name, parallel, k_func, compute_method): | |||
| assert False, exception | |||
| # @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| # def test_treeletkernel(ds_name, parallel): | |||
| # """Test treelet kernel. | |||
| # """ | |||
| # from gklearn.kernels.treeletKernel import treeletkernel | |||
| # from gklearn.utils.kernels import polynomialkernel | |||
| # import functools | |||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||
| def test_treeletkernel(ds_name, parallel): | |||
| """Test treelet kernel. | |||
| """ | |||
| from gklearn.kernels import Treelet | |||
| from gklearn.utils.kernels import polynomialkernel | |||
| import functools | |||
| # Gn, y = chooseDataset(ds_name) | |||
| dataset = chooseDataset(ds_name) | |||
| # pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||
| # try: | |||
| # Kmatrix, run_time = treeletkernel(Gn, | |||
| # sub_kernel=pkernel, | |||
| # node_label='atom', | |||
| # edge_label='bond_type', | |||
| # parallel=parallel, | |||
| # n_jobs=multiprocessing.cpu_count(), | |||
| # verbose=True) | |||
| # except Exception as exception: | |||
| # assert False, exception | |||
| pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||
| try: | |||
| graph_kernel = Treelet(node_labels=dataset.node_labels, | |||
| edge_labels=dataset.edge_labels, | |||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||
| sub_kernel=pkernel) | |||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||
| except Exception as exception: | |||
| assert False, exception | |||
| # @pytest.mark.parametrize('ds_name', ['Acyclic']) | |||
| @@ -351,4 +351,77 @@ def compute_gram_matrices_by_class(ds_name, kernel_options, save_results=True, d | |||
| if save_results: | |||
| np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm_list=gram_matrix_unnorm_list, run_time_list=run_time_list) | |||
| print('\ncomplete.') | |||
| print('\ncomplete.') | |||
| def find_paths(G, source_node, length): | |||
| """Find all paths with a certain length those start from a source node. | |||
| A recursive depth first search is applied. | |||
| Parameters | |||
| ---------- | |||
| G : NetworkX graphs | |||
| The graph in which paths are searched. | |||
| source_node : integer | |||
| The number of the node from where all paths start. | |||
| length : integer | |||
| The length of paths. | |||
| Return | |||
| ------ | |||
| path : list of list | |||
| List of paths retrieved, where each path is represented by a list of nodes. | |||
| """ | |||
| if length == 0: | |||
| return [[source_node]] | |||
| path = [[source_node] + path for neighbor in G[source_node] \ | |||
| for path in find_paths(G, neighbor, length - 1) if source_node not in path] | |||
| return path | |||
| def find_all_paths(G, length, is_directed): | |||
| """Find all paths with a certain length in a graph. A recursive depth first | |||
| search is applied. | |||
| Parameters | |||
| ---------- | |||
| G : NetworkX graphs | |||
| The graph in which paths are searched. | |||
| length : integer | |||
| The length of paths. | |||
| Return | |||
| ------ | |||
| path : list of list | |||
| List of paths retrieved, where each path is represented by a list of nodes. | |||
| """ | |||
| all_paths = [] | |||
| for node in G: | |||
| all_paths.extend(find_paths(G, node, length)) | |||
| if not is_directed: | |||
| # For each path, two presentations are retrieved from its two extremities. | |||
| # Remove one of them. | |||
| all_paths_r = [path[::-1] for path in all_paths] | |||
| for idx, path in enumerate(all_paths[:-1]): | |||
| for path2 in all_paths_r[idx+1::]: | |||
| if path == path2: | |||
| all_paths[idx] = [] | |||
| break | |||
| all_paths = list(filter(lambda a: a != [], all_paths)) | |||
| return all_paths | |||
| def get_mlti_dim_node_attrs(G, attr_names): | |||
| attributes = [] | |||
| for nd, attrs in G.nodes(data=True): | |||
| attributes.append(tuple(attrs[aname] for aname in attr_names)) | |||
| return attributes | |||
| def get_mlti_dim_edge_attrs(G, attr_names): | |||
| attributes = [] | |||
| for ed, attrs in G.edges(data=True): | |||
| attributes.append(tuple(attrs[aname] for aname in attr_names)) | |||
| return attributes | |||