| @@ -26,15 +26,15 @@ class StructuralSP(GraphKernel): | |||
| def __init__(self, **kwargs): | |||
| GraphKernel.__init__(self) | |||
| self.__node_labels = kwargs.get('node_labels', []) | |||
| self.__edge_labels = kwargs.get('edge_labels', []) | |||
| self.__node_attrs = kwargs.get('node_attrs', []) | |||
| self.__edge_attrs = kwargs.get('edge_attrs', []) | |||
| self.__edge_weight = kwargs.get('edge_weight', None) | |||
| self.__node_kernels = kwargs.get('node_kernels', None) | |||
| self.__edge_kernels = kwargs.get('edge_kernels', None) | |||
| self.__compute_method = kwargs.get('compute_method', 'naive') | |||
| self.__ds_infos = kwargs.get('ds_infos', {}) | |||
| self._node_labels = kwargs.get('node_labels', []) | |||
| self._edge_labels = kwargs.get('edge_labels', []) | |||
| self._node_attrs = kwargs.get('node_attrs', []) | |||
| self._edge_attrs = kwargs.get('edge_attrs', []) | |||
| self._edge_weight = kwargs.get('edge_weight', None) | |||
| self._node_kernels = kwargs.get('node_kernels', None) | |||
| self._edge_kernels = kwargs.get('edge_kernels', None) | |||
| self._compute_method = kwargs.get('compute_method', 'naive') | |||
| self._ds_infos = kwargs.get('ds_infos', {}) | |||
| def _compute_gm_series(self): | |||
| @@ -44,12 +44,12 @@ class StructuralSP(GraphKernel): | |||
| iterator = tqdm(self._graphs, desc='getting sp graphs', file=sys.stdout) | |||
| else: | |||
| iterator = self._graphs | |||
| if self.__compute_method == 'trie': | |||
| if self._compute_method == 'trie': | |||
| for g in iterator: | |||
| splist.append(self.__get_sps_as_trie(g)) | |||
| splist.append(self._get_sps_as_trie(g)) | |||
| else: | |||
| for g in iterator: | |||
| splist.append(get_shortest_paths(g, self.__edge_weight, self.__ds_infos['directed'])) | |||
| splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| @@ -60,14 +60,14 @@ class StructuralSP(GraphKernel): | |||
| iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| if self.__compute_method == 'trie': | |||
| if self._compute_method == 'trie': | |||
| for i, j in iterator: | |||
| kernel = self.__ssp_do_trie(self._graphs[i], self._graphs[j], splist[i], splist[j]) | |||
| kernel = self._ssp_do_trie(self._graphs[i], self._graphs[j], splist[i], splist[j]) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel | |||
| else: | |||
| for i, j in iterator: | |||
| kernel = self.__ssp_do_naive(self._graphs[i], self._graphs[j], splist[i], splist[j]) | |||
| kernel = self._ssp_do_naive(self._graphs[i], self._graphs[j], splist[i], splist[j]) | |||
| # if(kernel > 1): | |||
| # print("error here ") | |||
| gram_matrix[i][j] = kernel | |||
| @@ -86,7 +86,7 @@ class StructuralSP(GraphKernel): | |||
| else: | |||
| chunksize = 100 | |||
| # get shortest path graphs of self._graphs | |||
| if self.__compute_method == 'trie': | |||
| if self._compute_method == 'trie': | |||
| get_sps_fun = self._wrapper_get_sps_trie | |||
| else: | |||
| get_sps_fun = self._wrapper_get_sps_naive | |||
| @@ -107,8 +107,8 @@ class StructuralSP(GraphKernel): | |||
| global G_spl, G_gs | |||
| G_spl = spl_toshare | |||
| G_gs = gs_toshare | |||
| if self.__compute_method == 'trie': | |||
| do_fun = self.__wrapper_ssp_do_trie | |||
| if self._compute_method == 'trie': | |||
| do_fun = self._wrapper_ssp_do_trie | |||
| else: | |||
| do_fun = self._wrapper_ssp_do_naive | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||
| @@ -119,18 +119,18 @@ class StructuralSP(GraphKernel): | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| # get shortest paths of g1 and each graph in g_list. | |||
| sp1 = get_shortest_paths(g1, self.__edge_weight, self.__ds_infos['directed']) | |||
| sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | |||
| splist = [] | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(g_list, desc='getting sp graphs', file=sys.stdout) | |||
| else: | |||
| iterator = g_list | |||
| if self.__compute_method == 'trie': | |||
| if self._compute_method == 'trie': | |||
| for g in iterator: | |||
| splist.append(self.__get_sps_as_trie(g)) | |||
| splist.append(self._get_sps_as_trie(g)) | |||
| else: | |||
| for g in iterator: | |||
| splist.append(get_shortest_paths(g, self.__edge_weight, self.__ds_infos['directed'])) | |||
| splist.append(get_shortest_paths(g, self._edge_weight, self._ds_infos['directed'])) | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| @@ -138,13 +138,13 @@ class StructuralSP(GraphKernel): | |||
| iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| if self.__compute_method == 'trie': | |||
| if self._compute_method == 'trie': | |||
| for i in iterator: | |||
| kernel = self.__ssp_do_trie(g1, g_list[i], sp1, splist[i]) | |||
| kernel = self._ssp_do_trie(g1, g_list[i], sp1, splist[i]) | |||
| kernel_list[i] = kernel | |||
| else: | |||
| for i in iterator: | |||
| kernel = self.__ssp_do_naive(g1, g_list[i], sp1, splist[i]) | |||
| kernel = self._ssp_do_naive(g1, g_list[i], sp1, splist[i]) | |||
| kernel_list[i] = kernel | |||
| return kernel_list | |||
| @@ -152,7 +152,7 @@ class StructuralSP(GraphKernel): | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| # get shortest paths of g1 and each graph in g_list. | |||
| sp1 = get_shortest_paths(g1, self.__edge_weight, self.__ds_infos['directed']) | |||
| sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | |||
| splist = [None] * len(g_list) | |||
| pool = Pool(self._n_jobs) | |||
| itr = zip(g_list, range(0, len(g_list))) | |||
| @@ -161,7 +161,7 @@ class StructuralSP(GraphKernel): | |||
| else: | |||
| chunksize = 100 | |||
| # get shortest path graphs of g_list | |||
| if self.__compute_method == 'trie': | |||
| if self._compute_method == 'trie': | |||
| get_sps_fun = self._wrapper_get_sps_trie | |||
| else: | |||
| get_sps_fun = self._wrapper_get_sps_naive | |||
| @@ -184,8 +184,8 @@ class StructuralSP(GraphKernel): | |||
| G_spl = spl_toshare | |||
| G_g1 = g1_toshare | |||
| G_gl = gl_toshare | |||
| if self.__compute_method == 'trie': | |||
| do_fun = self.__wrapper_ssp_do_trie | |||
| if self._compute_method == 'trie': | |||
| do_fun = self._wrapper_ssp_do_trie | |||
| else: | |||
| do_fun = self._wrapper_kernel_list_do | |||
| def func_assign(result, var_to_assign): | |||
| @@ -199,36 +199,36 @@ class StructuralSP(GraphKernel): | |||
| def _wrapper_kernel_list_do(self, itr): | |||
| return itr, self.__ssp_do_naive(G_g1, G_gl[itr], G_sp1, G_spl[itr]) | |||
| return itr, self._ssp_do_naive(G_g1, G_gl[itr], G_sp1, G_spl[itr]) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| sp1 = get_shortest_paths(g1, self.__edge_weight, self.__ds_infos['directed']) | |||
| sp2 = get_shortest_paths(g2, self.__edge_weight, self.__ds_infos['directed']) | |||
| if self.__compute_method == 'trie': | |||
| kernel = self.__ssp_do_trie(g1, g2, sp1, sp2) | |||
| sp1 = get_shortest_paths(g1, self._edge_weight, self._ds_infos['directed']) | |||
| sp2 = get_shortest_paths(g2, self._edge_weight, self._ds_infos['directed']) | |||
| if self._compute_method == 'trie': | |||
| kernel = self._ssp_do_trie(g1, g2, sp1, sp2) | |||
| else: | |||
| kernel = self.__ssp_do_naive(g1, g2, sp1, sp2) | |||
| kernel = self._ssp_do_naive(g1, g2, sp1, sp2) | |||
| return kernel | |||
| def _wrapper_get_sps_naive(self, itr_item): | |||
| g = itr_item[0] | |||
| i = itr_item[1] | |||
| return i, get_shortest_paths(g, self.__edge_weight, self.__ds_infos['directed']) | |||
| return i, get_shortest_paths(g, self._edge_weight, self._ds_infos['directed']) | |||
| def __ssp_do_naive(self, g1, g2, spl1, spl2): | |||
| def _ssp_do_naive(self, g1, g2, spl1, spl2): | |||
| kernel = 0 | |||
| # First, compute shortest path matrices, method borrowed from FCSP. | |||
| vk_dict = self.__get_all_node_kernels(g1, g2) | |||
| vk_dict = self._get_all_node_kernels(g1, g2) | |||
| # Then, compute kernels between all pairs of edges, which is an idea of | |||
| # extension of FCSP. It suits sparse graphs, which is the most case we | |||
| # went though. For dense graphs, this would be slow. | |||
| ek_dict = self.__get_all_edge_kernels(g1, g2) | |||
| ek_dict = self._get_all_edge_kernels(g1, g2) | |||
| # compute graph kernels | |||
| if vk_dict: | |||
| @@ -314,27 +314,27 @@ class StructuralSP(GraphKernel): | |||
| def _wrapper_ssp_do_naive(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self.__ssp_do_naive(G_gs[i], G_gs[j], G_spl[i], G_spl[j]) | |||
| return i, j, self._ssp_do_naive(G_gs[i], G_gs[j], G_spl[i], G_spl[j]) | |||
| def __get_all_node_kernels(self, g1, g2): | |||
| def _get_all_node_kernels(self, g1, g2): | |||
| return compute_vertex_kernels(g1, g2, self._node_kernels, node_labels=self._node_labels, node_attrs=self._node_attrs) | |||
| def __get_all_edge_kernels(self, g1, g2): | |||
| def _get_all_edge_kernels(self, g1, g2): | |||
| # compute kernels between all pairs of edges, which is an idea of | |||
| # extension of FCSP. It suits sparse graphs, which is the most case we | |||
| # went though. For dense graphs, this would be slow. | |||
| ek_dict = {} # dict of edge kernels | |||
| if len(self.__edge_labels) > 0: | |||
| if len(self._edge_labels) > 0: | |||
| # edge symb and non-synb labeled | |||
| if len(self.__edge_attrs) > 0: | |||
| ke = self.__edge_kernels['mix'] | |||
| if len(self._edge_attrs) > 0: | |||
| ke = self._edge_kernels['mix'] | |||
| for e1, e2 in product(g1.edges(data=True), g2.edges(data=True)): | |||
| e1_labels = [e1[2][el] for el in self.__edge_labels] | |||
| e2_labels = [e2[2][el] for el in self.__edge_labels] | |||
| e1_attrs = [e1[2][ea] for ea in self.__edge_attrs] | |||
| e2_attrs = [e2[2][ea] for ea in self.__edge_attrs] | |||
| e1_labels = [e1[2][el] for el in self._edge_labels] | |||
| e2_labels = [e2[2][el] for el in self._edge_labels] | |||
| e1_attrs = [e1[2][ea] for ea in self._edge_attrs] | |||
| e2_attrs = [e2[2][ea] for ea in self._edge_attrs] | |||
| ek_temp = ke(e1_labels, e2_labels, e1_attrs, e2_attrs) | |||
| ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp | |||
| ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp | |||
| @@ -342,11 +342,11 @@ class StructuralSP(GraphKernel): | |||
| ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp | |||
| # edge symb labeled | |||
| else: | |||
| ke = self.__edge_kernels['symb'] | |||
| ke = self._edge_kernels['symb'] | |||
| for e1 in g1.edges(data=True): | |||
| for e2 in g2.edges(data=True): | |||
| e1_labels = [e1[2][el] for el in self.__edge_labels] | |||
| e2_labels = [e2[2][el] for el in self.__edge_labels] | |||
| e1_labels = [e1[2][el] for el in self._edge_labels] | |||
| e2_labels = [e2[2][el] for el in self._edge_labels] | |||
| ek_temp = ke(e1_labels, e2_labels) | |||
| ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp | |||
| ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp | |||
| @@ -354,12 +354,12 @@ class StructuralSP(GraphKernel): | |||
| ek_dict[((e1[1], e1[0]), (e2[1], e2[0]))] = ek_temp | |||
| else: | |||
| # edge non-synb labeled | |||
| if len(self.__edge_attrs) > 0: | |||
| ke = self.__edge_kernels['nsymb'] | |||
| if len(self._edge_attrs) > 0: | |||
| ke = self._edge_kernels['nsymb'] | |||
| for e1 in g1.edges(data=True): | |||
| for e2 in g2.edges(data=True): | |||
| e1_attrs = [e1[2][ea] for ea in self.__edge_attrs] | |||
| e2_attrs = [e2[2][ea] for ea in self.__edge_attrs] | |||
| e1_attrs = [e1[2][ea] for ea in self._edge_attrs] | |||
| e2_attrs = [e2[2][ea] for ea in self._edge_attrs] | |||
| ek_temp = ke(e1_attrs, e2_attrs) | |||
| ek_dict[((e1[0], e1[1]), (e2[0], e2[1]))] = ek_temp | |||
| ek_dict[((e1[1], e1[0]), (e2[0], e2[1]))] = ek_temp | |||