| @@ -0,0 +1,330 @@ | |||
| #!/usr/bin/env python | |||
| from ctypes import * | |||
| from ctypes.util import find_library | |||
| from os import path | |||
| import sys | |||
| if sys.version_info[0] >= 3: | |||
| xrange = range | |||
| __all__ = ['libsvm', 'svm_problem', 'svm_parameter', | |||
| 'toPyModel', 'gen_svm_nodearray', 'print_null', 'svm_node', 'C_SVC', | |||
| 'EPSILON_SVR', 'LINEAR', 'NU_SVC', 'NU_SVR', 'ONE_CLASS', | |||
| 'POLY', 'PRECOMPUTED', 'PRINT_STRING_FUN', 'RBF', | |||
| 'SIGMOID', 'c_double', 'svm_model'] | |||
| try: | |||
| dirname = path.dirname(path.abspath(__file__)) | |||
| if sys.platform == 'win32': | |||
| libsvm = CDLL(path.join(dirname, r'..\windows\libsvm.dll')) | |||
| else: | |||
| libsvm = CDLL(path.join(dirname, '../libsvm.so.2')) | |||
| except: | |||
| # For unix the prefix 'lib' is not considered. | |||
| if find_library('svm'): | |||
| libsvm = CDLL(find_library('svm')) | |||
| elif find_library('libsvm'): | |||
| libsvm = CDLL(find_library('libsvm')) | |||
| else: | |||
| raise Exception('LIBSVM library not found.') | |||
| C_SVC = 0 | |||
| NU_SVC = 1 | |||
| ONE_CLASS = 2 | |||
| EPSILON_SVR = 3 | |||
| NU_SVR = 4 | |||
| LINEAR = 0 | |||
| POLY = 1 | |||
| RBF = 2 | |||
| SIGMOID = 3 | |||
| PRECOMPUTED = 4 | |||
| PRINT_STRING_FUN = CFUNCTYPE(None, c_char_p) | |||
| def print_null(s): | |||
| return | |||
| def genFields(names, types): | |||
| return list(zip(names, types)) | |||
| def fillprototype(f, restype, argtypes): | |||
| f.restype = restype | |||
| f.argtypes = argtypes | |||
| class svm_node(Structure): | |||
| _names = ["index", "value"] | |||
| _types = [c_int, c_double] | |||
| _fields_ = genFields(_names, _types) | |||
| def __str__(self): | |||
| return '%d:%g' % (self.index, self.value) | |||
| def gen_svm_nodearray(xi, feature_max=None, isKernel=None): | |||
| if isinstance(xi, dict): | |||
| index_range = xi.keys() | |||
| elif isinstance(xi, (list, tuple)): | |||
| if not isKernel: | |||
| xi = [0] + xi # idx should start from 1 | |||
| index_range = range(len(xi)) | |||
| else: | |||
| raise TypeError('xi should be a dictionary, list or tuple') | |||
| if feature_max: | |||
| assert(isinstance(feature_max, int)) | |||
| index_range = filter(lambda j: j <= feature_max, index_range) | |||
| if not isKernel: | |||
| index_range = filter(lambda j:xi[j] != 0, index_range) | |||
| index_range = sorted(index_range) | |||
| ret = (svm_node * (len(index_range)+1))() | |||
| ret[-1].index = -1 | |||
| for idx, j in enumerate(index_range): | |||
| ret[idx].index = j | |||
| ret[idx].value = xi[j] | |||
| max_idx = 0 | |||
| if index_range: | |||
| max_idx = index_range[-1] | |||
| return ret, max_idx | |||
| class svm_problem(Structure): | |||
| _names = ["l", "y", "x"] | |||
| _types = [c_int, POINTER(c_double), POINTER(POINTER(svm_node))] | |||
| _fields_ = genFields(_names, _types) | |||
| def __init__(self, y, x, isKernel=None): | |||
| if len(y) != len(x): | |||
| raise ValueError("len(y) != len(x)") | |||
| self.l = l = len(y) | |||
| max_idx = 0 | |||
| x_space = self.x_space = [] | |||
| for i, xi in enumerate(x): | |||
| tmp_xi, tmp_idx = gen_svm_nodearray(xi,isKernel=isKernel) | |||
| x_space += [tmp_xi] | |||
| max_idx = max(max_idx, tmp_idx) | |||
| self.n = max_idx | |||
| self.y = (c_double * l)() | |||
| for i, yi in enumerate(y): self.y[i] = yi | |||
| self.x = (POINTER(svm_node) * l)() | |||
| for i, xi in enumerate(self.x_space): self.x[i] = xi | |||
| class svm_parameter(Structure): | |||
| _names = ["svm_type", "kernel_type", "degree", "gamma", "coef0", | |||
| "cache_size", "eps", "C", "nr_weight", "weight_label", "weight", | |||
| "nu", "p", "shrinking", "probability"] | |||
| _types = [c_int, c_int, c_int, c_double, c_double, | |||
| c_double, c_double, c_double, c_int, POINTER(c_int), POINTER(c_double), | |||
| c_double, c_double, c_int, c_int] | |||
| _fields_ = genFields(_names, _types) | |||
| def __init__(self, options = None): | |||
| if options == None: | |||
| options = '' | |||
| self.parse_options(options) | |||
| def __str__(self): | |||
| s = '' | |||
| attrs = svm_parameter._names + list(self.__dict__.keys()) | |||
| values = map(lambda attr: getattr(self, attr), attrs) | |||
| for attr, val in zip(attrs, values): | |||
| s += (' %s: %s\n' % (attr, val)) | |||
| s = s.strip() | |||
| return s | |||
| def set_to_default_values(self): | |||
| self.svm_type = C_SVC; | |||
| self.kernel_type = RBF | |||
| self.degree = 3 | |||
| self.gamma = 0 | |||
| self.coef0 = 0 | |||
| self.nu = 0.5 | |||
| self.cache_size = 100 | |||
| self.C = 1 | |||
| self.eps = 0.001 | |||
| self.p = 0.1 | |||
| self.shrinking = 1 | |||
| self.probability = 0 | |||
| self.nr_weight = 0 | |||
| self.weight_label = None | |||
| self.weight = None | |||
| self.cross_validation = False | |||
| self.nr_fold = 0 | |||
| self.print_func = cast(None, PRINT_STRING_FUN) | |||
| def parse_options(self, options): | |||
| if isinstance(options, list): | |||
| argv = options | |||
| elif isinstance(options, str): | |||
| argv = options.split() | |||
| else: | |||
| raise TypeError("arg 1 should be a list or a str.") | |||
| self.set_to_default_values() | |||
| self.print_func = cast(None, PRINT_STRING_FUN) | |||
| weight_label = [] | |||
| weight = [] | |||
| i = 0 | |||
| while i < len(argv): | |||
| if argv[i] == "-s": | |||
| i = i + 1 | |||
| self.svm_type = int(argv[i]) | |||
| elif argv[i] == "-t": | |||
| i = i + 1 | |||
| self.kernel_type = int(argv[i]) | |||
| elif argv[i] == "-d": | |||
| i = i + 1 | |||
| self.degree = int(argv[i]) | |||
| elif argv[i] == "-g": | |||
| i = i + 1 | |||
| self.gamma = float(argv[i]) | |||
| elif argv[i] == "-r": | |||
| i = i + 1 | |||
| self.coef0 = float(argv[i]) | |||
| elif argv[i] == "-n": | |||
| i = i + 1 | |||
| self.nu = float(argv[i]) | |||
| elif argv[i] == "-m": | |||
| i = i + 1 | |||
| self.cache_size = float(argv[i]) | |||
| elif argv[i] == "-c": | |||
| i = i + 1 | |||
| self.C = float(argv[i]) | |||
| elif argv[i] == "-e": | |||
| i = i + 1 | |||
| self.eps = float(argv[i]) | |||
| elif argv[i] == "-p": | |||
| i = i + 1 | |||
| self.p = float(argv[i]) | |||
| elif argv[i] == "-h": | |||
| i = i + 1 | |||
| self.shrinking = int(argv[i]) | |||
| elif argv[i] == "-b": | |||
| i = i + 1 | |||
| self.probability = int(argv[i]) | |||
| elif argv[i] == "-q": | |||
| self.print_func = PRINT_STRING_FUN(print_null) | |||
| elif argv[i] == "-v": | |||
| i = i + 1 | |||
| self.cross_validation = 1 | |||
| self.nr_fold = int(argv[i]) | |||
| if self.nr_fold < 2: | |||
| raise ValueError("n-fold cross validation: n must >= 2") | |||
| elif argv[i].startswith("-w"): | |||
| i = i + 1 | |||
| self.nr_weight += 1 | |||
| weight_label += [int(argv[i-1][2:])] | |||
| weight += [float(argv[i])] | |||
| else: | |||
| raise ValueError("Wrong options") | |||
| i += 1 | |||
| libsvm.svm_set_print_string_function(self.print_func) | |||
| self.weight_label = (c_int*self.nr_weight)() | |||
| self.weight = (c_double*self.nr_weight)() | |||
| for i in range(self.nr_weight): | |||
| self.weight[i] = weight[i] | |||
| self.weight_label[i] = weight_label[i] | |||
| class svm_model(Structure): | |||
| _names = ['param', 'nr_class', 'l', 'SV', 'sv_coef', 'rho', | |||
| 'probA', 'probB', 'sv_indices', 'label', 'nSV', 'free_sv'] | |||
| _types = [svm_parameter, c_int, c_int, POINTER(POINTER(svm_node)), | |||
| POINTER(POINTER(c_double)), POINTER(c_double), | |||
| POINTER(c_double), POINTER(c_double), POINTER(c_int), | |||
| POINTER(c_int), POINTER(c_int), c_int] | |||
| _fields_ = genFields(_names, _types) | |||
| def __init__(self): | |||
| self.__createfrom__ = 'python' | |||
| def __del__(self): | |||
| # free memory created by C to avoid memory leak | |||
| if hasattr(self, '__createfrom__') and self.__createfrom__ == 'C': | |||
| libsvm.svm_free_and_destroy_model(pointer(self)) | |||
| def get_svm_type(self): | |||
| return libsvm.svm_get_svm_type(self) | |||
| def get_nr_class(self): | |||
| return libsvm.svm_get_nr_class(self) | |||
| def get_svr_probability(self): | |||
| return libsvm.svm_get_svr_probability(self) | |||
| def get_labels(self): | |||
| nr_class = self.get_nr_class() | |||
| labels = (c_int * nr_class)() | |||
| libsvm.svm_get_labels(self, labels) | |||
| return labels[:nr_class] | |||
| def get_sv_indices(self): | |||
| total_sv = self.get_nr_sv() | |||
| sv_indices = (c_int * total_sv)() | |||
| libsvm.svm_get_sv_indices(self, sv_indices) | |||
| return sv_indices[:total_sv] | |||
| def get_nr_sv(self): | |||
| return libsvm.svm_get_nr_sv(self) | |||
| def is_probability_model(self): | |||
| return (libsvm.svm_check_probability_model(self) == 1) | |||
| def get_sv_coef(self): | |||
| return [tuple(self.sv_coef[j][i] for j in xrange(self.nr_class - 1)) | |||
| for i in xrange(self.l)] | |||
| def get_SV(self): | |||
| result = [] | |||
| for sparse_sv in self.SV[:self.l]: | |||
| row = dict() | |||
| i = 0 | |||
| while True: | |||
| row[sparse_sv[i].index] = sparse_sv[i].value | |||
| if sparse_sv[i].index == -1: | |||
| break | |||
| i += 1 | |||
| result.append(row) | |||
| return result | |||
| def toPyModel(model_ptr): | |||
| """ | |||
| toPyModel(model_ptr) -> svm_model | |||
| Convert a ctypes POINTER(svm_model) to a Python svm_model | |||
| """ | |||
| if bool(model_ptr) == False: | |||
| raise ValueError("Null pointer") | |||
| m = model_ptr.contents | |||
| m.__createfrom__ = 'C' | |||
| return m | |||
| fillprototype(libsvm.svm_train, POINTER(svm_model), [POINTER(svm_problem), POINTER(svm_parameter)]) | |||
| fillprototype(libsvm.svm_cross_validation, None, [POINTER(svm_problem), POINTER(svm_parameter), c_int, POINTER(c_double)]) | |||
| fillprototype(libsvm.svm_save_model, c_int, [c_char_p, POINTER(svm_model)]) | |||
| fillprototype(libsvm.svm_load_model, POINTER(svm_model), [c_char_p]) | |||
| fillprototype(libsvm.svm_get_svm_type, c_int, [POINTER(svm_model)]) | |||
| fillprototype(libsvm.svm_get_nr_class, c_int, [POINTER(svm_model)]) | |||
| fillprototype(libsvm.svm_get_labels, None, [POINTER(svm_model), POINTER(c_int)]) | |||
| fillprototype(libsvm.svm_get_sv_indices, None, [POINTER(svm_model), POINTER(c_int)]) | |||
| fillprototype(libsvm.svm_get_nr_sv, c_int, [POINTER(svm_model)]) | |||
| fillprototype(libsvm.svm_get_svr_probability, c_double, [POINTER(svm_model)]) | |||
| fillprototype(libsvm.svm_predict_values, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)]) | |||
| fillprototype(libsvm.svm_predict, c_double, [POINTER(svm_model), POINTER(svm_node)]) | |||
| fillprototype(libsvm.svm_predict_probability, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)]) | |||
| fillprototype(libsvm.svm_free_model_content, None, [POINTER(svm_model)]) | |||
| fillprototype(libsvm.svm_free_and_destroy_model, None, [POINTER(POINTER(svm_model))]) | |||
| fillprototype(libsvm.svm_destroy_param, None, [POINTER(svm_parameter)]) | |||
| fillprototype(libsvm.svm_check_parameter, c_char_p, [POINTER(svm_problem), POINTER(svm_parameter)]) | |||
| fillprototype(libsvm.svm_check_probability_model, c_int, [POINTER(svm_model)]) | |||
| fillprototype(libsvm.svm_set_print_string_function, None, [PRINT_STRING_FUN]) | |||