| @@ -0,0 +1,520 @@ | |||||
| #!/usr/bin/env python3 | |||||
| # -*- coding: utf-8 -*- | |||||
| """ | |||||
| Created on Tue Jun 16 16:04:46 2020 | |||||
| @author: ljia | |||||
| """ | |||||
| import numpy as np | |||||
| import time | |||||
| import random | |||||
| import multiprocessing | |||||
| import networkx as nx | |||||
| from gklearn.preimage import PreimageGenerator | |||||
| from gklearn.preimage.utils import compute_k_dis | |||||
| from gklearn.ged.env import GEDEnv | |||||
| from gklearn.ged.learning import CostMatricesLearner | |||||
| from gklearn.ged.median import MedianGraphEstimatorCML | |||||
| from gklearn.ged.median import constant_node_costs, mge_options_to_string | |||||
| from gklearn.utils.utils import get_graph_kernel_by_name | |||||
| from gklearn.ged.util import label_costs_to_matrix | |||||
| class MedianPreimageGeneratorCML(PreimageGenerator): | |||||
| """Generator median preimages by cost matrices learning using the pure Python version of GEDEnv. Works only for symbolic labeled graphs. | |||||
| """ | |||||
| def __init__(self, dataset=None): | |||||
| PreimageGenerator.__init__(self, dataset=dataset) | |||||
| ### arguments to set. | |||||
| self.__mge = None | |||||
| self.__ged_options = {} | |||||
| self.__mge_options = {} | |||||
| # self.__fit_method = 'k-graphs' | |||||
| self.__init_method = 'random' | |||||
| self.__init_ecc = None | |||||
| self.__parallel = True | |||||
| self.__n_jobs = multiprocessing.cpu_count() | |||||
| self.__ds_name = None | |||||
| # for cml. | |||||
| self.__time_limit_in_sec = 0 | |||||
| self.__max_itrs = 100 | |||||
| self.__max_itrs_without_update = 3 | |||||
| self.__epsilon_residual = 0.01 | |||||
| self.__epsilon_ec = 0.1 | |||||
| self.__allow_zeros = True | |||||
| # self.__triangle_rule = True | |||||
| ### values to compute. | |||||
| self.__runtime_optimize_ec = None | |||||
| self.__runtime_generate_preimage = None | |||||
| self.__runtime_total = None | |||||
| self.__set_median = None | |||||
| self.__gen_median = None | |||||
| self.__best_from_dataset = None | |||||
| self.__sod_set_median = None | |||||
| self.__sod_gen_median = None | |||||
| self.__k_dis_set_median = None | |||||
| self.__k_dis_gen_median = None | |||||
| self.__k_dis_dataset = None | |||||
| self.__node_label_costs = None | |||||
| self.__edge_label_costs = None | |||||
| # for cml. | |||||
| self.__itrs = 0 | |||||
| self.__converged = False | |||||
| self.__num_updates_ecs = 0 | |||||
| ### values that can be set or to be computed. | |||||
| self.__edit_cost_constants = [] | |||||
| self.__gram_matrix_unnorm = None | |||||
| self.__runtime_precompute_gm = None | |||||
| def set_options(self, **kwargs): | |||||
| self._kernel_options = kwargs.get('kernel_options', {}) | |||||
| self._graph_kernel = kwargs.get('graph_kernel', None) | |||||
| self._verbose = kwargs.get('verbose', 2) | |||||
| self.__ged_options = kwargs.get('ged_options', {}) | |||||
| self.__mge_options = kwargs.get('mge_options', {}) | |||||
| # self.__fit_method = kwargs.get('fit_method', 'k-graphs') | |||||
| self.__init_method = kwargs.get('init_method', 'random') | |||||
| self.__init_ecc = kwargs.get('init_ecc', None) | |||||
| self.__edit_cost_constants = kwargs.get('edit_cost_constants', []) | |||||
| self.__parallel = kwargs.get('parallel', True) | |||||
| self.__n_jobs = kwargs.get('n_jobs', multiprocessing.cpu_count()) | |||||
| self.__ds_name = kwargs.get('ds_name', None) | |||||
| self.__time_limit_in_sec = kwargs.get('time_limit_in_sec', 0) | |||||
| self.__max_itrs = kwargs.get('max_itrs', 100) | |||||
| self.__max_itrs_without_update = kwargs.get('max_itrs_without_update', 3) | |||||
| self.__epsilon_residual = kwargs.get('epsilon_residual', 0.01) | |||||
| self.__epsilon_ec = kwargs.get('epsilon_ec', 0.1) | |||||
| self.__gram_matrix_unnorm = kwargs.get('gram_matrix_unnorm', None) | |||||
| self.__runtime_precompute_gm = kwargs.get('runtime_precompute_gm', None) | |||||
| self.__allow_zeros = kwargs.get('allow_zeros', True) | |||||
| # self.__triangle_rule = kwargs.get('triangle_rule', True) | |||||
| def run(self): | |||||
| self._graph_kernel = get_graph_kernel_by_name(self._kernel_options['name'], | |||||
| node_labels=self._dataset.node_labels, | |||||
| edge_labels=self._dataset.edge_labels, | |||||
| node_attrs=self._dataset.node_attrs, | |||||
| edge_attrs=self._dataset.edge_attrs, | |||||
| ds_infos=self._dataset.get_dataset_infos(keys=['directed']), | |||||
| kernel_options=self._kernel_options) | |||||
| # record start time. | |||||
| start = time.time() | |||||
| # 1. precompute gram matrix. | |||||
| if self.__gram_matrix_unnorm is None: | |||||
| gram_matrix, run_time = self._graph_kernel.compute(self._dataset.graphs, **self._kernel_options) | |||||
| self.__gram_matrix_unnorm = self._graph_kernel.gram_matrix_unnorm | |||||
| end_precompute_gm = time.time() | |||||
| self.__runtime_precompute_gm = end_precompute_gm - start | |||||
| else: | |||||
| if self.__runtime_precompute_gm is None: | |||||
| raise Exception('Parameter "runtime_precompute_gm" must be given when using pre-computed Gram matrix.') | |||||
| self._graph_kernel.gram_matrix_unnorm = self.__gram_matrix_unnorm | |||||
| if self._kernel_options['normalize']: | |||||
| self._graph_kernel.gram_matrix = self._graph_kernel.normalize_gm(np.copy(self.__gram_matrix_unnorm)) | |||||
| else: | |||||
| self._graph_kernel.gram_matrix = np.copy(self.__gram_matrix_unnorm) | |||||
| end_precompute_gm = time.time() | |||||
| start -= self.__runtime_precompute_gm | |||||
| # if self.__fit_method != 'k-graphs' and self.__fit_method != 'whole-dataset': | |||||
| # start = time.time() | |||||
| # self.__runtime_precompute_gm = 0 | |||||
| # end_precompute_gm = start | |||||
| # 2. optimize edit cost constants. | |||||
| self.__optimize_edit_cost_vector() | |||||
| end_optimize_ec = time.time() | |||||
| self.__runtime_optimize_ec = end_optimize_ec - end_precompute_gm | |||||
| # 3. compute set median and gen median using optimized edit costs. | |||||
| if self._verbose >= 2: | |||||
| print('\nstart computing set median and gen median using optimized edit costs...\n') | |||||
| self.__gmg_bcu() | |||||
| end_generate_preimage = time.time() | |||||
| self.__runtime_generate_preimage = end_generate_preimage - end_optimize_ec | |||||
| self.__runtime_total = end_generate_preimage - start | |||||
| if self._verbose >= 2: | |||||
| print('medians computed.') | |||||
| print('SOD of the set median: ', self.__sod_set_median) | |||||
| print('SOD of the generalized median: ', self.__sod_gen_median) | |||||
| # 4. compute kernel distances to the true median. | |||||
| if self._verbose >= 2: | |||||
| print('\nstart computing distances to true median....\n') | |||||
| self.__compute_distances_to_true_median() | |||||
| # 5. print out results. | |||||
| if self._verbose: | |||||
| print() | |||||
| print('================================================================================') | |||||
| print('Finished generation of preimages.') | |||||
| print('--------------------------------------------------------------------------------') | |||||
| print('The optimized edit costs:', self.__edit_cost_constants) | |||||
| print('SOD of the set median:', self.__sod_set_median) | |||||
| print('SOD of the generalized median:', self.__sod_gen_median) | |||||
| print('Distance in kernel space for set median:', self.__k_dis_set_median) | |||||
| print('Distance in kernel space for generalized median:', self.__k_dis_gen_median) | |||||
| print('Minimum distance in kernel space for each graph in median set:', self.__k_dis_dataset) | |||||
| print('Time to pre-compute Gram matrix:', self.__runtime_precompute_gm) | |||||
| print('Time to optimize edit costs:', self.__runtime_optimize_ec) | |||||
| print('Time to generate pre-images:', self.__runtime_generate_preimage) | |||||
| print('Total time:', self.__runtime_total) | |||||
| print('Total number of iterations for optimizing:', self.__itrs) | |||||
| print('Total number of updating edit costs:', self.__num_updates_ecs) | |||||
| print('Is optimization of edit costs converged:', self.__converged) | |||||
| print('================================================================================') | |||||
| print() | |||||
| def get_results(self): | |||||
| results = {} | |||||
| results['edit_cost_constants'] = self.__edit_cost_constants | |||||
| results['runtime_precompute_gm'] = self.__runtime_precompute_gm | |||||
| results['runtime_optimize_ec'] = self.__runtime_optimize_ec | |||||
| results['runtime_generate_preimage'] = self.__runtime_generate_preimage | |||||
| results['runtime_total'] = self.__runtime_total | |||||
| results['sod_set_median'] = self.__sod_set_median | |||||
| results['sod_gen_median'] = self.__sod_gen_median | |||||
| results['k_dis_set_median'] = self.__k_dis_set_median | |||||
| results['k_dis_gen_median'] = self.__k_dis_gen_median | |||||
| results['k_dis_dataset'] = self.__k_dis_dataset | |||||
| results['itrs'] = self.__itrs | |||||
| results['converged'] = self.__converged | |||||
| results['num_updates_ecc'] = self.__num_updates_ecs | |||||
| results['mge'] = {} | |||||
| results['mge']['num_decrease_order'] = self.__mge.get_num_times_order_decreased() | |||||
| results['mge']['num_increase_order'] = self.__mge.get_num_times_order_increased() | |||||
| results['mge']['num_converged_descents'] = self.__mge.get_num_converged_descents() | |||||
| return results | |||||
| def __optimize_edit_cost_vector(self): | |||||
| """Learn edit cost vector. | |||||
| """ | |||||
| # Initialize label costs randomly. | |||||
| if self.__init_method == 'random': | |||||
| # Initialize label costs. | |||||
| self.__initialize_label_costs() | |||||
| # Optimize edit cost matrices. | |||||
| self.__optimize_ecm_by_kernel_distances() | |||||
| # Initialize all label costs with the same value. | |||||
| elif self.__init_method == 'uniform': # random | |||||
| pass | |||||
| elif self.__fit_method == 'random': # random | |||||
| if self.__ged_options['edit_cost'] == 'LETTER': | |||||
| self.__edit_cost_constants = random.sample(range(1, 1000), 3) | |||||
| self.__edit_cost_constants = [item * 0.001 for item in self.__edit_cost_constants] | |||||
| elif self.__ged_options['edit_cost'] == 'LETTER2': | |||||
| random.seed(time.time()) | |||||
| self.__edit_cost_constants = random.sample(range(1, 1000), 5) | |||||
| self.__edit_cost_constants = [item * 0.01 for item in self.__edit_cost_constants] | |||||
| elif self.__ged_options['edit_cost'] == 'NON_SYMBOLIC': | |||||
| self.__edit_cost_constants = random.sample(range(1, 1000), 6) | |||||
| self.__edit_cost_constants = [item * 0.01 for item in self.__edit_cost_constants] | |||||
| if self._dataset.node_attrs == []: | |||||
| self.__edit_cost_constants[2] = 0 | |||||
| if self._dataset.edge_attrs == []: | |||||
| self.__edit_cost_constants[5] = 0 | |||||
| else: | |||||
| self.__edit_cost_constants = random.sample(range(1, 1000), 6) | |||||
| self.__edit_cost_constants = [item * 0.01 for item in self.__edit_cost_constants] | |||||
| if self._verbose >= 2: | |||||
| print('edit cost constants used:', self.__edit_cost_constants) | |||||
| elif self.__fit_method == 'expert': # expert | |||||
| if self.__init_ecc is None: | |||||
| if self.__ged_options['edit_cost'] == 'LETTER': | |||||
| self.__edit_cost_constants = [0.9, 1.7, 0.75] | |||||
| elif self.__ged_options['edit_cost'] == 'LETTER2': | |||||
| self.__edit_cost_constants = [0.675, 0.675, 0.75, 0.425, 0.425] | |||||
| else: | |||||
| self.__edit_cost_constants = [3, 3, 1, 3, 3, 1] | |||||
| else: | |||||
| self.__edit_cost_constants = self.__init_ecc | |||||
| elif self.__fit_method == 'k-graphs': | |||||
| if self.__init_ecc is None: | |||||
| if self.__ged_options['edit_cost'] == 'LETTER': | |||||
| self.__init_ecc = [0.9, 1.7, 0.75] | |||||
| elif self.__ged_options['edit_cost'] == 'LETTER2': | |||||
| self.__init_ecc = [0.675, 0.675, 0.75, 0.425, 0.425] | |||||
| elif self.__ged_options['edit_cost'] == 'NON_SYMBOLIC': | |||||
| self.__init_ecc = [0, 0, 1, 1, 1, 0] | |||||
| if self._dataset.node_attrs == []: | |||||
| self.__init_ecc[2] = 0 | |||||
| if self._dataset.edge_attrs == []: | |||||
| self.__init_ecc[5] = 0 | |||||
| else: | |||||
| self.__init_ecc = [3, 3, 1, 3, 3, 1] | |||||
| # optimize on the k-graph subset. | |||||
| self.__optimize_ecm_by_kernel_distances() | |||||
| elif self.__fit_method == 'whole-dataset': | |||||
| if self.__init_ecc is None: | |||||
| if self.__ged_options['edit_cost'] == 'LETTER': | |||||
| self.__init_ecc = [0.9, 1.7, 0.75] | |||||
| elif self.__ged_options['edit_cost'] == 'LETTER2': | |||||
| self.__init_ecc = [0.675, 0.675, 0.75, 0.425, 0.425] | |||||
| else: | |||||
| self.__init_ecc = [3, 3, 1, 3, 3, 1] | |||||
| # optimizeon the whole set. | |||||
| self.__optimize_ecc_by_kernel_distances() | |||||
| elif self.__fit_method == 'precomputed': | |||||
| pass | |||||
| def __initialize_label_costs(self): | |||||
| self.__initialize_node_label_costs() | |||||
| self.__initialize_edge_label_costs() | |||||
| def __initialize_node_label_costs(self): | |||||
| # Get list of node labels. | |||||
| nls = self._dataset.get_all_node_labels() | |||||
| # Generate random costs. | |||||
| nb_nl = int((len(nls) * (len(nls) - 1)) / 2 + 2 * len(nls)) | |||||
| rand_costs = random.sample(range(1, 10 * nb_nl + 1), nb_nl) | |||||
| rand_costs /= np.max(rand_costs) # @todo: maybe not needed. | |||||
| self.__node_label_costs = rand_costs | |||||
| def __initialize_edge_label_costs(self): | |||||
| # Get list of edge labels. | |||||
| els = self._dataset.get_all_edge_labels() | |||||
| # Generate random costs. | |||||
| nb_el = int((len(els) * (len(els) - 1)) / 2 + 2 * len(els)) | |||||
| rand_costs = random.sample(range(1, 10 * nb_el + 1), nb_el) | |||||
| rand_costs /= np.max(rand_costs) # @todo: maybe not needed. | |||||
| self.__edge_label_costs = rand_costs | |||||
| def __optimize_ecm_by_kernel_distances(self): | |||||
| # compute distances in feature space. | |||||
| dis_k_mat, _, _, _ = self._graph_kernel.compute_distance_matrix() | |||||
| dis_k_vec = [] | |||||
| for i in range(len(dis_k_mat)): | |||||
| # for j in range(i, len(dis_k_mat)): | |||||
| for j in range(i + 1, len(dis_k_mat)): | |||||
| dis_k_vec.append(dis_k_mat[i, j]) | |||||
| dis_k_vec = np.array(dis_k_vec) | |||||
| # Set GEDEnv options. | |||||
| # graphs = [self.__clean_graph(g) for g in self._dataset.graphs] | |||||
| # self.__edit_cost_constants = self.__init_ecc | |||||
| options = self.__ged_options.copy() | |||||
| options['edit_cost_constants'] = self.__edit_cost_constants # @todo: not needed. | |||||
| options['node_labels'] = self._dataset.node_labels | |||||
| options['edge_labels'] = self._dataset.edge_labels | |||||
| # options['node_attrs'] = self._dataset.node_attrs | |||||
| # options['edge_attrs'] = self._dataset.edge_attrs | |||||
| options['node_label_costs'] = self.__node_label_costs | |||||
| options['edge_label_costs'] = self.__edge_label_costs | |||||
| # Learner cost matrices. | |||||
| # Initialize cost learner. | |||||
| cml = CostMatricesLearner(edit_cost='CONSTANT', triangle_rule=False, allow_zeros=True, parallel=self.__parallel, verbose=self._verbose) # @todo | |||||
| cml.set_update_params(time_limit_in_sec=self.__time_limit_in_sec, max_itrs=self.__max_itrs, max_itrs_without_update=self.__max_itrs_without_update, epsilon_residual=self.__epsilon_residual, epsilon_ec=self.__epsilon_ec) | |||||
| # Run cost learner. | |||||
| cml.update(dis_k_vec, self._dataset.graphs, options) | |||||
| # Get results. | |||||
| results = cml.get_results() | |||||
| self.__converged = results['converged'] | |||||
| self.__itrs = results['itrs'] | |||||
| self.__num_updates_ecs = results['num_updates_ecs'] | |||||
| cost_list = results['cost_list'] | |||||
| self.__node_label_costs = cost_list[-1][0:len(self.__node_label_costs)] | |||||
| self.__edge_label_costs = cost_list[-1][len(self.__node_label_costs):] | |||||
| def __gmg_bcu(self): | |||||
| """ | |||||
| The local search algorithm based on block coordinate update (BCU) for estimating a generalized median graph (GMG). | |||||
| Returns | |||||
| ------- | |||||
| None. | |||||
| """ | |||||
| # Set up the ged environment. | |||||
| ged_env = GEDEnv() # @todo: maybe create a ged_env as a private varible. | |||||
| # gedlibpy.restart_env() | |||||
| ged_env.set_edit_cost(self.__ged_options['edit_cost'], edit_cost_constants=self.__edit_cost_constants) | |||||
| graphs = [self.__clean_graph(g) for g in self._dataset.graphs] | |||||
| for g in graphs: | |||||
| ged_env.add_nx_graph(g, '') | |||||
| graph_ids = ged_env.get_all_graph_ids() | |||||
| node_labels = ged_env.get_all_node_labels() | |||||
| edge_labels = ged_env.get_all_edge_labels() | |||||
| node_label_costs = label_costs_to_matrix(self.__node_label_costs, len(node_labels)) | |||||
| edge_label_costs = label_costs_to_matrix(self.__edge_label_costs, len(edge_labels)) | |||||
| ged_env.set_label_costs(node_label_costs, edge_label_costs) | |||||
| set_median_id = ged_env.add_graph('set_median') | |||||
| gen_median_id = ged_env.add_graph('gen_median') | |||||
| ged_env.init(init_type=self.__ged_options['init_option']) | |||||
| # Set up the madian graph estimator. | |||||
| self.__mge = MedianGraphEstimatorCML(ged_env, constant_node_costs(self.__ged_options['edit_cost'])) | |||||
| self.__mge.set_refine_method(self.__ged_options['method'], self.__ged_options) | |||||
| options = self.__mge_options.copy() | |||||
| if not 'seed' in options: | |||||
| options['seed'] = int(round(time.time() * 1000)) # @todo: may not work correctly for possible parallel usage. | |||||
| options['parallel'] = self.__parallel | |||||
| # Select the GED algorithm. | |||||
| self.__mge.set_options(mge_options_to_string(options)) | |||||
| self.__mge.set_label_names(node_labels=self._dataset.node_labels, | |||||
| edge_labels=self._dataset.edge_labels, | |||||
| node_attrs=self._dataset.node_attrs, | |||||
| edge_attrs=self._dataset.edge_attrs) | |||||
| ged_options = self.__ged_options.copy() | |||||
| if self.__parallel: | |||||
| ged_options['threads'] = 1 | |||||
| self.__mge.set_init_method(ged_options['method'], ged_options) | |||||
| self.__mge.set_descent_method(ged_options['method'], ged_options) | |||||
| # Run the estimator. | |||||
| self.__mge.run(graph_ids, set_median_id, gen_median_id) | |||||
| # Get SODs. | |||||
| self.__sod_set_median = self.__mge.get_sum_of_distances('initialized') | |||||
| self.__sod_gen_median = self.__mge.get_sum_of_distances('converged') | |||||
| # Get median graphs. | |||||
| self.__set_median = ged_env.get_nx_graph(set_median_id) | |||||
| self.__gen_median = ged_env.get_nx_graph(gen_median_id) | |||||
| def __compute_distances_to_true_median(self): | |||||
| # compute distance in kernel space for set median. | |||||
| kernels_to_sm, _ = self._graph_kernel.compute(self.__set_median, self._dataset.graphs, **self._kernel_options) | |||||
| kernel_sm, _ = self._graph_kernel.compute(self.__set_median, self.__set_median, **self._kernel_options) | |||||
| if self._kernel_options['normalize']: | |||||
| kernels_to_sm = [kernels_to_sm[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_sm) for i in range(len(kernels_to_sm))] # normalize | |||||
| kernel_sm = 1 | |||||
| # @todo: not correct kernel value | |||||
| gram_with_sm = np.concatenate((np.array([kernels_to_sm]), np.copy(self._graph_kernel.gram_matrix)), axis=0) | |||||
| gram_with_sm = np.concatenate((np.array([[kernel_sm] + kernels_to_sm]).T, gram_with_sm), axis=1) | |||||
| self.__k_dis_set_median = compute_k_dis(0, range(1, 1+len(self._dataset.graphs)), | |||||
| [1 / len(self._dataset.graphs)] * len(self._dataset.graphs), | |||||
| gram_with_sm, withterm3=False) | |||||
| # compute distance in kernel space for generalized median. | |||||
| kernels_to_gm, _ = self._graph_kernel.compute(self.__gen_median, self._dataset.graphs, **self._kernel_options) | |||||
| kernel_gm, _ = self._graph_kernel.compute(self.__gen_median, self.__gen_median, **self._kernel_options) | |||||
| if self._kernel_options['normalize']: | |||||
| kernels_to_gm = [kernels_to_gm[i] / np.sqrt(self.__gram_matrix_unnorm[i, i] * kernel_gm) for i in range(len(kernels_to_gm))] # normalize | |||||
| kernel_gm = 1 | |||||
| gram_with_gm = np.concatenate((np.array([kernels_to_gm]), np.copy(self._graph_kernel.gram_matrix)), axis=0) | |||||
| gram_with_gm = np.concatenate((np.array([[kernel_gm] + kernels_to_gm]).T, gram_with_gm), axis=1) | |||||
| self.__k_dis_gen_median = compute_k_dis(0, range(1, 1+len(self._dataset.graphs)), | |||||
| [1 / len(self._dataset.graphs)] * len(self._dataset.graphs), | |||||
| gram_with_gm, withterm3=False) | |||||
| # compute distance in kernel space for each graph in median set. | |||||
| k_dis_median_set = [] | |||||
| for idx in range(len(self._dataset.graphs)): | |||||
| k_dis_median_set.append(compute_k_dis(idx+1, range(1, 1+len(self._dataset.graphs)), | |||||
| [1 / len(self._dataset.graphs)] * len(self._dataset.graphs), | |||||
| gram_with_gm, withterm3=False)) | |||||
| idx_k_dis_median_set_min = np.argmin(k_dis_median_set) | |||||
| self.__k_dis_dataset = k_dis_median_set[idx_k_dis_median_set_min] | |||||
| self.__best_from_dataset = self._dataset.graphs[idx_k_dis_median_set_min].copy() | |||||
| if self._verbose >= 2: | |||||
| print() | |||||
| print('distance in kernel space for set median:', self.__k_dis_set_median) | |||||
| print('distance in kernel space for generalized median:', self.__k_dis_gen_median) | |||||
| print('minimum distance in kernel space for each graph in median set:', self.__k_dis_dataset) | |||||
| print('distance in kernel space for each graph in median set:', k_dis_median_set) | |||||
| # def __clean_graph(self, G, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]): | |||||
| def __clean_graph(self, G): # @todo: this may not be needed when datafile is updated. | |||||
| """ | |||||
| Cleans node and edge labels and attributes of the given graph. | |||||
| """ | |||||
| G_new = nx.Graph(**G.graph) | |||||
| for nd, attrs in G.nodes(data=True): | |||||
| G_new.add_node(str(nd)) # @todo: should we keep this as str()? | |||||
| for l_name in self._dataset.node_labels: | |||||
| G_new.nodes[str(nd)][l_name] = str(attrs[l_name]) | |||||
| for a_name in self._dataset.node_attrs: | |||||
| G_new.nodes[str(nd)][a_name] = str(attrs[a_name]) | |||||
| for nd1, nd2, attrs in G.edges(data=True): | |||||
| G_new.add_edge(str(nd1), str(nd2)) | |||||
| for l_name in self._dataset.edge_labels: | |||||
| G_new.edges[str(nd1), str(nd2)][l_name] = str(attrs[l_name]) | |||||
| for a_name in self._dataset.edge_attrs: | |||||
| G_new.edges[str(nd1), str(nd2)][a_name] = str(attrs[a_name]) | |||||
| return G_new | |||||
| @property | |||||
| def mge(self): | |||||
| return self.__mge | |||||
| @property | |||||
| def ged_options(self): | |||||
| return self.__ged_options | |||||
| @ged_options.setter | |||||
| def ged_options(self, value): | |||||
| self.__ged_options = value | |||||
| @property | |||||
| def mge_options(self): | |||||
| return self.__mge_options | |||||
| @mge_options.setter | |||||
| def mge_options(self, value): | |||||
| self.__mge_options = value | |||||
| @property | |||||
| def fit_method(self): | |||||
| return self.__fit_method | |||||
| @fit_method.setter | |||||
| def fit_method(self, value): | |||||
| self.__fit_method = value | |||||
| @property | |||||
| def init_ecc(self): | |||||
| return self.__init_ecc | |||||
| @init_ecc.setter | |||||
| def init_ecc(self, value): | |||||
| self.__init_ecc = value | |||||
| @property | |||||
| def set_median(self): | |||||
| return self.__set_median | |||||
| @property | |||||
| def gen_median(self): | |||||
| return self.__gen_median | |||||
| @property | |||||
| def best_from_dataset(self): | |||||
| return self.__best_from_dataset | |||||
| @property | |||||
| def gram_matrix_unnorm(self): | |||||
| return self.__gram_matrix_unnorm | |||||
| @gram_matrix_unnorm.setter | |||||
| def gram_matrix_unnorm(self, value): | |||||
| self.__gram_matrix_unnorm = value | |||||