| @@ -39,7 +39,7 @@ class Treelet(GraphKernel): | |||
| def _compute_gm_series(self): | |||
| self.__add_dummy_labels(self._graphs) | |||
| # get all canonical keys of all graphs before calculating kernels to save | |||
| # get all canonical keys of all graphs before computing kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| canonkeys = [] | |||
| if self._verbose >= 2: | |||
| @@ -55,7 +55,7 @@ class Treelet(GraphKernel): | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) | |||
| iterator = tqdm(itr, desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| for i, j in iterator: | |||
| @@ -69,7 +69,7 @@ class Treelet(GraphKernel): | |||
| def _compute_gm_imap_unordered(self): | |||
| self.__add_dummy_labels(self._graphs) | |||
| # get all canonical keys of all graphs before calculating kernels to save | |||
| # get all canonical keys of all graphs before computing kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| pool = Pool(self._n_jobs) | |||
| itr = zip(self._graphs, range(0, len(self._graphs))) | |||
| @@ -105,7 +105,7 @@ class Treelet(GraphKernel): | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self.__add_dummy_labels(g_list + [g1]) | |||
| # get all canonical keys of all graphs before calculating kernels to save | |||
| # get all canonical keys of all graphs before computing kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| canonkeys_1 = self.__get_canonkeys(g1) | |||
| canonkeys_list = [] | |||
| @@ -119,7 +119,7 @@ class Treelet(GraphKernel): | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) | |||
| iterator = tqdm(range(len(g_list)), desc='Computing kernels', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| for i in iterator: | |||
| @@ -132,7 +132,7 @@ class Treelet(GraphKernel): | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self.__add_dummy_labels(g_list + [g1]) | |||
| # get all canonical keys of all graphs before calculating kernels to save | |||
| # get all canonical keys of all graphs before computing kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| canonkeys_1 = self.__get_canonkeys(g1) | |||
| canonkeys_list = [[] for _ in range(len(g_list))] | |||
| @@ -167,7 +167,7 @@ class Treelet(GraphKernel): | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=init_worker, glbv=(canonkeys_1, canonkeys_list), method='imap_unordered', | |||
| n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) | |||
| n_jobs=self._n_jobs, itr_desc='Computing kernels', verbose=self._verbose) | |||
| return kernel_list | |||
| @@ -185,7 +185,7 @@ class Treelet(GraphKernel): | |||
| def __kernel_do(self, canonkey1, canonkey2): | |||
| """Calculate treelet graph kernel between 2 graphs. | |||
| """Compute treelet graph kernel between 2 graphs. | |||
| Parameters | |||
| ---------- | |||