| @@ -0,0 +1,38 @@ | |||||
| # -*- coding: utf-8 -*- | |||||
| """model_selection_old.ipynb | |||||
| Automatically generated by Colaboratory. | |||||
| Original file is located at | |||||
| https://colab.research.google.com/drive/1uVkl7scNgEPrimX8ks6iEC5ijuhB8L_D | |||||
| **This script demonstrates how to compute a graph kernel.** | |||||
| --- | |||||
| **0. Install `graphkit-learn`.** | |||||
| """ | |||||
| """**1. Perform model seletion and classification.**""" | |||||
| from gklearn.utils import model_selection_for_precomputed_kernel | |||||
| from gklearn.kernels import untilhpathkernel | |||||
| import numpy as np | |||||
| # Set parameters. | |||||
| datafile = '../../../datasets/MUTAG/MUTAG_A.txt' | |||||
| param_grid_precomputed = {'depth': np.linspace(1, 10, 10), | |||||
| 'k_func': ['MinMax', 'tanimoto'], | |||||
| 'compute_method': ['trie']} | |||||
| param_grid = {'C': np.logspace(-10, 10, num=41, base=10)} | |||||
| # Perform model selection and classification. | |||||
| model_selection_for_precomputed_kernel( | |||||
| datafile, # The path of dataset file. | |||||
| untilhpathkernel, # The graph kernel used for estimation. | |||||
| param_grid_precomputed, # The parameters used to compute gram matrices. | |||||
| param_grid, # The penelty Parameters used for penelty items. | |||||
| 'classification', # Or 'regression'. | |||||
| NUM_TRIALS=30, # The number of the random trials of the outer CV loop. | |||||
| ds_name='MUTAG', # The name of the dataset. | |||||
| n_jobs=1, | |||||
| verbose=True) | |||||