| @@ -52,63 +52,63 @@ def chooseDataset(ds_name): | |||||
| return dataset | return dataset | ||||
| # @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||||
| # @pytest.mark.parametrize('weight,compute_method', [(0.01, 'geo'), (1, 'exp')]) | |||||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| # def test_CommonWalk(ds_name, parallel, weight, compute_method): | |||||
| # """Test common walk kernel. | |||||
| # """ | |||||
| # from gklearn.kernels import CommonWalk | |||||
| # import networkx as nx | |||||
| # | |||||
| # dataset = chooseDataset(ds_name) | |||||
| # dataset.load_graphs([g for g in dataset.graphs if nx.number_of_nodes(g) > 1]) | |||||
| # | |||||
| # try: | |||||
| # graph_kernel = CommonWalk(node_labels=dataset.node_labels, | |||||
| # edge_labels=dataset.edge_labels, | |||||
| # ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| # weight=weight, | |||||
| # compute_method=compute_method) | |||||
| # gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||||
| @pytest.mark.parametrize('weight,compute_method', [(0.01, 'geo'), (1, 'exp')]) | |||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| def test_CommonWalk(ds_name, parallel, weight, compute_method): | |||||
| """Test common walk kernel. | |||||
| """ | |||||
| from gklearn.kernels import CommonWalk | |||||
| import networkx as nx | |||||
| dataset = chooseDataset(ds_name) | |||||
| dataset.load_graphs([g for g in dataset.graphs if nx.number_of_nodes(g) > 1]) | |||||
| try: | |||||
| graph_kernel = CommonWalk(node_labels=dataset.node_labels, | |||||
| edge_labels=dataset.edge_labels, | |||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| weight=weight, | |||||
| compute_method=compute_method) | |||||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # except Exception as exception: | |||||
| # assert False, exception | |||||
| # | |||||
| # | |||||
| # @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||||
| # @pytest.mark.parametrize('remove_totters', [False]) #[True, False]) | |||||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| # def test_Marginalized(ds_name, parallel, remove_totters): | |||||
| # """Test marginalized kernel. | |||||
| # """ | |||||
| # from gklearn.kernels import Marginalized | |||||
| # | |||||
| # dataset = chooseDataset(ds_name) | |||||
| # | |||||
| # try: | |||||
| # graph_kernel = Marginalized(node_labels=dataset.node_labels, | |||||
| # edge_labels=dataset.edge_labels, | |||||
| # ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| # p_quit=0.5, | |||||
| # n_iteration=2, | |||||
| # remove_totters=remove_totters) | |||||
| # gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| except Exception as exception: | |||||
| assert False, exception | |||||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||||
| @pytest.mark.parametrize('remove_totters', [False]) #[True, False]) | |||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| def test_Marginalized(ds_name, parallel, remove_totters): | |||||
| """Test marginalized kernel. | |||||
| """ | |||||
| from gklearn.kernels import Marginalized | |||||
| dataset = chooseDataset(ds_name) | |||||
| try: | |||||
| graph_kernel = Marginalized(node_labels=dataset.node_labels, | |||||
| edge_labels=dataset.edge_labels, | |||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| p_quit=0.5, | |||||
| n_iteration=2, | |||||
| remove_totters=remove_totters) | |||||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # except Exception as exception: | |||||
| # assert False, exception | |||||
| # | |||||
| # | |||||
| except Exception as exception: | |||||
| assert False, exception | |||||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | @pytest.mark.parametrize('ds_name', ['Acyclic']) | ||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | ||||
| def test_SylvesterEquation(ds_name, parallel): | def test_SylvesterEquation(ds_name, parallel): | ||||
| @@ -239,203 +239,203 @@ def test_SpectralDecomposition(ds_name, sub_kernel, parallel): | |||||
| except Exception as exception: | except Exception as exception: | ||||
| assert False, exception | assert False, exception | ||||
| # | |||||
| # | |||||
| # # @pytest.mark.parametrize( | |||||
| # # 'compute_method,ds_name,sub_kernel', | |||||
| # # [ | |||||
| # # ('sylvester', 'Alkane', None), | |||||
| # # ('conjugate', 'Alkane', None), | |||||
| # # ('conjugate', 'AIDS', None), | |||||
| # # ('fp', 'Alkane', None), | |||||
| # # ('fp', 'AIDS', None), | |||||
| # # ('spectral', 'Alkane', 'exp'), | |||||
| # # ('spectral', 'Alkane', 'geo'), | |||||
| # # ] | |||||
| # # ) | |||||
| # # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| # # def test_RandomWalk(ds_name, compute_method, sub_kernel, parallel): | |||||
| # # """Test random walk kernel. | |||||
| # # """ | |||||
| # # from gklearn.kernels import RandomWalk | |||||
| # # from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||||
| # # import functools | |||||
| # # | |||||
| # # dataset = chooseDataset(ds_name) | |||||
| # @pytest.mark.parametrize( | |||||
| # 'compute_method,ds_name,sub_kernel', | |||||
| # [ | |||||
| # ('sylvester', 'Alkane', None), | |||||
| # ('conjugate', 'Alkane', None), | |||||
| # ('conjugate', 'AIDS', None), | |||||
| # ('fp', 'Alkane', None), | |||||
| # ('fp', 'AIDS', None), | |||||
| # ('spectral', 'Alkane', 'exp'), | |||||
| # ('spectral', 'Alkane', 'geo'), | |||||
| # ] | |||||
| # ) | |||||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| # def test_RandomWalk(ds_name, compute_method, sub_kernel, parallel): | |||||
| # """Test random walk kernel. | |||||
| # """ | |||||
| # from gklearn.kernels import RandomWalk | |||||
| # from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||||
| # import functools | |||||
| # | |||||
| # dataset = chooseDataset(ds_name) | |||||
| # # mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
| # # sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||||
| # # # try: | |||||
| # # graph_kernel = RandomWalk(node_labels=dataset.node_labels, | |||||
| # # node_attrs=dataset.node_attrs, | |||||
| # # edge_labels=dataset.edge_labels, | |||||
| # # edge_attrs=dataset.edge_attrs, | |||||
| # # ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| # # compute_method=compute_method, | |||||
| # # weight=1e-3, | |||||
| # # p=None, | |||||
| # # q=None, | |||||
| # # edge_weight=None, | |||||
| # # node_kernels=sub_kernels, | |||||
| # # edge_kernels=sub_kernels, | |||||
| # # sub_kernel=sub_kernel) | |||||
| # # gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| # # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # # kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| # # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # # kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| # # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
| # sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||||
| # # try: | |||||
| # graph_kernel = RandomWalk(node_labels=dataset.node_labels, | |||||
| # node_attrs=dataset.node_attrs, | |||||
| # edge_labels=dataset.edge_labels, | |||||
| # edge_attrs=dataset.edge_attrs, | |||||
| # ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| # compute_method=compute_method, | |||||
| # weight=1e-3, | |||||
| # p=None, | |||||
| # q=None, | |||||
| # edge_weight=None, | |||||
| # node_kernels=sub_kernels, | |||||
| # edge_kernels=sub_kernels, | |||||
| # sub_kernel=sub_kernel) | |||||
| # gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # # except Exception as exception: | |||||
| # # assert False, exception | |||||
| # except Exception as exception: | |||||
| # assert False, exception | |||||
| # | |||||
| # @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | |||||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| # def test_ShortestPath(ds_name, parallel): | |||||
| # """Test shortest path kernel. | |||||
| # """ | |||||
| # from gklearn.kernels import ShortestPath | |||||
| # from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||||
| # import functools | |||||
| # | |||||
| # dataset = chooseDataset(ds_name) | |||||
| # | |||||
| # mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
| # sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||||
| # try: | |||||
| # graph_kernel = ShortestPath(node_labels=dataset.node_labels, | |||||
| # node_attrs=dataset.node_attrs, | |||||
| # ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| # node_kernels=sub_kernels) | |||||
| # gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | |||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| def test_ShortestPath(ds_name, parallel): | |||||
| """Test shortest path kernel. | |||||
| """ | |||||
| from gklearn.kernels import ShortestPath | |||||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||||
| import functools | |||||
| dataset = chooseDataset(ds_name) | |||||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||||
| try: | |||||
| graph_kernel = ShortestPath(node_labels=dataset.node_labels, | |||||
| node_attrs=dataset.node_attrs, | |||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| node_kernels=sub_kernels) | |||||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # except Exception as exception: | |||||
| # assert False, exception | |||||
| except Exception as exception: | |||||
| assert False, exception | |||||
| # #@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | |||||
| # @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint', 'Fingerprint_edge', 'Cuneiform']) | |||||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| # def test_StructuralSP(ds_name, parallel): | |||||
| # """Test structural shortest path kernel. | |||||
| # """ | |||||
| # from gklearn.kernels import StructuralSP | |||||
| # from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||||
| # import functools | |||||
| # | |||||
| # dataset = chooseDataset(ds_name) | |||||
| # | |||||
| # mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
| # sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||||
| # try: | |||||
| # graph_kernel = StructuralSP(node_labels=dataset.node_labels, | |||||
| # edge_labels=dataset.edge_labels, | |||||
| # node_attrs=dataset.node_attrs, | |||||
| # edge_attrs=dataset.edge_attrs, | |||||
| # ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| # node_kernels=sub_kernels, | |||||
| # edge_kernels=sub_kernels) | |||||
| # gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| #@pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint']) | |||||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'Acyclic', 'Letter-med', 'AIDS', 'Fingerprint', 'Fingerprint_edge', 'Cuneiform']) | |||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| def test_StructuralSP(ds_name, parallel): | |||||
| """Test structural shortest path kernel. | |||||
| """ | |||||
| from gklearn.kernels import StructuralSP | |||||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||||
| import functools | |||||
| dataset = chooseDataset(ds_name) | |||||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||||
| sub_kernels = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||||
| try: | |||||
| graph_kernel = StructuralSP(node_labels=dataset.node_labels, | |||||
| edge_labels=dataset.edge_labels, | |||||
| node_attrs=dataset.node_attrs, | |||||
| edge_attrs=dataset.edge_attrs, | |||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| node_kernels=sub_kernels, | |||||
| edge_kernels=sub_kernels) | |||||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # except Exception as exception: | |||||
| # assert False, exception | |||||
| except Exception as exception: | |||||
| assert False, exception | |||||
| # @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| # #@pytest.mark.parametrize('k_func', ['MinMax', 'tanimoto', None]) | |||||
| # @pytest.mark.parametrize('k_func', ['MinMax', 'tanimoto']) | |||||
| # @pytest.mark.parametrize('compute_method', ['trie', 'naive']) | |||||
| # def test_PathUpToH(ds_name, parallel, k_func, compute_method): | |||||
| # """Test path kernel up to length $h$. | |||||
| # """ | |||||
| # from gklearn.kernels import PathUpToH | |||||
| # | |||||
| # dataset = chooseDataset(ds_name) | |||||
| # | |||||
| # try: | |||||
| # graph_kernel = PathUpToH(node_labels=dataset.node_labels, | |||||
| # edge_labels=dataset.edge_labels, | |||||
| # ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| # depth=2, k_func=k_func, compute_method=compute_method) | |||||
| # gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # except Exception as exception: | |||||
| # assert False, exception | |||||
| # | |||||
| # | |||||
| # @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| # def test_Treelet(ds_name, parallel): | |||||
| # """Test treelet kernel. | |||||
| # """ | |||||
| # from gklearn.kernels import Treelet | |||||
| # from gklearn.utils.kernels import polynomialkernel | |||||
| # import functools | |||||
| # | |||||
| # dataset = chooseDataset(ds_name) | |||||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| #@pytest.mark.parametrize('k_func', ['MinMax', 'tanimoto', None]) | |||||
| @pytest.mark.parametrize('k_func', ['MinMax', 'tanimoto']) | |||||
| @pytest.mark.parametrize('compute_method', ['trie', 'naive']) | |||||
| def test_PathUpToH(ds_name, parallel, k_func, compute_method): | |||||
| """Test path kernel up to length $h$. | |||||
| """ | |||||
| from gklearn.kernels import PathUpToH | |||||
| dataset = chooseDataset(ds_name) | |||||
| try: | |||||
| graph_kernel = PathUpToH(node_labels=dataset.node_labels, | |||||
| edge_labels=dataset.edge_labels, | |||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| depth=2, k_func=k_func, compute_method=compute_method) | |||||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| except Exception as exception: | |||||
| assert False, exception | |||||
| @pytest.mark.parametrize('ds_name', ['Alkane', 'AIDS']) | |||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| def test_Treelet(ds_name, parallel): | |||||
| """Test treelet kernel. | |||||
| """ | |||||
| from gklearn.kernels import Treelet | |||||
| from gklearn.utils.kernels import polynomialkernel | |||||
| import functools | |||||
| dataset = chooseDataset(ds_name) | |||||
| # pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||||
| # try: | |||||
| # graph_kernel = Treelet(node_labels=dataset.node_labels, | |||||
| # edge_labels=dataset.edge_labels, | |||||
| # ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| # sub_kernel=pkernel) | |||||
| # gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # except Exception as exception: | |||||
| # assert False, exception | |||||
| # | |||||
| # | |||||
| # @pytest.mark.parametrize('ds_name', ['Acyclic']) | |||||
| # #@pytest.mark.parametrize('base_kernel', ['subtree', 'sp', 'edge']) | |||||
| # # @pytest.mark.parametrize('base_kernel', ['subtree']) | |||||
| # @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| # def test_WLSubtree(ds_name, parallel): | |||||
| # """Test Weisfeiler-Lehman subtree kernel. | |||||
| # """ | |||||
| # from gklearn.kernels import WLSubtree | |||||
| # | |||||
| # dataset = chooseDataset(ds_name) | |||||
| pkernel = functools.partial(polynomialkernel, d=2, c=1e5) | |||||
| try: | |||||
| graph_kernel = Treelet(node_labels=dataset.node_labels, | |||||
| edge_labels=dataset.edge_labels, | |||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| sub_kernel=pkernel) | |||||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| except Exception as exception: | |||||
| assert False, exception | |||||
| @pytest.mark.parametrize('ds_name', ['Acyclic']) | |||||
| #@pytest.mark.parametrize('base_kernel', ['subtree', 'sp', 'edge']) | |||||
| # @pytest.mark.parametrize('base_kernel', ['subtree']) | |||||
| @pytest.mark.parametrize('parallel', ['imap_unordered', None]) | |||||
| def test_WLSubtree(ds_name, parallel): | |||||
| """Test Weisfeiler-Lehman subtree kernel. | |||||
| """ | |||||
| from gklearn.kernels import WLSubtree | |||||
| dataset = chooseDataset(ds_name) | |||||
| # try: | |||||
| # graph_kernel = WLSubtree(node_labels=dataset.node_labels, | |||||
| # edge_labels=dataset.edge_labels, | |||||
| # ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| # height=2) | |||||
| # gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| # parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| # except Exception as exception: | |||||
| # assert False, exception | |||||
| try: | |||||
| graph_kernel = WLSubtree(node_labels=dataset.node_labels, | |||||
| edge_labels=dataset.edge_labels, | |||||
| ds_infos=dataset.get_dataset_infos(keys=['directed']), | |||||
| height=2) | |||||
| gram_matrix, run_time = graph_kernel.compute(dataset.graphs, | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel_list, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1:], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| kernel, run_time = graph_kernel.compute(dataset.graphs[0], dataset.graphs[1], | |||||
| parallel=parallel, n_jobs=multiprocessing.cpu_count(), verbose=True) | |||||
| except Exception as exception: | |||||
| assert False, exception | |||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| # test_spkernel('Alkane', 'imap_unordered') | |||||
| # test_spkernel('Alkane', 'imap_unordered') | |||||
| test_StructuralSP('Fingerprint_edge', 'imap_unordered') | test_StructuralSP('Fingerprint_edge', 'imap_unordered') | ||||
| # test_RandomWalk('Acyclic', 'sylvester', None, 'imap_unordered') | |||||
| # test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | |||||
| # test_RandomWalk('Acyclic', 'fp', None, None) | |||||
| # test_RandomWalk('Acyclic', 'spectral', 'exp', 'imap_unordered') | |||||
| # test_RandomWalk('Acyclic', 'sylvester', None, 'imap_unordered') | |||||
| # test_RandomWalk('Acyclic', 'conjugate', None, 'imap_unordered') | |||||
| # test_RandomWalk('Acyclic', 'fp', None, None) | |||||
| # test_RandomWalk('Acyclic', 'spectral', 'exp', 'imap_unordered') | |||||