| @@ -0,0 +1,228 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Thu Apr 30 10:16:33 2020 | |||
| @author: ljia | |||
| """ | |||
| import pandas as pd | |||
| import numpy as np | |||
| import os | |||
| DS_SYMB = ['MUTAG', 'Monoterpenoides', 'MAO_symb'] | |||
| DS_NON_SYMB = ['Letter-high', 'Letter-med', 'Letter-low', 'COIL-RAG', 'PAH'] | |||
| DS_UNLABELED = ['PAH_unlabeled'] | |||
| def rounder(x, decimals): | |||
| x_strs = str(x).split('.') | |||
| if len(x_strs) == 2: | |||
| before = x_strs[0] | |||
| after = x_strs[1] | |||
| if len(after) > decimals: | |||
| if int(after[decimals]) >= 5: | |||
| after0s = '' | |||
| for c in after: | |||
| if c == '0': | |||
| after0s += '0' | |||
| elif c != '0': | |||
| break | |||
| after = after0s + str(int(after[0:decimals]) + 1)[-decimals:] | |||
| else: | |||
| after = after[0:decimals] | |||
| elif len(after) < decimals: | |||
| after += '0' * (decimals - len(after)) | |||
| return before + '.' + after | |||
| elif len(x_strs) == 1: | |||
| return x_strs[0] | |||
| def replace_nth(string, sub, wanted, n): | |||
| import re | |||
| where = [m.start() for m in re.finditer(sub, string)][n-1] | |||
| before = string[:where] | |||
| after = string[where:] | |||
| after = after.replace(sub, wanted, 1) | |||
| newString = before + after | |||
| return newString | |||
| def df_to_latex_table(df): | |||
| ltx = df.to_latex(index=True, escape=False, multirow=True) | |||
| # modify middle lines. | |||
| ltx = ltx.replace('\\cline{1-9}\n\\cline{2-9}', '\\toprule') | |||
| ltx = ltx.replace('\\cline{2-9}', '\\cmidrule(l){2-9}') | |||
| # modify first row. | |||
| i_start = ltx.find('\n\\toprule\n') | |||
| i_end = ltx.find('\\\\\n\\midrule\n') | |||
| ltx = ltx.replace(ltx[i_start:i_end+12], '\n\\toprule\nDatasets & Graph Kernels & Algorithms & $d_\\mathcal{F}$ SM & $d_\\mathcal{F}$ SM (UO) & $d_\\mathcal{F}$ GM & $d_\\mathcal{F}$ GM (UO) & Runtime & Runtime (UO) \\\\\n\\midrule\n', 1) | |||
| # add row numbers. | |||
| ltx = ltx.replace('lllllllll', 'lllllllll|@{\\makebox[2em][r]{\\textit{\\rownumber\\space}}}', 1) | |||
| ltx = replace_nth(ltx, '\\\\\n', '\\gdef\\rownumber{\\stepcounter{magicrownumbers}\\arabic{magicrownumbers}} \\\\\n', 1) | |||
| return ltx | |||
| def beautify_df(df): | |||
| df = df.sort_values(by=['Datasets', 'Graph Kernels']) | |||
| df = df.set_index(['Datasets', 'Graph Kernels', 'Algorithms']) | |||
| # index = pd.MultiIndex.from_frame(df[['Datasets', 'Graph Kernels', 'Algorithms']]) | |||
| # bold the best results. | |||
| for ds in df.index.get_level_values('Datasets').unique(): | |||
| for gk in df.loc[ds].index.get_level_values('Graph Kernels').unique(): | |||
| min_val = np.inf | |||
| min_indices = [] | |||
| min_labels = [] | |||
| for index, row in df.loc[(ds, gk)].iterrows(): | |||
| for label in ['$d_\mathcal{F}$ SM', '$d_\mathcal{F}$ GM', '$d_\mathcal{F}$ GM (UO)']: | |||
| value = row[label] | |||
| if value != '-': | |||
| value = float(value.strip('/same')) | |||
| if value < min_val: | |||
| min_val = value | |||
| min_indices = [index] | |||
| min_labels = [label] | |||
| elif value == min_val: | |||
| min_indices.append(index) | |||
| min_labels.append(label) | |||
| for idx, index in enumerate(min_indices): | |||
| df.loc[(ds, gk, index), min_labels[idx]] = '\\textbf{' + df.loc[(ds, gk, index), min_labels[idx]] + '}' | |||
| return df | |||
| def get_results(data_dir, ds_name, gkernel): | |||
| # get results from .csv. | |||
| file_name = data_dir + 'results_summary.' + ds_name + '.' + gkernel + '.csv' | |||
| try: | |||
| df_summary = pd.read_csv(file_name) | |||
| except FileNotFoundError: | |||
| return None | |||
| df_results = pd.DataFrame(index=None, columns=['d_F SM', 'd_F GM', 'runtime']) | |||
| for index, row in df_summary.iterrows(): | |||
| if row['target'] == 'all' and row['fit method'] == 'k-graphs': | |||
| df_results.loc['From median set'] = ['-', rounder(row['min dis_k gi'], 3), '-'] | |||
| if_uo = (int(row['mge num decrease order']) > 0 or int(row['mge num increase order']) > 0) | |||
| df_results.loc['Optimized'] = [rounder(row['dis_k SM'], 3), | |||
| rounder(row['dis_k GM'], 3) if if_uo else (rounder(row['dis_k GM'], 3) + '/same'), | |||
| rounder(row['time total'], 2)] | |||
| if row['target'] == 'all' and row['fit method'] == 'expert': | |||
| if_uo = (int(row['mge num decrease order']) > 0 or int(row['mge num increase order']) > 0) | |||
| df_results.loc['IAM: expert costs'] = [rounder(row['dis_k SM'], 3), | |||
| rounder(row['dis_k GM'], 3) if if_uo else (rounder(row['dis_k GM'], 3) + '/same'), | |||
| rounder(row['time total'], 2)] | |||
| # get results from random summary .csv. | |||
| random_fini = True | |||
| file_name = data_dir + 'summary_for_random_edit_costs.csv' | |||
| try: | |||
| df_random = pd.read_csv(file_name) | |||
| except FileNotFoundError: | |||
| random_fini = False | |||
| if random_fini: | |||
| for index, row in df_random.iterrows(): | |||
| if row['measure'] == 'mean': | |||
| if_uo = (float(row['mge num decrease order']) > 0 or float(row['mge num increase order']) > 0) | |||
| df_results.loc['IAM: random costs'] = [rounder(row['dis_k SM'], 3), | |||
| rounder(row['dis_k GM'], 3) if if_uo else (rounder(row['dis_k GM'], 3) + '/same'), | |||
| rounder(row['time total'], 2)] | |||
| # sort index. | |||
| df_results = df_results.reindex([item for item in ['From median set', 'IAM: random costs', 'IAM: expert costs', 'Optimized'] if item in df_results.index]) | |||
| return df_results | |||
| def get_results_of_one_xp(data_dir, ds_name, gkernel): | |||
| df_results = pd.DataFrame() | |||
| df_tmp_uo = None | |||
| if not os.path.isfile(data_dir + 'update_order/error.txt'): | |||
| df_tmp_uo = get_results(data_dir + 'update_order/', ds_name, gkernel) | |||
| df_tmp = None | |||
| if not os.path.isfile(data_dir + 'error.txt'): | |||
| df_tmp = get_results(data_dir, ds_name, gkernel) | |||
| if (df_tmp_uo is not None and not df_tmp_uo.empty) or (df_tmp is not None and not df_tmp.empty): | |||
| df_results = pd.DataFrame(index=['From median set', 'IAM: random costs', 'IAM: expert costs', 'Optimized'], columns=['$d_\mathcal{F}$ SM', '$d_\mathcal{F}$ SM (UO)', '$d_\mathcal{F}$ GM', '$d_\mathcal{F}$ GM (UO)', 'Runtime', 'Runtime (UO)']) | |||
| if df_tmp_uo is not None and not df_tmp_uo.empty: | |||
| for index, row in df_tmp_uo.iterrows(): | |||
| for algo in df_results.index: | |||
| if index == algo: | |||
| df_results.at[algo, '$d_\mathcal{F}$ SM (UO)'] = row['d_F SM'] | |||
| df_results.at[algo, '$d_\mathcal{F}$ GM (UO)'] = row['d_F GM'] | |||
| df_results.at[algo, 'Runtime (UO)'] = row['runtime'] | |||
| if df_tmp is not None and not df_tmp.empty: | |||
| for index, row in df_tmp.iterrows(): | |||
| for algo in df_results.index: | |||
| if index == algo: | |||
| df_results.at[algo, '$d_\mathcal{F}$ SM'] = row['d_F SM'] | |||
| df_results.at[algo, '$d_\mathcal{F}$ GM'] = row['d_F GM'].strip('/same') | |||
| df_results.at[algo, 'Runtime'] = row['runtime'] | |||
| df_results = df_results.dropna(axis=0, how='all') | |||
| df_results = df_results.fillna(value='-') | |||
| df_results = df_results.reset_index().rename(columns={'index': 'Algorithms'}) | |||
| return df_results | |||
| def get_results_for_all_experiments(root_dir): | |||
| columns=['Datasets', 'Graph Kernels', 'Algorithms', '$d_\mathcal{F}$ SM', '$d_\mathcal{F}$ SM (UO)', '$d_\mathcal{F}$ GM', '$d_\mathcal{F}$ GM (UO)', 'Runtime', 'Runtime (UO)'] | |||
| df_symb = pd.DataFrame(columns=columns) | |||
| df_nonsymb = pd.DataFrame(columns=columns) | |||
| df_unlabeled = pd.DataFrame(columns=columns) | |||
| dir_list = [i for i in os.listdir(root_dir) if os.path.isdir(root_dir + i)] | |||
| for dir_name in dir_list: | |||
| sp_tmp = dir_name.split('.') | |||
| gkernel = sp_tmp[1] | |||
| ds_name = sp_tmp[0].strip('[error]') | |||
| suffix = '' | |||
| if sp_tmp[-1] == 'unlabeled': | |||
| suffix = '_unlabeled' | |||
| elif sp_tmp[-1] == 'symb': | |||
| suffix = '_symb' | |||
| df_results = get_results_of_one_xp(root_dir + dir_name + '/', ds_name, gkernel) | |||
| if not df_results.empty: | |||
| ds_name += suffix | |||
| if ds_name in DS_SYMB: | |||
| for index, row in df_results.iterrows(): | |||
| df_symb.loc[len(df_symb)] = [ds_name.replace('_', '\_'), gkernel] + row.tolist() | |||
| elif ds_name in DS_NON_SYMB: | |||
| for index, row in df_results.iterrows(): | |||
| df_nonsymb.loc[len(df_nonsymb)] = [ds_name.replace('_', '\_'), gkernel] + row.tolist() | |||
| elif ds_name in DS_UNLABELED: | |||
| for index, row in df_results.iterrows(): | |||
| df_unlabeled.loc[len(df_unlabeled)] = [ds_name.replace('_', '\_'), gkernel] + row.tolist() | |||
| else: | |||
| raise Exception('dataset' + ds_name + 'is not pre-defined.') | |||
| # sort. | |||
| df_symb = beautify_df(df_symb) | |||
| df_nonsymb = beautify_df(df_nonsymb) | |||
| df_unlabeled = beautify_df(df_unlabeled) | |||
| # convert dfs to latex strings. | |||
| ltx_symb = df_to_latex_table(df_symb) | |||
| ltx_nonsymb = df_to_latex_table(df_nonsymb) | |||
| ltx_unlabeled = df_to_latex_table(df_unlabeled) | |||
| return ltx_symb, ltx_nonsymb, ltx_unlabeled | |||
| if __name__ == '__main__': | |||
| # root_dir = '../results/xp_median_preimage.init20/' | |||
| root_dir = '../../results/CRIANN/xp_median_preimage.init10/' | |||
| ltx_symb, ltx_nonsymb, ltx_unlabeled = get_results_for_all_experiments(root_dir) | |||