| @@ -0,0 +1,338 @@ | |||||
| #!/usr/bin/env python3 | |||||
| # -*- coding: utf-8 -*- | |||||
| """ | |||||
| Created on Wed Jun 3 22:22:57 2020 | |||||
| @author: ljia | |||||
| @references: | |||||
| [1] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between | |||||
| labeled graphs. In Proceedings of the 20th International Conference on | |||||
| Machine Learning, Washington, DC, United States, 2003. | |||||
| [2] Pierre Mahé, Nobuhisa Ueda, Tatsuya Akutsu, Jean-Luc Perret, and | |||||
| Jean-Philippe Vert. Extensions of marginalized graph kernels. In | |||||
| Proceedings of the twenty-first international conference on Machine | |||||
| learning, page 70. ACM, 2004. | |||||
| """ | |||||
| import sys | |||||
| from multiprocessing import Pool | |||||
| from tqdm import tqdm | |||||
| import numpy as np | |||||
| import networkx as nx | |||||
| from gklearn.utils import SpecialLabel | |||||
| from gklearn.utils.kernels import deltakernel | |||||
| from gklearn.utils.parallel import parallel_gm, parallel_me | |||||
| from gklearn.utils.utils import untotterTransformation | |||||
| from gklearn.kernels import GraphKernel | |||||
| class Marginalized(GraphKernel): | |||||
| def __init__(self, **kwargs): | |||||
| GraphKernel.__init__(self) | |||||
| self.__node_labels = kwargs.get('node_labels', []) | |||||
| self.__edge_labels = kwargs.get('edge_labels', []) | |||||
| self.__p_quit = kwargs.get('p_quit', 0.5) | |||||
| self.__n_iteration = kwargs.get('n_iteration', 10) | |||||
| self.__remove_totters = kwargs.get('remove_totters', False) | |||||
| self.__ds_infos = kwargs.get('ds_infos', {}) | |||||
| self.__n_iteration = int(self.__n_iteration) | |||||
| def _compute_gm_series(self): | |||||
| self.__add_dummy_labels(self._graphs) | |||||
| if self.__remove_totters: | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(self._graphs, desc='removing tottering', file=sys.stdout) | |||||
| else: | |||||
| iterator = self._graphs | |||||
| # @todo: this may not work. | |||||
| self._graphs = [untotterTransformation(G, self.__node_labels, self.__edge_labels) for G in iterator] | |||||
| # compute Gram matrix. | |||||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||||
| from itertools import combinations_with_replacement | |||||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) | |||||
| else: | |||||
| iterator = itr | |||||
| for i, j in iterator: | |||||
| kernel = self.__kernel_do(self._graphs[i], self._graphs[j]) | |||||
| gram_matrix[i][j] = kernel | |||||
| gram_matrix[j][i] = kernel # @todo: no directed graph considered? | |||||
| return gram_matrix | |||||
| def _compute_gm_imap_unordered(self): | |||||
| self.__add_dummy_labels(self._graphs) | |||||
| if self.__remove_totters: | |||||
| pool = Pool(self._n_jobs) | |||||
| itr = range(0, len(self._graphs)) | |||||
| if len(self._graphs) < 100 * self._n_jobs: | |||||
| chunksize = int(len(self._graphs) / self._n_jobs) + 1 | |||||
| else: | |||||
| chunksize = 100 | |||||
| remove_fun = self._wrapper_untotter | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(pool.imap_unordered(remove_fun, itr, chunksize), | |||||
| desc='removing tottering', file=sys.stdout) | |||||
| else: | |||||
| iterator = pool.imap_unordered(remove_fun, itr, chunksize) | |||||
| for i, g in iterator: | |||||
| self._graphs[i] = g | |||||
| pool.close() | |||||
| pool.join() | |||||
| # compute Gram matrix. | |||||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||||
| def init_worker(gn_toshare): | |||||
| global G_gn | |||||
| G_gn = gn_toshare | |||||
| do_fun = self._wrapper_kernel_do | |||||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=init_worker, | |||||
| glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | |||||
| return gram_matrix | |||||
| def _compute_kernel_list_series(self, g1, g_list): | |||||
| self.__add_dummy_labels(g_list + [g1]) | |||||
| if self.__remove_totters: | |||||
| g1 = untotterTransformation(g1, self.__node_labels, self.__edge_labels) # @todo: this may not work. | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(g_list, desc='removing tottering', file=sys.stdout) | |||||
| else: | |||||
| iterator = g_list | |||||
| # @todo: this may not work. | |||||
| g_list = [untotterTransformation(G, self.__node_labels, self.__edge_labels) for G in iterator] | |||||
| # compute kernel list. | |||||
| kernel_list = [None] * len(g_list) | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) | |||||
| else: | |||||
| iterator = range(len(g_list)) | |||||
| for i in iterator: | |||||
| kernel = self.__kernel_do(g1, g_list[i]) | |||||
| kernel_list[i] = kernel | |||||
| return kernel_list | |||||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||||
| self.__add_dummy_labels(g_list + [g1]) | |||||
| if self.__remove_totters: | |||||
| g1 = untotterTransformation(g1, self.__node_labels, self.__edge_labels) # @todo: this may not work. | |||||
| pool = Pool(self._n_jobs) | |||||
| itr = range(0, len(g_list)) | |||||
| if len(g_list) < 100 * self._n_jobs: | |||||
| chunksize = int(len(g_list) / self._n_jobs) + 1 | |||||
| else: | |||||
| chunksize = 100 | |||||
| remove_fun = self._wrapper_untotter | |||||
| if self._verbose >= 2: | |||||
| iterator = tqdm(pool.imap_unordered(remove_fun, itr, chunksize), | |||||
| desc='removing tottering', file=sys.stdout) | |||||
| else: | |||||
| iterator = pool.imap_unordered(remove_fun, itr, chunksize) | |||||
| for i, g in iterator: | |||||
| g_list[i] = g | |||||
| pool.close() | |||||
| pool.join() | |||||
| # compute kernel list. | |||||
| kernel_list = [None] * len(g_list) | |||||
| def init_worker(g1_toshare, g_list_toshare): | |||||
| global G_g1, G_g_list | |||||
| G_g1 = g1_toshare | |||||
| G_g_list = g_list_toshare | |||||
| do_fun = self._wrapper_kernel_list_do | |||||
| def func_assign(result, var_to_assign): | |||||
| var_to_assign[result[0]] = result[1] | |||||
| itr = range(len(g_list)) | |||||
| len_itr = len(g_list) | |||||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||||
| init_worker=init_worker, glbv=(g1, g_list), method='imap_unordered', | |||||
| n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) | |||||
| return kernel_list | |||||
| def _wrapper_kernel_list_do(self, itr): | |||||
| return itr, self.__kernel_do(G_g1, G_g_list[itr]) | |||||
| def _compute_single_kernel_series(self, g1, g2): | |||||
| self.__add_dummy_labels([g1] + [g2]) | |||||
| if self.__remove_totters: | |||||
| g1 = untotterTransformation(g1, self.__node_labels, self.__edge_labels) # @todo: this may not work. | |||||
| g2 = untotterTransformation(g2, self.__node_labels, self.__edge_labels) | |||||
| kernel = self.__kernel_do(g1, g2) | |||||
| return kernel | |||||
| def __kernel_do(self, g1, g2): | |||||
| """Calculate marginalized graph kernel between 2 graphs. | |||||
| Parameters | |||||
| ---------- | |||||
| g1, g2 : NetworkX graphs | |||||
| 2 graphs between which the kernel is calculated. | |||||
| Return | |||||
| ------ | |||||
| kernel : float | |||||
| Marginalized kernel between 2 graphs. | |||||
| """ | |||||
| # init parameters | |||||
| kernel = 0 | |||||
| num_nodes_G1 = nx.number_of_nodes(g1) | |||||
| num_nodes_G2 = nx.number_of_nodes(g2) | |||||
| # the initial probability distribution in the random walks generating step | |||||
| # (uniform distribution over |G|) | |||||
| p_init_G1 = 1 / num_nodes_G1 | |||||
| p_init_G2 = 1 / num_nodes_G2 | |||||
| q = self.__p_quit * self.__p_quit | |||||
| r1 = q | |||||
| # # initial R_inf | |||||
| # # matrix to save all the R_inf for all pairs of nodes | |||||
| # R_inf = np.zeros([num_nodes_G1, num_nodes_G2]) | |||||
| # | |||||
| # # calculate R_inf with a simple interative method | |||||
| # for i in range(1, n_iteration): | |||||
| # R_inf_new = np.zeros([num_nodes_G1, num_nodes_G2]) | |||||
| # R_inf_new.fill(r1) | |||||
| # | |||||
| # # calculate R_inf for each pair of nodes | |||||
| # for node1 in g1.nodes(data=True): | |||||
| # neighbor_n1 = g1[node1[0]] | |||||
| # # the transition probability distribution in the random walks | |||||
| # # generating step (uniform distribution over the vertices adjacent | |||||
| # # to the current vertex) | |||||
| # if len(neighbor_n1) > 0: | |||||
| # p_trans_n1 = (1 - p_quit) / len(neighbor_n1) | |||||
| # for node2 in g2.nodes(data=True): | |||||
| # neighbor_n2 = g2[node2[0]] | |||||
| # if len(neighbor_n2) > 0: | |||||
| # p_trans_n2 = (1 - p_quit) / len(neighbor_n2) | |||||
| # | |||||
| # for neighbor1 in neighbor_n1: | |||||
| # for neighbor2 in neighbor_n2: | |||||
| # t = p_trans_n1 * p_trans_n2 * \ | |||||
| # deltakernel(g1.node[neighbor1][node_label], | |||||
| # g2.node[neighbor2][node_label]) * \ | |||||
| # deltakernel( | |||||
| # neighbor_n1[neighbor1][edge_label], | |||||
| # neighbor_n2[neighbor2][edge_label]) | |||||
| # | |||||
| # R_inf_new[node1[0]][node2[0]] += t * R_inf[neighbor1][ | |||||
| # neighbor2] # ref [1] equation (8) | |||||
| # R_inf[:] = R_inf_new | |||||
| # | |||||
| # # add elements of R_inf up and calculate kernel | |||||
| # for node1 in g1.nodes(data=True): | |||||
| # for node2 in g2.nodes(data=True): | |||||
| # s = p_init_G1 * p_init_G2 * deltakernel( | |||||
| # node1[1][node_label], node2[1][node_label]) | |||||
| # kernel += s * R_inf[node1[0]][node2[0]] # ref [1] equation (6) | |||||
| R_inf = {} # dict to save all the R_inf for all pairs of nodes | |||||
| # initial R_inf, the 1st iteration. | |||||
| for node1 in g1.nodes(): | |||||
| for node2 in g2.nodes(): | |||||
| # R_inf[(node1[0], node2[0])] = r1 | |||||
| if len(g1[node1]) > 0: | |||||
| if len(g2[node2]) > 0: | |||||
| R_inf[(node1, node2)] = r1 | |||||
| else: | |||||
| R_inf[(node1, node2)] = self.__p_quit | |||||
| else: | |||||
| if len(g2[node2]) > 0: | |||||
| R_inf[(node1, node2)] = self.__p_quit | |||||
| else: | |||||
| R_inf[(node1, node2)] = 1 | |||||
| # compute all transition probability first. | |||||
| t_dict = {} | |||||
| if self.__n_iteration > 1: | |||||
| for node1 in g1.nodes(): | |||||
| neighbor_n1 = g1[node1] | |||||
| # the transition probability distribution in the random walks | |||||
| # generating step (uniform distribution over the vertices adjacent | |||||
| # to the current vertex) | |||||
| if len(neighbor_n1) > 0: | |||||
| p_trans_n1 = (1 - self.__p_quit) / len(neighbor_n1) | |||||
| for node2 in g2.nodes(): | |||||
| neighbor_n2 = g2[node2] | |||||
| if len(neighbor_n2) > 0: | |||||
| p_trans_n2 = (1 - self.__p_quit) / len(neighbor_n2) | |||||
| for neighbor1 in neighbor_n1: | |||||
| for neighbor2 in neighbor_n2: | |||||
| t_dict[(node1, node2, neighbor1, neighbor2)] = \ | |||||
| p_trans_n1 * p_trans_n2 * \ | |||||
| deltakernel(tuple(g1.nodes[neighbor1][nl] for nl in self.__node_labels), tuple(g2.nodes[neighbor2][nl] for nl in self.__node_labels)) * \ | |||||
| deltakernel(tuple(neighbor_n1[neighbor1][el] for el in self.__edge_labels), tuple(neighbor_n2[neighbor2][el] for el in self.__edge_labels)) | |||||
| # calculate R_inf with a simple interative method | |||||
| for i in range(2, self.__n_iteration + 1): | |||||
| R_inf_old = R_inf.copy() | |||||
| # calculate R_inf for each pair of nodes | |||||
| for node1 in g1.nodes(): | |||||
| neighbor_n1 = g1[node1] | |||||
| # the transition probability distribution in the random walks | |||||
| # generating step (uniform distribution over the vertices adjacent | |||||
| # to the current vertex) | |||||
| if len(neighbor_n1) > 0: | |||||
| for node2 in g2.nodes(): | |||||
| neighbor_n2 = g2[node2] | |||||
| if len(neighbor_n2) > 0: | |||||
| R_inf[(node1, node2)] = r1 | |||||
| for neighbor1 in neighbor_n1: | |||||
| for neighbor2 in neighbor_n2: | |||||
| R_inf[(node1, node2)] += \ | |||||
| (t_dict[(node1, node2, neighbor1, neighbor2)] * \ | |||||
| R_inf_old[(neighbor1, neighbor2)]) # ref [1] equation (8) | |||||
| # add elements of R_inf up and calculate kernel | |||||
| for (n1, n2), value in R_inf.items(): | |||||
| s = p_init_G1 * p_init_G2 * deltakernel(tuple(g1.nodes[n1][nl] for nl in self.__node_labels), tuple(g2.nodes[n2][nl] for nl in self.__node_labels)) | |||||
| kernel += s * value # ref [1] equation (6) | |||||
| return kernel | |||||
| def _wrapper_kernel_do(self, itr): | |||||
| i = itr[0] | |||||
| j = itr[1] | |||||
| return i, j, self.__kernel_do(G_gn[i], G_gn[j]) | |||||
| def _wrapper_untotter(self, i): | |||||
| return i, untotterTransformation(self._graphs[i], self.__node_labels, self.__edge_labels) # @todo: this may not work. | |||||
| def __add_dummy_labels(self, Gn): | |||||
| if len(self.__node_labels) == 0 or (len(self.__node_labels) == 1 and self.__node_labels[0] == SpecialLabel.DUMMY): | |||||
| for i in range(len(Gn)): | |||||
| nx.set_node_attributes(Gn[i], '0', SpecialLabel.DUMMY) | |||||
| self.__node_labels = [SpecialLabel.DUMMY] | |||||
| if len(self.__edge_labels) == 0 or (len(self.__edge_labels) == 1 and self.__edge_labels[0] == SpecialLabel.DUMMY): | |||||
| for i in range(len(Gn)): | |||||
| nx.set_edge_attributes(Gn[i], '0', SpecialLabel.DUMMY) | |||||
| self.__edge_labels = [SpecialLabel.DUMMY] | |||||