| @@ -0,0 +1,762 @@ | |||
| """ Utilities function to manage graph files | |||
| """ | |||
| from os.path import dirname, splitext | |||
| def loadCT(filename): | |||
| """load data from a Chemical Table (.ct) file. | |||
| Notes | |||
| ------ | |||
| a typical example of data in .ct is like this: | |||
| 3 2 <- number of nodes and edges | |||
| 0.0000 0.0000 0.0000 C <- each line describes a node (x,y,z + label) | |||
| 0.0000 0.0000 0.0000 C | |||
| 0.0000 0.0000 0.0000 O | |||
| 1 3 1 1 <- each line describes an edge : to, from, bond type, bond stereo | |||
| 2 3 1 1 | |||
| Check `CTFile Formats file <https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&ved=2ahUKEwivhaSdjsTlAhVhx4UKHczHA8gQFjAJegQIARAC&url=https%3A%2F%2Fwww.daylight.com%2Fmeetings%2Fmug05%2FKappler%2Fctfile.pdf&usg=AOvVaw1cDNrrmMClkFPqodlF2inS>`__ | |||
| for detailed format discription. | |||
| """ | |||
| import networkx as nx | |||
| from os.path import basename | |||
| g = nx.Graph() | |||
| with open(filename) as f: | |||
| content = f.read().splitlines() | |||
| g = nx.Graph( | |||
| name = str(content[0]), | |||
| filename = basename(filename)) # set name of the graph | |||
| tmp = content[1].split(" ") | |||
| if tmp[0] == '': | |||
| nb_nodes = int(tmp[1]) # number of the nodes | |||
| nb_edges = int(tmp[2]) # number of the edges | |||
| else: | |||
| nb_nodes = int(tmp[0]) | |||
| nb_edges = int(tmp[1]) | |||
| # patch for compatibility : label will be removed later | |||
| for i in range(0, nb_nodes): | |||
| tmp = content[i + 2].split(" ") | |||
| tmp = [x for x in tmp if x != ''] | |||
| g.add_node(i, atom=tmp[3].strip(), | |||
| label=[item.strip() for item in tmp[3:]], | |||
| attributes=[item.strip() for item in tmp[0:3]]) | |||
| for i in range(0, nb_edges): | |||
| tmp = content[i + g.number_of_nodes() + 2].split(" ") | |||
| tmp = [x for x in tmp if x != ''] | |||
| g.add_edge(int(tmp[0]) - 1, int(tmp[1]) - 1, | |||
| bond_type=tmp[2].strip(), | |||
| label=[item.strip() for item in tmp[2:]]) | |||
| return g | |||
| def loadGXL(filename): | |||
| from os.path import basename | |||
| import networkx as nx | |||
| import xml.etree.ElementTree as ET | |||
| tree = ET.parse(filename) | |||
| root = tree.getroot() | |||
| index = 0 | |||
| g = nx.Graph(filename=basename(filename), name=root[0].attrib['id']) | |||
| dic = {} # used to retrieve incident nodes of edges | |||
| for node in root.iter('node'): | |||
| dic[node.attrib['id']] = index | |||
| labels = {} | |||
| for attr in node.iter('attr'): | |||
| labels[attr.attrib['name']] = attr[0].text | |||
| if 'chem' in labels: | |||
| labels['label'] = labels['chem'] | |||
| labels['atom'] = labels['chem'] | |||
| g.add_node(index, **labels) | |||
| index += 1 | |||
| for edge in root.iter('edge'): | |||
| labels = {} | |||
| for attr in edge.iter('attr'): | |||
| labels[attr.attrib['name']] = attr[0].text | |||
| if 'valence' in labels: | |||
| labels['label'] = labels['valence'] | |||
| labels['bond_type'] = labels['valence'] | |||
| g.add_edge(dic[edge.attrib['from']], dic[edge.attrib['to']], **labels) | |||
| return g | |||
| def saveGXL(graph, filename, method='default', node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]): | |||
| if method == 'default': | |||
| gxl_file = open(filename, 'w') | |||
| gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n") | |||
| gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n") | |||
| gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n") | |||
| if 'name' in graph.graph: | |||
| name = str(graph.graph['name']) | |||
| else: | |||
| name = 'dummy' | |||
| gxl_file.write("<graph id=\"" + name + "\" edgeids=\"false\" edgemode=\"undirected\">\n") | |||
| for v, attrs in graph.nodes(data=True): | |||
| gxl_file.write("<node id=\"_" + str(v) + "\">") | |||
| for l_name in node_labels: | |||
| gxl_file.write("<attr name=\"" + l_name + "\"><int>" + | |||
| str(attrs[l_name]) + "</int></attr>") | |||
| for a_name in node_attrs: | |||
| gxl_file.write("<attr name=\"" + a_name + "\"><float>" + | |||
| str(attrs[a_name]) + "</float></attr>") | |||
| gxl_file.write("</node>\n") | |||
| for v1, v2, attrs in graph.edges(data=True): | |||
| gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">") | |||
| for l_name in edge_labels: | |||
| gxl_file.write("<attr name=\"" + l_name + "\"><int>" + | |||
| str(attrs[l_name]) + "</int></attr>") | |||
| for a_name in edge_attrs: | |||
| gxl_file.write("<attr name=\"" + a_name + "\"><float>" + | |||
| str(attrs[a_name]) + "</float></attr>") | |||
| gxl_file.write("</edge>\n") | |||
| gxl_file.write("</graph>\n") | |||
| gxl_file.write("</gxl>") | |||
| gxl_file.close() | |||
| elif method == 'benoit': | |||
| import xml.etree.ElementTree as ET | |||
| root_node = ET.Element('gxl') | |||
| attr = dict() | |||
| attr['id'] = str(graph.graph['name']) | |||
| attr['edgeids'] = 'true' | |||
| attr['edgemode'] = 'undirected' | |||
| graph_node = ET.SubElement(root_node, 'graph', attrib=attr) | |||
| for v in graph: | |||
| current_node = ET.SubElement(graph_node, 'node', attrib={'id': str(v)}) | |||
| for attr in graph.nodes[v].keys(): | |||
| cur_attr = ET.SubElement( | |||
| current_node, 'attr', attrib={'name': attr}) | |||
| cur_value = ET.SubElement(cur_attr, | |||
| graph.nodes[v][attr].__class__.__name__) | |||
| cur_value.text = graph.nodes[v][attr] | |||
| for v1 in graph: | |||
| for v2 in graph[v1]: | |||
| if (v1 < v2): # Non oriented graphs | |||
| cur_edge = ET.SubElement( | |||
| graph_node, | |||
| 'edge', | |||
| attrib={ | |||
| 'from': str(v1), | |||
| 'to': str(v2) | |||
| }) | |||
| for attr in graph[v1][v2].keys(): | |||
| cur_attr = ET.SubElement( | |||
| cur_edge, 'attr', attrib={'name': attr}) | |||
| cur_value = ET.SubElement( | |||
| cur_attr, graph[v1][v2][attr].__class__.__name__) | |||
| cur_value.text = str(graph[v1][v2][attr]) | |||
| tree = ET.ElementTree(root_node) | |||
| tree.write(filename) | |||
| elif method == 'gedlib': | |||
| # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22 | |||
| # pass | |||
| gxl_file = open(filename, 'w') | |||
| gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n") | |||
| gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n") | |||
| gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n") | |||
| gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"true\" edgemode=\"undirected\">\n") | |||
| for v, attrs in graph.nodes(data=True): | |||
| gxl_file.write("<node id=\"_" + str(v) + "\">") | |||
| gxl_file.write("<attr name=\"" + "chem" + "\"><int>" + str(attrs['chem']) + "</int></attr>") | |||
| gxl_file.write("</node>\n") | |||
| for v1, v2, attrs in graph.edges(data=True): | |||
| gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">") | |||
| gxl_file.write("<attr name=\"valence\"><int>" + str(attrs['valence']) + "</int></attr>") | |||
| # gxl_file.write("<attr name=\"valence\"><int>" + "1" + "</int></attr>") | |||
| gxl_file.write("</edge>\n") | |||
| gxl_file.write("</graph>\n") | |||
| gxl_file.write("</gxl>") | |||
| gxl_file.close() | |||
| elif method == 'gedlib-letter': | |||
| # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22 | |||
| # and https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/Letter/HIGH/AP1_0000.gxl | |||
| gxl_file = open(filename, 'w') | |||
| gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n") | |||
| gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n") | |||
| gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n") | |||
| gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">\n") | |||
| for v, attrs in graph.nodes(data=True): | |||
| gxl_file.write("<node id=\"_" + str(v) + "\">") | |||
| gxl_file.write("<attr name=\"x\"><float>" + str(attrs['attributes'][0]) + "</float></attr>") | |||
| gxl_file.write("<attr name=\"y\"><float>" + str(attrs['attributes'][1]) + "</float></attr>") | |||
| gxl_file.write("</node>\n") | |||
| for v1, v2, attrs in graph.edges(data=True): | |||
| gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\"/>\n") | |||
| gxl_file.write("</graph>\n") | |||
| gxl_file.write("</gxl>") | |||
| gxl_file.close() | |||
| def loadSDF(filename): | |||
| """load data from structured data file (.sdf file). | |||
| Notes | |||
| ------ | |||
| A SDF file contains a group of molecules, represented in the similar way as in MOL format. | |||
| Check `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__ for detailed structure. | |||
| """ | |||
| import networkx as nx | |||
| from os.path import basename | |||
| from tqdm import tqdm | |||
| import sys | |||
| data = [] | |||
| with open(filename) as f: | |||
| content = f.read().splitlines() | |||
| index = 0 | |||
| pbar = tqdm(total=len(content) + 1, desc='load SDF', file=sys.stdout) | |||
| while index < len(content): | |||
| index_old = index | |||
| g = nx.Graph(name=content[index].strip()) # set name of the graph | |||
| tmp = content[index + 3] | |||
| nb_nodes = int(tmp[:3]) # number of the nodes | |||
| nb_edges = int(tmp[3:6]) # number of the edges | |||
| for i in range(0, nb_nodes): | |||
| tmp = content[i + index + 4] | |||
| g.add_node(i, atom=tmp[31:34].strip()) | |||
| for i in range(0, nb_edges): | |||
| tmp = content[i + index + g.number_of_nodes() + 4] | |||
| tmp = [tmp[i:i + 3] for i in range(0, len(tmp), 3)] | |||
| g.add_edge( | |||
| int(tmp[0]) - 1, int(tmp[1]) - 1, bond_type=tmp[2].strip()) | |||
| data.append(g) | |||
| index += 4 + g.number_of_nodes() + g.number_of_edges() | |||
| while content[index].strip() != '$$$$': # seperator | |||
| index += 1 | |||
| index += 1 | |||
| pbar.update(index - index_old) | |||
| pbar.update(1) | |||
| pbar.close() | |||
| return data | |||
| def loadMAT(filename, extra_params): | |||
| """Load graph data from a MATLAB (up to version 7.1) .mat file. | |||
| Notes | |||
| ------ | |||
| A MAT file contains a struct array containing graphs, and a column vector lx containing a class label for each graph. | |||
| Check README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__ for detailed structure. | |||
| """ | |||
| from scipy.io import loadmat | |||
| import numpy as np | |||
| import networkx as nx | |||
| data = [] | |||
| content = loadmat(filename) | |||
| order = extra_params['am_sp_al_nl_el'] | |||
| # print(content) | |||
| # print('----') | |||
| for key, value in content.items(): | |||
| if key[0] == 'l': # class label | |||
| y = np.transpose(value)[0].tolist() | |||
| # print(y) | |||
| elif key[0] != '_': | |||
| # print(value[0][0][0]) | |||
| # print() | |||
| # print(value[0][0][1]) | |||
| # print() | |||
| # print(value[0][0][2]) | |||
| # print() | |||
| # if len(value[0][0]) > 3: | |||
| # print(value[0][0][3]) | |||
| # print('----') | |||
| # if adjacency matrix is not compressed / edge label exists | |||
| if order[1] == 0: | |||
| for i, item in enumerate(value[0]): | |||
| # print(item) | |||
| # print('------') | |||
| g = nx.Graph(name=i) # set name of the graph | |||
| nl = np.transpose(item[order[3]][0][0][0]) # node label | |||
| # print(item[order[3]]) | |||
| # print() | |||
| for index, label in enumerate(nl[0]): | |||
| g.add_node(index, atom=str(label)) | |||
| el = item[order[4]][0][0][0] # edge label | |||
| for edge in el: | |||
| g.add_edge( | |||
| edge[0] - 1, edge[1] - 1, bond_type=str(edge[2])) | |||
| data.append(g) | |||
| else: | |||
| from scipy.sparse import csc_matrix | |||
| for i, item in enumerate(value[0]): | |||
| # print(item) | |||
| # print('------') | |||
| g = nx.Graph(name=i) # set name of the graph | |||
| nl = np.transpose(item[order[3]][0][0][0]) # node label | |||
| # print(nl) | |||
| # print() | |||
| for index, label in enumerate(nl[0]): | |||
| g.add_node(index, atom=str(label)) | |||
| sam = item[order[0]] # sparse adjacency matrix | |||
| index_no0 = sam.nonzero() | |||
| for col, row in zip(index_no0[0], index_no0[1]): | |||
| # print(col) | |||
| # print(row) | |||
| g.add_edge(col, row) | |||
| data.append(g) | |||
| # print(g.edges(data=True)) | |||
| return data, y | |||
| def loadTXT(filename): | |||
| """Load graph data from a .txt file. | |||
| Notes | |||
| ------ | |||
| The graph data is loaded from separate files. | |||
| Check README in `downloadable file <http://tiny.cc/PK_MLJ_data>`__, 2018 for detailed structure. | |||
| """ | |||
| # import numpy as np | |||
| import networkx as nx | |||
| from os import listdir | |||
| from os.path import dirname, basename | |||
| def get_label_names(frm): | |||
| """Get label names from DS_label_readme.txt file. | |||
| """ | |||
| def get_names_from_line(line): | |||
| """Get names of labels/attributes from a line. | |||
| """ | |||
| str_names = line.split('[')[1].split(']')[0] | |||
| names = str_names.split(',') | |||
| names = [attr.strip() for attr in names] | |||
| return names | |||
| label_names = {'node_labels': [], 'node_attrs': [], | |||
| 'edge_labels': [], 'edge_attrs': []} | |||
| content_rm = open(frm).read().splitlines() | |||
| for line in content_rm: | |||
| line = line.strip() | |||
| if line.startswith('Node labels:'): | |||
| label_names['node_labels'] = get_names_from_line(line) | |||
| elif line.startswith('Node attributes:'): | |||
| label_names['node_attrs'] = get_names_from_line(line) | |||
| elif line.startswith('Edge labels:'): | |||
| label_names['edge_labels'] = get_names_from_line(line) | |||
| elif line.startswith('Edge attributes:'): | |||
| label_names['edge_attrs'] = get_names_from_line(line) | |||
| return label_names | |||
| # get dataset name. | |||
| dirname_dataset = dirname(filename) | |||
| filename = basename(filename) | |||
| fn_split = filename.split('_A') | |||
| ds_name = fn_split[0].strip() | |||
| # load data file names | |||
| for name in listdir(dirname_dataset): | |||
| if ds_name + '_A' in name: | |||
| fam = dirname_dataset + '/' + name | |||
| elif ds_name + '_graph_indicator' in name: | |||
| fgi = dirname_dataset + '/' + name | |||
| elif ds_name + '_graph_labels' in name: | |||
| fgl = dirname_dataset + '/' + name | |||
| elif ds_name + '_node_labels' in name: | |||
| fnl = dirname_dataset + '/' + name | |||
| elif ds_name + '_edge_labels' in name: | |||
| fel = dirname_dataset + '/' + name | |||
| elif ds_name + '_edge_attributes' in name: | |||
| fea = dirname_dataset + '/' + name | |||
| elif ds_name + '_node_attributes' in name: | |||
| fna = dirname_dataset + '/' + name | |||
| elif ds_name + '_graph_attributes' in name: | |||
| fga = dirname_dataset + '/' + name | |||
| elif ds_name + '_label_readme' in name: | |||
| frm = dirname_dataset + '/' + name | |||
| # this is supposed to be the node attrs, make sure to put this as the last 'elif' | |||
| elif ds_name + '_attributes' in name: | |||
| fna = dirname_dataset + '/' + name | |||
| # get labels and attributes names. | |||
| if 'frm' in locals(): | |||
| label_names = get_label_names(frm) | |||
| else: | |||
| label_names = {'node_labels': [], 'node_attrs': [], | |||
| 'edge_labels': [], 'edge_attrs': []} | |||
| content_gi = open(fgi).read().splitlines() # graph indicator | |||
| content_am = open(fam).read().splitlines() # adjacency matrix | |||
| content_gl = open(fgl).read().splitlines() # graph labels | |||
| # create graphs and add nodes | |||
| data = [nx.Graph(name=str(i), | |||
| node_labels=label_names['node_labels'], | |||
| node_attrs=label_names['node_attrs'], | |||
| edge_labels=label_names['edge_labels'], | |||
| edge_attrs=label_names['edge_attrs']) for i in range(0, len(content_gl))] | |||
| if 'fnl' in locals(): | |||
| content_nl = open(fnl).read().splitlines() # node labels | |||
| for idx, line in enumerate(content_gi): | |||
| # transfer to int first in case of unexpected blanks | |||
| data[int(line) - 1].add_node(idx) | |||
| labels = [l.strip() for l in content_nl[idx].split(',')] | |||
| data[int(line) - 1].nodes[idx]['atom'] = str(int(labels[0])) # @todo: this should be removed after. | |||
| if data[int(line) - 1].graph['node_labels'] == []: | |||
| for i, label in enumerate(labels): | |||
| l_name = 'label_' + str(i) | |||
| data[int(line) - 1].nodes[idx][l_name] = label | |||
| data[int(line) - 1].graph['node_labels'].append(l_name) | |||
| else: | |||
| for i, l_name in enumerate(data[int(line) - 1].graph['node_labels']): | |||
| data[int(line) - 1].nodes[idx][l_name] = labels[i] | |||
| else: | |||
| for i, line in enumerate(content_gi): | |||
| data[int(line) - 1].add_node(i) | |||
| # add edges | |||
| for line in content_am: | |||
| tmp = line.split(',') | |||
| n1 = int(tmp[0]) - 1 | |||
| n2 = int(tmp[1]) - 1 | |||
| # ignore edge weight here. | |||
| g = int(content_gi[n1]) - 1 | |||
| data[g].add_edge(n1, n2) | |||
| # add edge labels | |||
| if 'fel' in locals(): | |||
| content_el = open(fel).read().splitlines() | |||
| for idx, line in enumerate(content_el): | |||
| labels = [l.strip() for l in line.split(',')] | |||
| n = [int(i) - 1 for i in content_am[idx].split(',')] | |||
| g = int(content_gi[n[0]]) - 1 | |||
| data[g].edges[n[0], n[1]]['bond_type'] = labels[0] # @todo: this should be removed after. | |||
| if data[g].graph['edge_labels'] == []: | |||
| for i, label in enumerate(labels): | |||
| l_name = 'label_' + str(i) | |||
| data[g].edges[n[0], n[1]][l_name] = label | |||
| data[g].graph['edge_labels'].append(l_name) | |||
| else: | |||
| for i, l_name in enumerate(data[g].graph['edge_labels']): | |||
| data[g].edges[n[0], n[1]][l_name] = labels[i] | |||
| # add node attributes | |||
| if 'fna' in locals(): | |||
| content_na = open(fna).read().splitlines() | |||
| for idx, line in enumerate(content_na): | |||
| attrs = [a.strip() for a in line.split(',')] | |||
| g = int(content_gi[idx]) - 1 | |||
| data[g].nodes[idx]['attributes'] = attrs # @todo: this should be removed after. | |||
| if data[g].graph['node_attrs'] == []: | |||
| for i, attr in enumerate(attrs): | |||
| a_name = 'attr_' + str(i) | |||
| data[g].nodes[idx][a_name] = attr | |||
| data[g].graph['node_attrs'].append(a_name) | |||
| else: | |||
| for i, a_name in enumerate(data[g].graph['node_attrs']): | |||
| data[g].nodes[idx][a_name] = attrs[i] | |||
| # add edge attributes | |||
| if 'fea' in locals(): | |||
| content_ea = open(fea).read().splitlines() | |||
| for idx, line in enumerate(content_ea): | |||
| attrs = [a.strip() for a in line.split(',')] | |||
| n = [int(i) - 1 for i in content_am[idx].split(',')] | |||
| g = int(content_gi[n[0]]) - 1 | |||
| data[g].edges[n[0], n[1]]['attributes'] = attrs # @todo: this should be removed after. | |||
| if data[g].graph['edge_attrs'] == []: | |||
| for i, attr in enumerate(attrs): | |||
| a_name = 'attr_' + str(i) | |||
| data[g].edges[n[0], n[1]][a_name] = attr | |||
| data[g].graph['edge_attrs'].append(a_name) | |||
| else: | |||
| for i, a_name in enumerate(data[g].graph['edge_attrs']): | |||
| data[g].edges[n[0], n[1]][a_name] = attrs[i] | |||
| # load y | |||
| y = [int(i) for i in content_gl] | |||
| return data, y | |||
| def loadDataset(filename, filename_y=None, extra_params=None): | |||
| """Read graph data from filename and load them as NetworkX graphs. | |||
| Parameters | |||
| ---------- | |||
| filename : string | |||
| The name of the file from where the dataset is read. | |||
| filename_y : string | |||
| The name of file of the targets corresponding to graphs. | |||
| extra_params : dict | |||
| Extra parameters only designated to '.mat' format. | |||
| Return | |||
| ------ | |||
| data : List of NetworkX graph. | |||
| y : List | |||
| Targets corresponding to graphs. | |||
| Notes | |||
| ----- | |||
| This function supports following graph dataset formats: | |||
| 'ds': load data from .ds file. See comments of function loadFromDS for a example. | |||
| 'cxl': load data from Graph eXchange Language file (.cxl file). See | |||
| `here <http://www.gupro.de/GXL/Introduction/background.html>`__ for detail. | |||
| 'sdf': load data from structured data file (.sdf file). See | |||
| `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__ | |||
| for details. | |||
| 'mat': Load graph data from a MATLAB (up to version 7.1) .mat file. See | |||
| README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__ | |||
| for details. | |||
| 'txt': Load graph data from a special .txt file. See | |||
| `here <https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets>`__ | |||
| for details. Note here filename is the name of either .txt file in | |||
| the dataset directory. | |||
| """ | |||
| extension = splitext(filename)[1][1:] | |||
| if extension == "ds": | |||
| data, y = loadFromDS(filename, filename_y) | |||
| elif extension == "cxl": | |||
| import xml.etree.ElementTree as ET | |||
| dirname_dataset = dirname(filename) | |||
| tree = ET.parse(filename) | |||
| root = tree.getroot() | |||
| data = [] | |||
| y = [] | |||
| for graph in root.iter('graph'): | |||
| mol_filename = graph.attrib['file'] | |||
| mol_class = graph.attrib['class'] | |||
| data.append(loadGXL(dirname_dataset + '/' + mol_filename)) | |||
| y.append(mol_class) | |||
| elif extension == 'xml': | |||
| data, y = loadFromXML(filename, extra_params) | |||
| elif extension == "sdf": | |||
| # import numpy as np | |||
| from tqdm import tqdm | |||
| import sys | |||
| data = loadSDF(filename) | |||
| y_raw = open(filename_y).read().splitlines() | |||
| y_raw.pop(0) | |||
| tmp0 = [] | |||
| tmp1 = [] | |||
| for i in range(0, len(y_raw)): | |||
| tmp = y_raw[i].split(',') | |||
| tmp0.append(tmp[0]) | |||
| tmp1.append(tmp[1].strip()) | |||
| y = [] | |||
| for i in tqdm(range(0, len(data)), desc='ajust data', file=sys.stdout): | |||
| try: | |||
| y.append(tmp1[tmp0.index(data[i].name)].strip()) | |||
| except ValueError: # if data[i].name not in tmp0 | |||
| data[i] = [] | |||
| data = list(filter(lambda a: a != [], data)) | |||
| elif extension == "mat": | |||
| data, y = loadMAT(filename, extra_params) | |||
| elif extension == 'txt': | |||
| data, y = loadTXT(filename) | |||
| # print(len(y)) | |||
| # print(y) | |||
| # print(data[0].nodes(data=True)) | |||
| # print('----') | |||
| # print(data[0].edges(data=True)) | |||
| # for g in data: | |||
| # print(g.nodes(data=True)) | |||
| # print('----') | |||
| # print(g.edges(data=True)) | |||
| return data, y | |||
| def loadFromXML(filename, extra_params): | |||
| import xml.etree.ElementTree as ET | |||
| if extra_params: | |||
| dirname_dataset = extra_params | |||
| else: | |||
| dirname_dataset = dirname(filename) | |||
| tree = ET.parse(filename) | |||
| root = tree.getroot() | |||
| data = [] | |||
| y = [] | |||
| for graph in root.iter('graph'): | |||
| mol_filename = graph.attrib['file'] | |||
| mol_class = graph.attrib['class'] | |||
| data.append(loadGXL(dirname_dataset + '/' + mol_filename)) | |||
| y.append(mol_class) | |||
| return data, y | |||
| def loadFromDS(filename, filename_y): | |||
| """Load data from .ds file. | |||
| Possible graph formats include: | |||
| '.ct': see function loadCT for detail. | |||
| '.gxl': see dunction loadGXL for detail. | |||
| Note these graph formats are checked automatically by the extensions of | |||
| graph files. | |||
| """ | |||
| dirname_dataset = dirname(filename) | |||
| data = [] | |||
| y = [] | |||
| content = open(filename).read().splitlines() | |||
| extension = splitext(content[0].split(' ')[0])[1][1:] | |||
| if filename_y is None or filename_y == '': | |||
| if extension == 'ct': | |||
| for i in range(0, len(content)): | |||
| tmp = content[i].split(' ') | |||
| # remove the '#'s in file names | |||
| data.append( | |||
| loadCT(dirname_dataset + '/' + tmp[0].replace('#', '', 1))) | |||
| y.append(float(tmp[1])) | |||
| elif extension == 'gxl': | |||
| for i in range(0, len(content)): | |||
| tmp = content[i].split(' ') | |||
| # remove the '#'s in file names | |||
| data.append( | |||
| loadGXL(dirname_dataset + '/' + tmp[0].replace('#', '', 1))) | |||
| y.append(float(tmp[1])) | |||
| else: # y in a seperate file | |||
| if extension == 'ct': | |||
| for i in range(0, len(content)): | |||
| tmp = content[i] | |||
| # remove the '#'s in file names | |||
| data.append( | |||
| loadCT(dirname_dataset + '/' + tmp.replace('#', '', 1))) | |||
| elif extension == 'gxl': | |||
| for i in range(0, len(content)): | |||
| tmp = content[i] | |||
| # remove the '#'s in file names | |||
| data.append( | |||
| loadGXL(dirname_dataset + '/' + tmp.replace('#', '', 1))) | |||
| content_y = open(filename_y).read().splitlines() | |||
| # assume entries in filename and filename_y have the same order. | |||
| for item in content_y: | |||
| tmp = item.split(' ') | |||
| # assume the 3rd entry in a line is y (for Alkane dataset) | |||
| y.append(float(tmp[2])) | |||
| return data, y | |||
| def saveDataset(Gn, y, gformat='gxl', group=None, filename='gfile', xparams=None): | |||
| """Save list of graphs. | |||
| """ | |||
| import os | |||
| dirname_ds = os.path.dirname(filename) | |||
| if dirname_ds != '': | |||
| dirname_ds += '/' | |||
| if not os.path.exists(dirname_ds) : | |||
| os.makedirs(dirname_ds) | |||
| if xparams is not None and 'graph_dir' in xparams: | |||
| graph_dir = xparams['graph_dir'] + '/' | |||
| if not os.path.exists(graph_dir): | |||
| os.makedirs(graph_dir) | |||
| else: | |||
| graph_dir = dirname_ds | |||
| if group == 'xml' and gformat == 'gxl': | |||
| kwargs = {'method': xparams['method']} if xparams is not None else {} | |||
| with open(filename + '.xml', 'w') as fgroup: | |||
| fgroup.write("<?xml version=\"1.0\"?>") | |||
| fgroup.write("\n<!DOCTYPE GraphCollection SYSTEM \"http://www.inf.unibz.it/~blumenthal/dtd/GraphCollection.dtd\">") | |||
| fgroup.write("\n<GraphCollection>") | |||
| for idx, g in enumerate(Gn): | |||
| fname_tmp = "graph" + str(idx) + ".gxl" | |||
| saveGXL(g, graph_dir + fname_tmp, **kwargs) | |||
| fgroup.write("\n\t<graph file=\"" + fname_tmp + "\" class=\"" + str(y[idx]) + "\"/>") | |||
| fgroup.write("\n</GraphCollection>") | |||
| fgroup.close() | |||
| if __name__ == '__main__': | |||
| # ### Load dataset from .ds file. | |||
| # # .ct files. | |||
| # ds = {'name': 'Alkane', 'dataset': '../../datasets/Alkane/dataset.ds', | |||
| # 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt'} | |||
| # Gn, y = loadDataset(ds['dataset'], filename_y=ds['dataset_y']) | |||
| ## ds = {'name': 'Acyclic', 'dataset': '../../datasets/acyclic/dataset_bps.ds'} # node symb | |||
| ## Gn, y = loadDataset(ds['dataset']) | |||
| ## ds = {'name': 'MAO', 'dataset': '../../datasets/MAO/dataset.ds'} # node/edge symb | |||
| ## Gn, y = loadDataset(ds['dataset']) | |||
| ## ds = {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds'} # unlabeled | |||
| ## Gn, y = loadDataset(ds['dataset']) | |||
| # print(Gn[1].nodes(data=True)) | |||
| # print(Gn[1].edges(data=True)) | |||
| # print(y[1]) | |||
| # # .gxl file. | |||
| # ds = {'name': 'monoterpenoides', | |||
| # 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||
| # Gn, y = loadDataset(ds['dataset']) | |||
| # print(Gn[1].nodes(data=True)) | |||
| # print(Gn[1].edges(data=True)) | |||
| # print(y[1]) | |||
| # ### Convert graph from one format to another. | |||
| # # .gxl file. | |||
| # import networkx as nx | |||
| # ds = {'name': 'monoterpenoides', | |||
| # 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||
| # Gn, y = loadDataset(ds['dataset']) | |||
| # y = [int(i) for i in y] | |||
| # print(Gn[1].nodes(data=True)) | |||
| # print(Gn[1].edges(data=True)) | |||
| # print(y[1]) | |||
| # # Convert a graph to the proper NetworkX format that can be recognized by library gedlib. | |||
| # Gn_new = [] | |||
| # for G in Gn: | |||
| # G_new = nx.Graph() | |||
| # for nd, attrs in G.nodes(data=True): | |||
| # G_new.add_node(str(nd), chem=attrs['atom']) | |||
| # for nd1, nd2, attrs in G.edges(data=True): | |||
| # G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type']) | |||
| ## G_new.add_edge(str(nd1), str(nd2)) | |||
| # Gn_new.append(G_new) | |||
| # print(Gn_new[1].nodes(data=True)) | |||
| # print(Gn_new[1].edges(data=True)) | |||
| # print(Gn_new[1]) | |||
| # filename = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/generated_datsets/monoterpenoides/gxl/monoterpenoides' | |||
| # xparams = {'method': 'gedlib'} | |||
| # saveDataset(Gn, y, gformat='gxl', group='xml', filename=filename, xparams=xparams) | |||
| # save dataset. | |||
| # ds = {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG.mat', | |||
| # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb | |||
| # Gn, y = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||
| # saveDataset(Gn, y, group='xml', filename='temp/temp') | |||
| # test - new way to add labels and attributes. | |||
| # dataset = '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt' | |||
| # dataset = '../../datasets/Fingerprint/Fingerprint_A.txt' | |||
| # dataset = '../../datasets/Letter-med/Letter-med_A.txt' | |||
| # dataset = '../../datasets/AIDS/AIDS_A.txt' | |||
| # dataset = '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt' | |||
| # Gn, y_all = loadDataset(dataset) | |||
| pass | |||