| @@ -0,0 +1,188 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Mon Jun 1 17:02:51 2020 | |||
| @author: ljia | |||
| """ | |||
| import numpy as np | |||
| from gklearn.utils import Dataset | |||
| import csv | |||
| import os | |||
| import os.path | |||
| from gklearn.preimage import RandomPreimageGenerator | |||
| from gklearn.utils import split_dataset_by_target | |||
| from gklearn.utils.graphfiles import saveGXL | |||
| def generate_random_preimages_by_class(ds_name, rpg_options, kernel_options, save_results=True, save_preimages=True, load_gm='auto', dir_save='', irrelevant_labels=None, edge_required=False, cut_range=None): | |||
| # 1. get dataset. | |||
| print('1. getting dataset...') | |||
| dataset_all = Dataset() | |||
| dataset_all.load_predefined_dataset(ds_name) | |||
| dataset_all.trim_dataset(edge_required=edge_required) | |||
| if irrelevant_labels is not None: | |||
| dataset_all.remove_labels(**irrelevant_labels) | |||
| if cut_range is not None: | |||
| dataset_all.cut_graphs(cut_range) | |||
| datasets = split_dataset_by_target(dataset_all) | |||
| if save_results: | |||
| # create result files. | |||
| print('creating output files...') | |||
| fn_output_detail, fn_output_summary = __init_output_file_preimage(ds_name, kernel_options['name'], dir_save) | |||
| dis_k_dataset_list = [] | |||
| dis_k_preimage_list = [] | |||
| time_precompute_gm_list = [] | |||
| time_generate_list = [] | |||
| time_total_list = [] | |||
| itrs_list = [] | |||
| num_updates_list = [] | |||
| if load_gm == 'auto': | |||
| gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' | |||
| gmfile_exist = os.path.isfile(os.path.abspath(gm_fname)) | |||
| if gmfile_exist: | |||
| gmfile = np.load(gm_fname, allow_pickle=True) # @todo: may not be safe. | |||
| gram_matrix_unnorm_list = [item for item in gmfile['gram_matrix_unnorm_list']] | |||
| time_precompute_gm_list = gmfile['run_time_list'].tolist() | |||
| else: | |||
| gram_matrix_unnorm_list = [] | |||
| time_precompute_gm_list = [] | |||
| elif not load_gm: | |||
| gram_matrix_unnorm_list = [] | |||
| time_precompute_gm_list = [] | |||
| else: | |||
| gm_fname = dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm.npz' | |||
| gmfile = np.load(gm_fname, allow_pickle=True) # @todo: may not be safe. | |||
| gram_matrix_unnorm_list = [item for item in gmfile['gram_matrix_unnorm_list']] | |||
| time_precompute_gm_list = gmfile['run_time_list'].tolist() | |||
| print('starting generating preimage for each class of target...') | |||
| idx_offset = 0 | |||
| for idx, dataset in enumerate(datasets): | |||
| target = dataset.targets[0] | |||
| print('\ntarget =', target, '\n') | |||
| # if target != 1: | |||
| # continue | |||
| num_graphs = len(dataset.graphs) | |||
| if num_graphs < 2: | |||
| print('\nnumber of graphs = ', num_graphs, ', skip.\n') | |||
| idx_offset += 1 | |||
| continue | |||
| # 2. set parameters. | |||
| print('2. initializing mpg and setting parameters...') | |||
| if load_gm: | |||
| if gmfile_exist: | |||
| rpg_options['gram_matrix_unnorm'] = gram_matrix_unnorm_list[idx - idx_offset] | |||
| rpg_options['runtime_precompute_gm'] = time_precompute_gm_list[idx - idx_offset] | |||
| rpg = RandomPreimageGenerator() | |||
| rpg.dataset = dataset | |||
| rpg.set_options(**rpg_options.copy()) | |||
| rpg.kernel_options = kernel_options.copy() | |||
| # 3. compute preimage. | |||
| print('3. computing preimage...') | |||
| rpg.run() | |||
| results = rpg.get_results() | |||
| # 4. save results (and median graphs). | |||
| print('4. saving results (and preimages)...') | |||
| # write result detail. | |||
| if save_results: | |||
| print('writing results to files...') | |||
| f_detail = open(dir_save + fn_output_detail, 'a') | |||
| csv.writer(f_detail).writerow([ds_name, kernel_options['name'], | |||
| num_graphs, target, 1, | |||
| results['k_dis_dataset'], results['k_dis_preimage'], | |||
| results['runtime_precompute_gm'], | |||
| results['runtime_generate_preimage'], results['runtime_total'], | |||
| results['itrs'], results['num_updates']]) | |||
| f_detail.close() | |||
| # compute result summary. | |||
| dis_k_dataset_list.append(results['k_dis_dataset']) | |||
| dis_k_preimage_list.append(results['k_dis_preimage']) | |||
| time_precompute_gm_list.append(results['runtime_precompute_gm']) | |||
| time_generate_list.append(results['runtime_generate_preimage']) | |||
| time_total_list.append(results['runtime_total']) | |||
| itrs_list.append(results['itrs']) | |||
| num_updates_list.append(results['num_updates']) | |||
| # write result summary for each letter. | |||
| f_summary = open(dir_save + fn_output_summary, 'a') | |||
| csv.writer(f_summary).writerow([ds_name, kernel_options['name'], | |||
| num_graphs, target, | |||
| results['k_dis_dataset'], results['k_dis_preimage'], | |||
| results['runtime_precompute_gm'], | |||
| results['runtime_generate_preimage'], results['runtime_total'], | |||
| results['itrs'], results['num_updates']]) | |||
| f_summary.close() | |||
| # save median graphs. | |||
| if save_preimages: | |||
| if not os.path.exists(dir_save + 'preimages/'): | |||
| os.makedirs(dir_save + 'preimages/') | |||
| print('Saving preimages to files...') | |||
| fn_best_dataset = dir_save + 'preimages/g_best_dataset.' + 'nbg' + str(num_graphs) + '.y' + str(target) + '.repeat' + str(1) | |||
| saveGXL(rpg.best_from_dataset, fn_best_dataset + '.gxl', method='default', | |||
| node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||
| node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs) | |||
| fn_preimage = dir_save + 'preimages/g_preimage.' + 'nbg' + str(num_graphs) + '.y' + str(target) + '.repeat' + str(1) | |||
| saveGXL(rpg.preimage, fn_preimage + '.gxl', method='default', | |||
| node_labels=dataset.node_labels, edge_labels=dataset.edge_labels, | |||
| node_attrs=dataset.node_attrs, edge_attrs=dataset.edge_attrs) | |||
| if (load_gm == 'auto' and not gmfile_exist) or not load_gm: | |||
| gram_matrix_unnorm_list.append(rpg.gram_matrix_unnorm) | |||
| # write result summary for each class. | |||
| if save_results: | |||
| dis_k_dataset_mean = np.mean(dis_k_dataset_list) | |||
| dis_k_preimage_mean = np.mean(dis_k_preimage_list) | |||
| time_precompute_gm_mean = np.mean(time_precompute_gm_list) | |||
| time_generate_mean = np.mean(time_generate_list) | |||
| time_total_mean = np.mean(time_total_list) | |||
| itrs_mean = np.mean(itrs_list) | |||
| num_updates_mean = np.mean(num_updates_list) | |||
| f_summary = open(dir_save + fn_output_summary, 'a') | |||
| csv.writer(f_summary).writerow([ds_name, kernel_options['name'], | |||
| num_graphs, 'all', | |||
| dis_k_dataset_mean, dis_k_preimage_mean, | |||
| time_precompute_gm_mean, | |||
| time_generate_mean, time_total_mean, itrs_mean, | |||
| num_updates_mean]) | |||
| f_summary.close() | |||
| # write Gram matrices to file. | |||
| if (load_gm == 'auto' and not gmfile_exist) or not load_gm: | |||
| np.savez(dir_save + 'gram_matrix_unnorm.' + ds_name + '.' + kernel_options['name'] + '.gm', gram_matrix_unnorm_list=gram_matrix_unnorm_list, run_time_list=time_precompute_gm_list) | |||
| print('\ncomplete.\n') | |||
| def __init_output_file_preimage(ds_name, gkernel, dir_output): | |||
| if not os.path.exists(dir_output): | |||
| os.makedirs(dir_output) | |||
| fn_output_detail = 'results_detail.' + ds_name + '.' + gkernel + '.csv' | |||
| f_detail = open(dir_output + fn_output_detail, 'a') | |||
| csv.writer(f_detail).writerow(['dataset', 'graph kernel', 'num graphs', | |||
| 'target', 'repeat', 'dis_k best from dataset', 'dis_k preimage', | |||
| 'time precompute gm', 'time generate preimage', 'time total', | |||
| 'itrs', 'num updates']) | |||
| f_detail.close() | |||
| fn_output_summary = 'results_summary.' + ds_name + '.' + gkernel + '.csv' | |||
| f_summary = open(dir_output + fn_output_summary, 'a') | |||
| csv.writer(f_summary).writerow(['dataset', 'graph kernel', 'num graphs', | |||
| 'target', 'dis_k best from dataset', 'dis_k preimage', | |||
| 'time precompute gm', 'time generate preimage', 'time total', | |||
| 'itrs', 'num updates']) | |||
| f_summary.close() | |||
| return fn_output_detail, fn_output_summary | |||