| @@ -0,0 +1,112 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Tue Sep 22 11:33:28 2020 | |||
| @author: ljia | |||
| """ | |||
| import multiprocessing | |||
| Graph_Kernel_List = ['PathUpToH', 'WLSubtree', 'SylvesterEquation', 'Marginalized', 'ShortestPath', 'Treelet', 'ConjugateGradient', 'FixedPoint', 'SpectralDecomposition', 'StructuralSP', 'CommonWalk'] | |||
| # Graph_Kernel_List = ['CommonWalk', 'Marginalized', 'SylvesterEquation', 'ConjugateGradient', 'FixedPoint', 'SpectralDecomposition', 'ShortestPath', 'StructuralSP', 'PathUpToH', 'Treelet', 'WLSubtree'] | |||
| Graph_Kernel_List_VSym = ['PathUpToH', 'WLSubtree', 'Marginalized', 'ShortestPath', 'Treelet', 'ConjugateGradient', 'FixedPoint', 'StructuralSP', 'CommonWalk'] | |||
| Graph_Kernel_List_ESym = ['PathUpToH', 'Marginalized', 'Treelet', 'ConjugateGradient', 'FixedPoint', 'StructuralSP', 'CommonWalk'] | |||
| Graph_Kernel_List_VCon = ['ShortestPath', 'ConjugateGradient', 'FixedPoint', 'StructuralSP'] | |||
| Graph_Kernel_List_ECon = ['ConjugateGradient', 'FixedPoint', 'StructuralSP'] | |||
| Dataset_List = ['Alkane', 'Acyclic', 'MAO', 'PAH', 'MUTAG', 'Letter-med', 'ENZYMES', 'AIDS', 'NCI1', 'NCI109', 'DD'] | |||
| def compute_graph_kernel(graphs, kernel_name, n_jobs=multiprocessing.cpu_count(), chunksize=None): | |||
| if kernel_name == 'CommonWalk': | |||
| from gklearn.kernels.commonWalkKernel import commonwalkkernel | |||
| estimator = commonwalkkernel | |||
| params = {'compute_method': 'geo', 'weight': 0.1} | |||
| elif kernel_name == 'Marginalized': | |||
| from gklearn.kernels.marginalizedKernel import marginalizedkernel | |||
| estimator = marginalizedkernel | |||
| params = {'p_quit': 0.5, 'n_iteration': 5, 'remove_totters': False} | |||
| elif kernel_name == 'SylvesterEquation': | |||
| from gklearn.kernels.randomWalkKernel import randomwalkkernel | |||
| estimator = randomwalkkernel | |||
| params = {'compute_method': 'sylvester', 'weight': 0.1} | |||
| elif kernel_name == 'ConjugateGradient': | |||
| from gklearn.kernels.randomWalkKernel import randomwalkkernel | |||
| estimator = randomwalkkernel | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| params = {'compute_method': 'conjugate', 'weight': 0.1, 'node_kernels': sub_kernel, 'edge_kernels': sub_kernel} | |||
| elif kernel_name == 'FixedPoint': | |||
| from gklearn.kernels.randomWalkKernel import randomwalkkernel | |||
| estimator = randomwalkkernel | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| params = {'compute_method': 'fp', 'weight': 1e-3, 'node_kernels': sub_kernel, 'edge_kernels': sub_kernel} | |||
| elif kernel_name == 'SpectralDecomposition': | |||
| from gklearn.kernels.randomWalkKernel import randomwalkkernel | |||
| estimator = randomwalkkernel | |||
| params = {'compute_method': 'spectral', 'sub_kernel': 'geo', 'weight': 0.1} | |||
| elif kernel_name == 'ShortestPath': | |||
| from gklearn.kernels.spKernel import spkernel | |||
| estimator = spkernel | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| params = {'node_kernels': sub_kernel} | |||
| elif kernel_name == 'StructuralSP': | |||
| from gklearn.kernels.structuralspKernel import structuralspkernel | |||
| estimator = structuralspkernel | |||
| from gklearn.utils.kernels import deltakernel, gaussiankernel, kernelproduct | |||
| import functools | |||
| mixkernel = functools.partial(kernelproduct, deltakernel, gaussiankernel) | |||
| sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | |||
| params = {'node_kernels': sub_kernel, 'edge_kernels': sub_kernel} | |||
| elif kernel_name == 'PathUpToH': | |||
| from gklearn.kernels.untilHPathKernel import untilhpathkernel | |||
| estimator = untilhpathkernel | |||
| params = {'depth': 5, 'k_func': 'MinMax', 'compute_method': 'trie'} | |||
| elif kernel_name == 'Treelet': | |||
| from gklearn.kernels.treeletKernel import treeletkernel | |||
| estimator = treeletkernel | |||
| from gklearn.utils.kernels import polynomialkernel | |||
| import functools | |||
| sub_kernel = functools.partial(polynomialkernel, d=4, c=1e+8) | |||
| params = {'sub_kernel': sub_kernel} | |||
| elif kernel_name == 'WLSubtree': | |||
| from gklearn.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel | |||
| estimator = weisfeilerlehmankernel | |||
| params = {'base_kernel': 'subtree', 'height': 5} | |||
| # params['parallel'] = None | |||
| params['n_jobs'] = n_jobs | |||
| params['chunksize'] = chunksize | |||
| params['verbose'] = True | |||
| results = estimator(graphs, **params) | |||
| return results[0], results[1] | |||