| @@ -0,0 +1,823 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Thu Mar 26 18:48:27 2020 | |||
| @author: ljia | |||
| """ | |||
| import numpy as np | |||
| import networkx as nx | |||
| from gklearn.utils.graph_files import load_dataset | |||
| import os | |||
| class Dataset(object): | |||
| def __init__(self, filename=None, filename_targets=None, **kwargs): | |||
| if filename is None: | |||
| self.__graphs = None | |||
| self.__targets = None | |||
| self.__node_labels = None | |||
| self.__edge_labels = None | |||
| self.__node_attrs = None | |||
| self.__edge_attrs = None | |||
| else: | |||
| self.load_dataset(filename, filename_targets=filename_targets, **kwargs) | |||
| self.__substructures = None | |||
| self.__node_label_dim = None | |||
| self.__edge_label_dim = None | |||
| self.__directed = None | |||
| self.__dataset_size = None | |||
| self.__total_node_num = None | |||
| self.__ave_node_num = None | |||
| self.__min_node_num = None | |||
| self.__max_node_num = None | |||
| self.__total_edge_num = None | |||
| self.__ave_edge_num = None | |||
| self.__min_edge_num = None | |||
| self.__max_edge_num = None | |||
| self.__ave_node_degree = None | |||
| self.__min_node_degree = None | |||
| self.__max_node_degree = None | |||
| self.__ave_fill_factor = None | |||
| self.__min_fill_factor = None | |||
| self.__max_fill_factor = None | |||
| self.__node_label_nums = None | |||
| self.__edge_label_nums = None | |||
| self.__node_attr_dim = None | |||
| self.__edge_attr_dim = None | |||
| self.__class_number = None | |||
| def load_dataset(self, filename, filename_targets=None, **kwargs): | |||
| self.__graphs, self.__targets, label_names = load_dataset(filename, filename_targets=filename_targets, **kwargs) | |||
| self.__node_labels = label_names['node_labels'] | |||
| self.__node_attrs = label_names['node_attrs'] | |||
| self.__edge_labels = label_names['edge_labels'] | |||
| self.__edge_attrs = label_names['edge_attrs'] | |||
| self.clean_labels() | |||
| def load_graphs(self, graphs, targets=None): | |||
| # this has to be followed by set_labels(). | |||
| self.__graphs = graphs | |||
| self.__targets = targets | |||
| # self.set_labels_attrs() # @todo | |||
| def load_predefined_dataset(self, ds_name): | |||
| current_path = os.path.dirname(os.path.realpath(__file__)) + '/' | |||
| if ds_name == 'Acyclic': | |||
| ds_file = current_path + '../../datasets/Acyclic/dataset_bps.ds' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'AIDS': | |||
| ds_file = current_path + '../../datasets/AIDS/AIDS_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'Alkane': | |||
| ds_file = current_path + '../../datasets/Alkane/dataset.ds' | |||
| fn_targets = current_path + '../../datasets/Alkane/dataset_boiling_point_names.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file, filename_targets=fn_targets) | |||
| elif ds_name == 'COIL-DEL': | |||
| ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'COIL-RAG': | |||
| ds_file = current_path + '../../datasets/COIL-RAG/COIL-RAG_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'COLORS-3': | |||
| ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'Cuneiform': | |||
| ds_file = current_path + '../../datasets/Cuneiform/Cuneiform_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'DD': | |||
| ds_file = current_path + '../../datasets/DD/DD_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'ENZYMES': | |||
| ds_file = current_path + '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'Fingerprint': | |||
| ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'FRANKENSTEIN': | |||
| ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'Letter-high': # node non-symb | |||
| ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'Letter-low': # node non-symb | |||
| ds_file = current_path + '../../datasets/Letter-low/Letter-low_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'Letter-med': # node non-symb | |||
| ds_file = current_path + '../../datasets/Letter-med/Letter-med_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'MAO': | |||
| ds_file = current_path + '../../datasets/MAO/dataset.ds' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'Monoterpenoides': | |||
| ds_file = current_path + '../../datasets/Monoterpenoides/dataset_10+.ds' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'MUTAG': | |||
| ds_file = current_path + '../../datasets/MUTAG/MUTAG_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'NCI1': | |||
| ds_file = current_path + '../../datasets/NCI1/NCI1_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'NCI109': | |||
| ds_file = current_path + '../../datasets/NCI109/NCI109_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'PAH': | |||
| ds_file = current_path + '../../datasets/PAH/dataset.ds' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'SYNTHETIC': | |||
| pass | |||
| elif ds_name == 'SYNTHETICnew': | |||
| ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt' | |||
| self.__graphs, self.__targets, label_names = load_dataset(ds_file) | |||
| elif ds_name == 'Synthie': | |||
| pass | |||
| else: | |||
| raise Exception('The dataset name "', ds_name, '" is not pre-defined.') | |||
| self.__node_labels = label_names['node_labels'] | |||
| self.__node_attrs = label_names['node_attrs'] | |||
| self.__edge_labels = label_names['edge_labels'] | |||
| self.__edge_attrs = label_names['edge_attrs'] | |||
| self.clean_labels() | |||
| def set_labels(self, node_labels=[], node_attrs=[], edge_labels=[], edge_attrs=[]): | |||
| self.__node_labels = node_labels | |||
| self.__node_attrs = node_attrs | |||
| self.__edge_labels = edge_labels | |||
| self.__edge_attrs = edge_attrs | |||
| def set_labels_attrs(self, node_labels=None, node_attrs=None, edge_labels=None, edge_attrs=None): | |||
| # @todo: remove labels which have only one possible values. | |||
| if node_labels is None: | |||
| self.__node_labels = self.__graphs[0].graph['node_labels'] | |||
| # # graphs are considered node unlabeled if all nodes have the same label. | |||
| # infos.update({'node_labeled': is_nl if node_label_num > 1 else False}) | |||
| if node_attrs is None: | |||
| self.__node_attrs = self.__graphs[0].graph['node_attrs'] | |||
| # for G in Gn: | |||
| # for n in G.nodes(data=True): | |||
| # if 'attributes' in n[1]: | |||
| # return len(n[1]['attributes']) | |||
| # return 0 | |||
| if edge_labels is None: | |||
| self.__edge_labels = self.__graphs[0].graph['edge_labels'] | |||
| # # graphs are considered edge unlabeled if all edges have the same label. | |||
| # infos.update({'edge_labeled': is_el if edge_label_num > 1 else False}) | |||
| if edge_attrs is None: | |||
| self.__edge_attrs = self.__graphs[0].graph['edge_attrs'] | |||
| # for G in Gn: | |||
| # if nx.number_of_edges(G) > 0: | |||
| # for e in G.edges(data=True): | |||
| # if 'attributes' in e[2]: | |||
| # return len(e[2]['attributes']) | |||
| # return 0 | |||
| def get_dataset_infos(self, keys=None, params=None): | |||
| """Computes and returns the structure and property information of the graph dataset. | |||
| Parameters | |||
| ---------- | |||
| keys : list, optional | |||
| A list of strings which indicate which informations will be returned. The | |||
| possible choices includes: | |||
| 'substructures': sub-structures graphs contains, including 'linear', 'non | |||
| linear' and 'cyclic'. | |||
| 'node_label_dim': whether vertices have symbolic labels. | |||
| 'edge_label_dim': whether egdes have symbolic labels. | |||
| 'directed': whether graphs in dataset are directed. | |||
| 'dataset_size': number of graphs in dataset. | |||
| 'total_node_num': total number of vertices of all graphs in dataset. | |||
| 'ave_node_num': average number of vertices of graphs in dataset. | |||
| 'min_node_num': minimum number of vertices of graphs in dataset. | |||
| 'max_node_num': maximum number of vertices of graphs in dataset. | |||
| 'total_edge_num': total number of edges of all graphs in dataset. | |||
| 'ave_edge_num': average number of edges of graphs in dataset. | |||
| 'min_edge_num': minimum number of edges of graphs in dataset. | |||
| 'max_edge_num': maximum number of edges of graphs in dataset. | |||
| 'ave_node_degree': average vertex degree of graphs in dataset. | |||
| 'min_node_degree': minimum vertex degree of graphs in dataset. | |||
| 'max_node_degree': maximum vertex degree of graphs in dataset. | |||
| 'ave_fill_factor': average fill factor (number_of_edges / | |||
| (number_of_nodes ** 2)) of graphs in dataset. | |||
| 'min_fill_factor': minimum fill factor of graphs in dataset. | |||
| 'max_fill_factor': maximum fill factor of graphs in dataset. | |||
| 'node_label_nums': list of numbers of symbolic vertex labels of graphs in dataset. | |||
| 'edge_label_nums': list number of symbolic edge labels of graphs in dataset. | |||
| 'node_attr_dim': number of dimensions of non-symbolic vertex labels. | |||
| Extracted from the 'attributes' attribute of graph nodes. | |||
| 'edge_attr_dim': number of dimensions of non-symbolic edge labels. | |||
| Extracted from the 'attributes' attribute of graph edges. | |||
| 'class_number': number of classes. Only available for classification problems. | |||
| 'all_degree_entropy': the entropy of degree distribution of each graph. | |||
| 'ave_degree_entropy': the average entropy of degree distribution of all graphs. | |||
| All informations above will be returned if `keys` is not given. | |||
| params: dict of dict, optional | |||
| A dictinary which contains extra parameters for each possible | |||
| element in ``keys``. | |||
| Return | |||
| ------ | |||
| dict | |||
| Information of the graph dataset keyed by `keys`. | |||
| """ | |||
| infos = {} | |||
| if keys == None: | |||
| keys = [ | |||
| 'substructures', | |||
| 'node_label_dim', | |||
| 'edge_label_dim', | |||
| 'directed', | |||
| 'dataset_size', | |||
| 'total_node_num', | |||
| 'ave_node_num', | |||
| 'min_node_num', | |||
| 'max_node_num', | |||
| 'total_edge_num', | |||
| 'ave_edge_num', | |||
| 'min_edge_num', | |||
| 'max_edge_num', | |||
| 'ave_node_degree', | |||
| 'min_node_degree', | |||
| 'max_node_degree', | |||
| 'ave_fill_factor', | |||
| 'min_fill_factor', | |||
| 'max_fill_factor', | |||
| 'node_label_nums', | |||
| 'edge_label_nums', | |||
| 'node_attr_dim', | |||
| 'edge_attr_dim', | |||
| 'class_number', | |||
| 'all_degree_entropy', | |||
| 'ave_degree_entropy' | |||
| ] | |||
| # dataset size | |||
| if 'dataset_size' in keys: | |||
| if self.__dataset_size is None: | |||
| self.__dataset_size = self.__get_dataset_size() | |||
| infos['dataset_size'] = self.__dataset_size | |||
| # graph node number | |||
| if any(i in keys for i in ['total_node_num', 'ave_node_num', 'min_node_num', 'max_node_num']): | |||
| all_node_nums = self.__get_all_node_nums() | |||
| if 'total_node_num' in keys: | |||
| if self.__total_node_num is None: | |||
| self.__total_node_num = self.__get_total_node_num(all_node_nums) | |||
| infos['total_node_num'] = self.__total_node_num | |||
| if 'ave_node_num' in keys: | |||
| if self.__ave_node_num is None: | |||
| self.__ave_node_num = self.__get_ave_node_num(all_node_nums) | |||
| infos['ave_node_num'] = self.__ave_node_num | |||
| if 'min_node_num' in keys: | |||
| if self.__min_node_num is None: | |||
| self.__min_node_num = self.__get_min_node_num(all_node_nums) | |||
| infos['min_node_num'] = self.__min_node_num | |||
| if 'max_node_num' in keys: | |||
| if self.__max_node_num is None: | |||
| self.__max_node_num = self.__get_max_node_num(all_node_nums) | |||
| infos['max_node_num'] = self.__max_node_num | |||
| # graph edge number | |||
| if any(i in keys for i in ['total_edge_num', 'ave_edge_num', 'min_edge_num', 'max_edge_num']): | |||
| all_edge_nums = self.__get_all_edge_nums() | |||
| if 'total_edge_num' in keys: | |||
| if self.__total_edge_num is None: | |||
| self.__total_edge_num = self.__get_total_edge_num(all_edge_nums) | |||
| infos['total_edge_num'] = self.__total_edge_num | |||
| if 'ave_edge_num' in keys: | |||
| if self.__ave_edge_num is None: | |||
| self.__ave_edge_num = self.__get_ave_edge_num(all_edge_nums) | |||
| infos['ave_edge_num'] = self.__ave_edge_num | |||
| if 'max_edge_num' in keys: | |||
| if self.__max_edge_num is None: | |||
| self.__max_edge_num = self.__get_max_edge_num(all_edge_nums) | |||
| infos['max_edge_num'] = self.__max_edge_num | |||
| if 'min_edge_num' in keys: | |||
| if self.__min_edge_num is None: | |||
| self.__min_edge_num = self.__get_min_edge_num(all_edge_nums) | |||
| infos['min_edge_num'] = self.__min_edge_num | |||
| # label number | |||
| if 'node_label_dim' in keys: | |||
| if self.__node_label_dim is None: | |||
| self.__node_label_dim = self.__get_node_label_dim() | |||
| infos['node_label_dim'] = self.__node_label_dim | |||
| if 'node_label_nums' in keys: | |||
| if self.__node_label_nums is None: | |||
| self.__node_label_nums = {} | |||
| for node_label in self.__node_labels: | |||
| self.__node_label_nums[node_label] = self.__get_node_label_num(node_label) | |||
| infos['node_label_nums'] = self.__node_label_nums | |||
| if 'edge_label_dim' in keys: | |||
| if self.__edge_label_dim is None: | |||
| self.__edge_label_dim = self.__get_edge_label_dim() | |||
| infos['edge_label_dim'] = self.__edge_label_dim | |||
| if 'edge_label_nums' in keys: | |||
| if self.__edge_label_nums is None: | |||
| self.__edge_label_nums = {} | |||
| for edge_label in self.__edge_labels: | |||
| self.__edge_label_nums[edge_label] = self.__get_edge_label_num(edge_label) | |||
| infos['edge_label_nums'] = self.__edge_label_nums | |||
| if 'directed' in keys or 'substructures' in keys: | |||
| if self.__directed is None: | |||
| self.__directed = self.__is_directed() | |||
| infos['directed'] = self.__directed | |||
| # node degree | |||
| if any(i in keys for i in ['ave_node_degree', 'max_node_degree', 'min_node_degree']): | |||
| all_node_degrees = self.__get_all_node_degrees() | |||
| if 'ave_node_degree' in keys: | |||
| if self.__ave_node_degree is None: | |||
| self.__ave_node_degree = self.__get_ave_node_degree(all_node_degrees) | |||
| infos['ave_node_degree'] = self.__ave_node_degree | |||
| if 'max_node_degree' in keys: | |||
| if self.__max_node_degree is None: | |||
| self.__max_node_degree = self.__get_max_node_degree(all_node_degrees) | |||
| infos['max_node_degree'] = self.__max_node_degree | |||
| if 'min_node_degree' in keys: | |||
| if self.__min_node_degree is None: | |||
| self.__min_node_degree = self.__get_min_node_degree(all_node_degrees) | |||
| infos['min_node_degree'] = self.__min_node_degree | |||
| # fill factor | |||
| if any(i in keys for i in ['ave_fill_factor', 'max_fill_factor', 'min_fill_factor']): | |||
| all_fill_factors = self.__get_all_fill_factors() | |||
| if 'ave_fill_factor' in keys: | |||
| if self.__ave_fill_factor is None: | |||
| self.__ave_fill_factor = self.__get_ave_fill_factor(all_fill_factors) | |||
| infos['ave_fill_factor'] = self.__ave_fill_factor | |||
| if 'max_fill_factor' in keys: | |||
| if self.__max_fill_factor is None: | |||
| self.__max_fill_factor = self.__get_max_fill_factor(all_fill_factors) | |||
| infos['max_fill_factor'] = self.__max_fill_factor | |||
| if 'min_fill_factor' in keys: | |||
| if self.__min_fill_factor is None: | |||
| self.__min_fill_factor = self.__get_min_fill_factor(all_fill_factors) | |||
| infos['min_fill_factor'] = self.__min_fill_factor | |||
| if 'substructures' in keys: | |||
| if self.__substructures is None: | |||
| self.__substructures = self.__get_substructures() | |||
| infos['substructures'] = self.__substructures | |||
| if 'class_number' in keys: | |||
| if self.__class_number is None: | |||
| self.__class_number = self.__get_class_number() | |||
| infos['class_number'] = self.__class_number | |||
| if 'node_attr_dim' in keys: | |||
| if self.__node_attr_dim is None: | |||
| self.__node_attr_dim = self.__get_node_attr_dim() | |||
| infos['node_attr_dim'] = self.__node_attr_dim | |||
| if 'edge_attr_dim' in keys: | |||
| if self.__edge_attr_dim is None: | |||
| self.__edge_attr_dim = self.__get_edge_attr_dim() | |||
| infos['edge_attr_dim'] = self.__edge_attr_dim | |||
| # entropy of degree distribution. | |||
| if 'all_degree_entropy' in keys: | |||
| if params is not None and ('all_degree_entropy' in params) and ('base' in params['all_degree_entropy']): | |||
| base = params['all_degree_entropy']['base'] | |||
| else: | |||
| base = None | |||
| infos['all_degree_entropy'] = self.__compute_all_degree_entropy(base=base) | |||
| if 'ave_degree_entropy' in keys: | |||
| if params is not None and ('ave_degree_entropy' in params) and ('base' in params['ave_degree_entropy']): | |||
| base = params['ave_degree_entropy']['base'] | |||
| else: | |||
| base = None | |||
| infos['ave_degree_entropy'] = np.mean(self.__compute_all_degree_entropy(base=base)) | |||
| return infos | |||
| def print_graph_infos(self, infos): | |||
| from collections import OrderedDict | |||
| keys = list(infos.keys()) | |||
| print(OrderedDict(sorted(infos.items(), key=lambda i: keys.index(i[0])))) | |||
| def remove_labels(self, node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]): | |||
| node_labels = [item for item in node_labels if item in self.__node_labels] | |||
| edge_labels = [item for item in edge_labels if item in self.__edge_labels] | |||
| node_attrs = [item for item in node_attrs if item in self.__node_attrs] | |||
| edge_attrs = [item for item in edge_attrs if item in self.__edge_attrs] | |||
| for g in self.__graphs: | |||
| for nd in g.nodes(): | |||
| for nl in node_labels: | |||
| del g.nodes[nd][nl] | |||
| for na in node_attrs: | |||
| del g.nodes[nd][na] | |||
| for ed in g.edges(): | |||
| for el in edge_labels: | |||
| del g.edges[ed][el] | |||
| for ea in edge_attrs: | |||
| del g.edges[ed][ea] | |||
| if len(node_labels) > 0: | |||
| self.__node_labels = [nl for nl in self.__node_labels if nl not in node_labels] | |||
| if len(edge_labels) > 0: | |||
| self.__edge_labels = [el for el in self.__edge_labels if el not in edge_labels] | |||
| if len(node_attrs) > 0: | |||
| self.__node_attrs = [na for na in self.__node_attrs if na not in node_attrs] | |||
| if len(edge_attrs) > 0: | |||
| self.__edge_attrs = [ea for ea in self.__edge_attrs if ea not in edge_attrs] | |||
| def clean_labels(self): | |||
| labels = [] | |||
| for name in self.__node_labels: | |||
| label = set() | |||
| for G in self.__graphs: | |||
| label = label | set(nx.get_node_attributes(G, name).values()) | |||
| if len(label) > 1: | |||
| labels.append(name) | |||
| break | |||
| if len(label) < 2: | |||
| for G in self.__graphs: | |||
| for nd in G.nodes(): | |||
| del G.nodes[nd][name] | |||
| self.__node_labels = labels | |||
| labels = [] | |||
| for name in self.__edge_labels: | |||
| label = set() | |||
| for G in self.__graphs: | |||
| label = label | set(nx.get_edge_attributes(G, name).values()) | |||
| if len(label) > 1: | |||
| labels.append(name) | |||
| break | |||
| if len(label) < 2: | |||
| for G in self.__graphs: | |||
| for ed in G.edges(): | |||
| del G.edges[ed][name] | |||
| self.__edge_labels = labels | |||
| labels = [] | |||
| for name in self.__node_attrs: | |||
| label = set() | |||
| for G in self.__graphs: | |||
| label = label | set(nx.get_node_attributes(G, name).values()) | |||
| if len(label) > 1: | |||
| labels.append(name) | |||
| break | |||
| if len(label) < 2: | |||
| for G in self.__graphs: | |||
| for nd in G.nodes(): | |||
| del G.nodes[nd][name] | |||
| self.__node_attrs = labels | |||
| labels = [] | |||
| for name in self.__edge_attrs: | |||
| label = set() | |||
| for G in self.__graphs: | |||
| label = label | set(nx.get_edge_attributes(G, name).values()) | |||
| if len(label) > 1: | |||
| labels.append(name) | |||
| break | |||
| if len(label) < 2: | |||
| for G in self.__graphs: | |||
| for ed in G.edges(): | |||
| del G.edges[ed][name] | |||
| self.__edge_attrs = labels | |||
| def cut_graphs(self, range_): | |||
| self.__graphs = [self.__graphs[i] for i in range_] | |||
| if self.__targets is not None: | |||
| self.__targets = [self.__targets[i] for i in range_] | |||
| self.clean_labels() | |||
| def trim_dataset(self, edge_required=False): | |||
| if edge_required: | |||
| trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if (nx.number_of_nodes(g) != 0 and nx.number_of_edges(g) != 0)] | |||
| else: | |||
| trimed_pairs = [(idx, g) for idx, g in enumerate(self.__graphs) if nx.number_of_nodes(g) != 0] | |||
| idx = [p[0] for p in trimed_pairs] | |||
| self.__graphs = [p[1] for p in trimed_pairs] | |||
| self.__targets = [self.__targets[i] for i in idx] | |||
| self.clean_labels() | |||
| def copy(self): | |||
| dataset = Dataset() | |||
| graphs = [g.copy() for g in self.__graphs] if self.__graphs is not None else None | |||
| target = self.__targets.copy() if self.__targets is not None else None | |||
| node_labels = self.__node_labels.copy() if self.__node_labels is not None else None | |||
| node_attrs = self.__node_attrs.copy() if self.__node_attrs is not None else None | |||
| edge_labels = self.__edge_labels.copy() if self.__edge_labels is not None else None | |||
| edge_attrs = self.__edge_attrs.copy() if self.__edge_attrs is not None else None | |||
| dataset.load_graphs(graphs, target) | |||
| dataset.set_labels(node_labels=node_labels, node_attrs=node_attrs, edge_labels=edge_labels, edge_attrs=edge_attrs) | |||
| # @todo: clean_labels and add other class members? | |||
| return dataset | |||
| def get_all_node_labels(self): | |||
| node_labels = [] | |||
| for g in self.__graphs: | |||
| for n in g.nodes(): | |||
| nl = tuple(g.nodes[n].items()) | |||
| if nl not in node_labels: | |||
| node_labels.append(nl) | |||
| return node_labels | |||
| def get_all_edge_labels(self): | |||
| edge_labels = [] | |||
| for g in self.__graphs: | |||
| for e in g.edges(): | |||
| el = tuple(g.edges[e].items()) | |||
| if el not in edge_labels: | |||
| edge_labels.append(el) | |||
| return edge_labels | |||
| def __get_dataset_size(self): | |||
| return len(self.__graphs) | |||
| def __get_all_node_nums(self): | |||
| return [nx.number_of_nodes(G) for G in self.__graphs] | |||
| def __get_total_node_nums(self, all_node_nums): | |||
| return np.sum(all_node_nums) | |||
| def __get_ave_node_num(self, all_node_nums): | |||
| return np.mean(all_node_nums) | |||
| def __get_min_node_num(self, all_node_nums): | |||
| return np.amin(all_node_nums) | |||
| def __get_max_node_num(self, all_node_nums): | |||
| return np.amax(all_node_nums) | |||
| def __get_all_edge_nums(self): | |||
| return [nx.number_of_edges(G) for G in self.__graphs] | |||
| def __get_total_edge_nums(self, all_edge_nums): | |||
| return np.sum(all_edge_nums) | |||
| def __get_ave_edge_num(self, all_edge_nums): | |||
| return np.mean(all_edge_nums) | |||
| def __get_min_edge_num(self, all_edge_nums): | |||
| return np.amin(all_edge_nums) | |||
| def __get_max_edge_num(self, all_edge_nums): | |||
| return np.amax(all_edge_nums) | |||
| def __get_node_label_dim(self): | |||
| return len(self.__node_labels) | |||
| def __get_node_label_num(self, node_label): | |||
| nl = set() | |||
| for G in self.__graphs: | |||
| nl = nl | set(nx.get_node_attributes(G, node_label).values()) | |||
| return len(nl) | |||
| def __get_edge_label_dim(self): | |||
| return len(self.__edge_labels) | |||
| def __get_edge_label_num(self, edge_label): | |||
| el = set() | |||
| for G in self.__graphs: | |||
| el = el | set(nx.get_edge_attributes(G, edge_label).values()) | |||
| return len(el) | |||
| def __is_directed(self): | |||
| return nx.is_directed(self.__graphs[0]) | |||
| def __get_all_node_degrees(self): | |||
| return [np.mean(list(dict(G.degree()).values())) for G in self.__graphs] | |||
| def __get_ave_node_degree(self, all_node_degrees): | |||
| return np.mean(all_node_degrees) | |||
| def __get_max_node_degree(self, all_node_degrees): | |||
| return np.amax(all_node_degrees) | |||
| def __get_min_node_degree(self, all_node_degrees): | |||
| return np.amin(all_node_degrees) | |||
| def __get_all_fill_factors(self): | |||
| """Get fill factor, the number of non-zero entries in the adjacency matrix. | |||
| Returns | |||
| ------- | |||
| list[float] | |||
| List of fill factors for all graphs. | |||
| """ | |||
| return [nx.number_of_edges(G) / (nx.number_of_nodes(G) ** 2) for G in self.__graphs] | |||
| def __get_ave_fill_factor(self, all_fill_factors): | |||
| return np.mean(all_fill_factors) | |||
| def __get_max_fill_factor(self, all_fill_factors): | |||
| return np.amax(all_fill_factors) | |||
| def __get_min_fill_factor(self, all_fill_factors): | |||
| return np.amin(all_fill_factors) | |||
| def __get_substructures(self): | |||
| subs = set() | |||
| for G in self.__graphs: | |||
| degrees = list(dict(G.degree()).values()) | |||
| if any(i == 2 for i in degrees): | |||
| subs.add('linear') | |||
| if np.amax(degrees) >= 3: | |||
| subs.add('non linear') | |||
| if 'linear' in subs and 'non linear' in subs: | |||
| break | |||
| if self.__directed: | |||
| for G in self.__graphs: | |||
| if len(list(nx.find_cycle(G))) > 0: | |||
| subs.add('cyclic') | |||
| break | |||
| # else: | |||
| # # @todo: this method does not work for big graph with large amount of edges like D&D, try a better way. | |||
| # upper = np.amin([nx.number_of_edges(G) for G in Gn]) * 2 + 10 | |||
| # for G in Gn: | |||
| # if (nx.number_of_edges(G) < upper): | |||
| # cyc = list(nx.simple_cycles(G.to_directed())) | |||
| # if any(len(i) > 2 for i in cyc): | |||
| # subs.add('cyclic') | |||
| # break | |||
| # if 'cyclic' not in subs: | |||
| # for G in Gn: | |||
| # cyc = list(nx.simple_cycles(G.to_directed())) | |||
| # if any(len(i) > 2 for i in cyc): | |||
| # subs.add('cyclic') | |||
| # break | |||
| return subs | |||
| def __get_class_num(self): | |||
| return len(set(self.__targets)) | |||
| def __get_node_attr_dim(self): | |||
| return len(self.__node_attrs) | |||
| def __get_edge_attr_dim(self): | |||
| return len(self.__edge_attrs) | |||
| def __compute_all_degree_entropy(self, base=None): | |||
| """Compute the entropy of degree distribution of each graph. | |||
| Parameters | |||
| ---------- | |||
| base : float, optional | |||
| The logarithmic base to use. The default is ``e`` (natural logarithm). | |||
| Returns | |||
| ------- | |||
| degree_entropy : float | |||
| The calculated entropy. | |||
| """ | |||
| from gklearn.utils.stats import entropy | |||
| degree_entropy = [] | |||
| for g in self.__graphs: | |||
| degrees = list(dict(g.degree()).values()) | |||
| en = entropy(degrees, base=base) | |||
| degree_entropy.append(en) | |||
| return degree_entropy | |||
| @property | |||
| def graphs(self): | |||
| return self.__graphs | |||
| @property | |||
| def targets(self): | |||
| return self.__targets | |||
| @property | |||
| def node_labels(self): | |||
| return self.__node_labels | |||
| @property | |||
| def edge_labels(self): | |||
| return self.__edge_labels | |||
| @property | |||
| def node_attrs(self): | |||
| return self.__node_attrs | |||
| @property | |||
| def edge_attrs(self): | |||
| return self.__edge_attrs | |||
| def split_dataset_by_target(dataset): | |||
| from gklearn.preimage.utils import get_same_item_indices | |||
| graphs = dataset.graphs | |||
| targets = dataset.targets | |||
| datasets = [] | |||
| idx_targets = get_same_item_indices(targets) | |||
| for key, val in idx_targets.items(): | |||
| sub_graphs = [graphs[i] for i in val] | |||
| sub_dataset = Dataset() | |||
| sub_dataset.load_graphs(sub_graphs, [key] * len(val)) | |||
| node_labels = dataset.node_labels.copy() if dataset.node_labels is not None else None | |||
| node_attrs = dataset.node_attrs.copy() if dataset.node_attrs is not None else None | |||
| edge_labels = dataset.edge_labels.copy() if dataset.edge_labels is not None else None | |||
| edge_attrs = dataset.edge_attrs.copy() if dataset.edge_attrs is not None else None | |||
| sub_dataset.set_labels(node_labels=node_labels, node_attrs=node_attrs, edge_labels=edge_labels, edge_attrs=edge_attrs) | |||
| datasets.append(sub_dataset) | |||
| # @todo: clean_labels? | |||
| return datasets | |||