| @@ -0,0 +1,318 @@ | |||
| import libsvm.*; | |||
| import java.io.*; | |||
| import java.util.*; | |||
| class svm_train { | |||
| private svm_parameter param; // set by parse_command_line | |||
| private svm_problem prob; // set by read_problem | |||
| private svm_model model; | |||
| private String input_file_name; // set by parse_command_line | |||
| private String model_file_name; // set by parse_command_line | |||
| private String error_msg; | |||
| private int cross_validation; | |||
| private int nr_fold; | |||
| private static svm_print_interface svm_print_null = new svm_print_interface() | |||
| { | |||
| public void print(String s) {} | |||
| }; | |||
| private static void exit_with_help() | |||
| { | |||
| System.out.print( | |||
| "Usage: svm_train [options] training_set_file [model_file]\n" | |||
| +"options:\n" | |||
| +"-s svm_type : set type of SVM (default 0)\n" | |||
| +" 0 -- C-SVC (multi-class classification)\n" | |||
| +" 1 -- nu-SVC (multi-class classification)\n" | |||
| +" 2 -- one-class SVM\n" | |||
| +" 3 -- epsilon-SVR (regression)\n" | |||
| +" 4 -- nu-SVR (regression)\n" | |||
| +"-t kernel_type : set type of kernel function (default 2)\n" | |||
| +" 0 -- linear: u'*v\n" | |||
| +" 1 -- polynomial: (gamma*u'*v + coef0)^degree\n" | |||
| +" 2 -- radial basis function: exp(-gamma*|u-v|^2)\n" | |||
| +" 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n" | |||
| +" 4 -- precomputed kernel (kernel values in training_set_file)\n" | |||
| +"-d degree : set degree in kernel function (default 3)\n" | |||
| +"-g gamma : set gamma in kernel function (default 1/num_features)\n" | |||
| +"-r coef0 : set coef0 in kernel function (default 0)\n" | |||
| +"-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n" | |||
| +"-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n" | |||
| +"-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n" | |||
| +"-m cachesize : set cache memory size in MB (default 100)\n" | |||
| +"-e epsilon : set tolerance of termination criterion (default 0.001)\n" | |||
| +"-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n" | |||
| +"-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n" | |||
| +"-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n" | |||
| +"-v n : n-fold cross validation mode\n" | |||
| +"-q : quiet mode (no outputs)\n" | |||
| ); | |||
| System.exit(1); | |||
| } | |||
| private void do_cross_validation() | |||
| { | |||
| int i; | |||
| int total_correct = 0; | |||
| double total_error = 0; | |||
| double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; | |||
| double[] target = new double[prob.l]; | |||
| svm.svm_cross_validation(prob,param,nr_fold,target); | |||
| if(param.svm_type == svm_parameter.EPSILON_SVR || | |||
| param.svm_type == svm_parameter.NU_SVR) | |||
| { | |||
| for(i=0;i<prob.l;i++) | |||
| { | |||
| double y = prob.y[i]; | |||
| double v = target[i]; | |||
| total_error += (v-y)*(v-y); | |||
| sumv += v; | |||
| sumy += y; | |||
| sumvv += v*v; | |||
| sumyy += y*y; | |||
| sumvy += v*y; | |||
| } | |||
| System.out.print("Cross Validation Mean squared error = "+total_error/prob.l+"\n"); | |||
| System.out.print("Cross Validation Squared correlation coefficient = "+ | |||
| ((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/ | |||
| ((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))+"\n" | |||
| ); | |||
| } | |||
| else | |||
| { | |||
| for(i=0;i<prob.l;i++) | |||
| if(target[i] == prob.y[i]) | |||
| ++total_correct; | |||
| System.out.print("Cross Validation Accuracy = "+100.0*total_correct/prob.l+"%\n"); | |||
| } | |||
| } | |||
| private void run(String argv[]) throws IOException | |||
| { | |||
| parse_command_line(argv); | |||
| read_problem(); | |||
| error_msg = svm.svm_check_parameter(prob,param); | |||
| if(error_msg != null) | |||
| { | |||
| System.err.print("ERROR: "+error_msg+"\n"); | |||
| System.exit(1); | |||
| } | |||
| if(cross_validation != 0) | |||
| { | |||
| do_cross_validation(); | |||
| } | |||
| else | |||
| { | |||
| model = svm.svm_train(prob,param); | |||
| svm.svm_save_model(model_file_name,model); | |||
| } | |||
| } | |||
| public static void main(String argv[]) throws IOException | |||
| { | |||
| svm_train t = new svm_train(); | |||
| t.run(argv); | |||
| } | |||
| private static double atof(String s) | |||
| { | |||
| double d = Double.valueOf(s).doubleValue(); | |||
| if (Double.isNaN(d) || Double.isInfinite(d)) | |||
| { | |||
| System.err.print("NaN or Infinity in input\n"); | |||
| System.exit(1); | |||
| } | |||
| return(d); | |||
| } | |||
| private static int atoi(String s) | |||
| { | |||
| return Integer.parseInt(s); | |||
| } | |||
| private void parse_command_line(String argv[]) | |||
| { | |||
| int i; | |||
| svm_print_interface print_func = null; // default printing to stdout | |||
| param = new svm_parameter(); | |||
| // default values | |||
| param.svm_type = svm_parameter.C_SVC; | |||
| param.kernel_type = svm_parameter.RBF; | |||
| param.degree = 3; | |||
| param.gamma = 0; // 1/num_features | |||
| param.coef0 = 0; | |||
| param.nu = 0.5; | |||
| param.cache_size = 100; | |||
| param.C = 1; | |||
| param.eps = 1e-3; | |||
| param.p = 0.1; | |||
| param.shrinking = 1; | |||
| param.probability = 0; | |||
| param.nr_weight = 0; | |||
| param.weight_label = new int[0]; | |||
| param.weight = new double[0]; | |||
| cross_validation = 0; | |||
| // parse options | |||
| for(i=0;i<argv.length;i++) | |||
| { | |||
| if(argv[i].charAt(0) != '-') break; | |||
| if(++i>=argv.length) | |||
| exit_with_help(); | |||
| switch(argv[i-1].charAt(1)) | |||
| { | |||
| case 's': | |||
| param.svm_type = atoi(argv[i]); | |||
| break; | |||
| case 't': | |||
| param.kernel_type = atoi(argv[i]); | |||
| break; | |||
| case 'd': | |||
| param.degree = atoi(argv[i]); | |||
| break; | |||
| case 'g': | |||
| param.gamma = atof(argv[i]); | |||
| break; | |||
| case 'r': | |||
| param.coef0 = atof(argv[i]); | |||
| break; | |||
| case 'n': | |||
| param.nu = atof(argv[i]); | |||
| break; | |||
| case 'm': | |||
| param.cache_size = atof(argv[i]); | |||
| break; | |||
| case 'c': | |||
| param.C = atof(argv[i]); | |||
| break; | |||
| case 'e': | |||
| param.eps = atof(argv[i]); | |||
| break; | |||
| case 'p': | |||
| param.p = atof(argv[i]); | |||
| break; | |||
| case 'h': | |||
| param.shrinking = atoi(argv[i]); | |||
| break; | |||
| case 'b': | |||
| param.probability = atoi(argv[i]); | |||
| break; | |||
| case 'q': | |||
| print_func = svm_print_null; | |||
| i--; | |||
| break; | |||
| case 'v': | |||
| cross_validation = 1; | |||
| nr_fold = atoi(argv[i]); | |||
| if(nr_fold < 2) | |||
| { | |||
| System.err.print("n-fold cross validation: n must >= 2\n"); | |||
| exit_with_help(); | |||
| } | |||
| break; | |||
| case 'w': | |||
| ++param.nr_weight; | |||
| { | |||
| int[] old = param.weight_label; | |||
| param.weight_label = new int[param.nr_weight]; | |||
| System.arraycopy(old,0,param.weight_label,0,param.nr_weight-1); | |||
| } | |||
| { | |||
| double[] old = param.weight; | |||
| param.weight = new double[param.nr_weight]; | |||
| System.arraycopy(old,0,param.weight,0,param.nr_weight-1); | |||
| } | |||
| param.weight_label[param.nr_weight-1] = atoi(argv[i-1].substring(2)); | |||
| param.weight[param.nr_weight-1] = atof(argv[i]); | |||
| break; | |||
| default: | |||
| System.err.print("Unknown option: " + argv[i-1] + "\n"); | |||
| exit_with_help(); | |||
| } | |||
| } | |||
| svm.svm_set_print_string_function(print_func); | |||
| // determine filenames | |||
| if(i>=argv.length) | |||
| exit_with_help(); | |||
| input_file_name = argv[i]; | |||
| if(i<argv.length-1) | |||
| model_file_name = argv[i+1]; | |||
| else | |||
| { | |||
| int p = argv[i].lastIndexOf('/'); | |||
| ++p; // whew... | |||
| model_file_name = argv[i].substring(p)+".model"; | |||
| } | |||
| } | |||
| // read in a problem (in svmlight format) | |||
| private void read_problem() throws IOException | |||
| { | |||
| BufferedReader fp = new BufferedReader(new FileReader(input_file_name)); | |||
| Vector<Double> vy = new Vector<Double>(); | |||
| Vector<svm_node[]> vx = new Vector<svm_node[]>(); | |||
| int max_index = 0; | |||
| while(true) | |||
| { | |||
| String line = fp.readLine(); | |||
| if(line == null) break; | |||
| StringTokenizer st = new StringTokenizer(line," \t\n\r\f:"); | |||
| vy.addElement(atof(st.nextToken())); | |||
| int m = st.countTokens()/2; | |||
| svm_node[] x = new svm_node[m]; | |||
| for(int j=0;j<m;j++) | |||
| { | |||
| x[j] = new svm_node(); | |||
| x[j].index = atoi(st.nextToken()); | |||
| x[j].value = atof(st.nextToken()); | |||
| } | |||
| if(m>0) max_index = Math.max(max_index, x[m-1].index); | |||
| vx.addElement(x); | |||
| } | |||
| prob = new svm_problem(); | |||
| prob.l = vy.size(); | |||
| prob.x = new svm_node[prob.l][]; | |||
| for(int i=0;i<prob.l;i++) | |||
| prob.x[i] = vx.elementAt(i); | |||
| prob.y = new double[prob.l]; | |||
| for(int i=0;i<prob.l;i++) | |||
| prob.y[i] = vy.elementAt(i); | |||
| if(param.gamma == 0 && max_index > 0) | |||
| param.gamma = 1.0/max_index; | |||
| if(param.kernel_type == svm_parameter.PRECOMPUTED) | |||
| for(int i=0;i<prob.l;i++) | |||
| { | |||
| if (prob.x[i][0].index != 0) | |||
| { | |||
| System.err.print("Wrong kernel matrix: first column must be 0:sample_serial_number\n"); | |||
| System.exit(1); | |||
| } | |||
| if ((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index) | |||
| { | |||
| System.err.print("Wrong input format: sample_serial_number out of range\n"); | |||
| System.exit(1); | |||
| } | |||
| } | |||
| fp.close(); | |||
| } | |||
| } | |||