| @@ -158,7 +158,7 @@ def cross_validate(graphs, targets, kernel_name, output_dir='outputs/', ds_name= | |||||
| sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | sub_kernel = {'symb': deltakernel, 'nsymb': gaussiankernel, 'mix': mixkernel} | ||||
| param_grid_precomputed = {'compute_method': ['fp'], | param_grid_precomputed = {'compute_method': ['fp'], | ||||
| 'node_kernels': [sub_kernel], 'edge_kernels': [sub_kernel], | 'node_kernels': [sub_kernel], 'edge_kernels': [sub_kernel], | ||||
| 'weight': np.logspace(-3, -10, num=8, base=10)} | |||||
| 'weight': np.logspace(-4, -10, num=7, base=10)} | |||||
| elif kernel_name == 'SpectralDecomposition': | elif kernel_name == 'SpectralDecomposition': | ||||
| from gklearn.kernels.randomWalkKernel import randomwalkkernel | from gklearn.kernels.randomWalkKernel import randomwalkkernel | ||||
| @@ -196,14 +196,17 @@ def cross_validate(graphs, targets, kernel_name, output_dir='outputs/', ds_name= | |||||
| elif kernel_name == 'Treelet': | elif kernel_name == 'Treelet': | ||||
| from gklearn.kernels.treeletKernel import treeletkernel | from gklearn.kernels.treeletKernel import treeletkernel | ||||
| estimator = treeletkernel | estimator = treeletkernel | ||||
| from gklearn.utils.kernels import polynomialkernel | |||||
| from gklearn.utils.kernels import gaussiankernel, polynomialkernel | |||||
| import functools | import functools | ||||
| gkernels = [functools.partial(gaussiankernel, gamma=1 / ga) | gkernels = [functools.partial(gaussiankernel, gamma=1 / ga) | ||||
| # for ga in np.linspace(1, 10, 10)] | # for ga in np.linspace(1, 10, 10)] | ||||
| for ga in np.logspace(0, 10, num=11, base=10)] | |||||
| pkernels = [functools.partial(polynomialkernel, d=d, c=c) for d in range(1, 11) | |||||
| for c in np.logspace(0, 10, num=11, base=10)] | |||||
| for ga in np.logspace(0, 10, num=11, base=10)] | |||||
| pkernels = [functools.partial(polynomialkernel, d=d, c=c) for d in range(1, 11) | |||||
| for c in np.logspace(0, 10, num=11, base=10)] | |||||
| # pkernels = [functools.partial(polynomialkernel, d=1, c=1)] | |||||
| param_grid_precomputed = {'sub_kernel': pkernels + gkernels} | param_grid_precomputed = {'sub_kernel': pkernels + gkernels} | ||||
| # 'parallel': [None]} | |||||
| elif kernel_name == 'WLSubtree': | elif kernel_name == 'WLSubtree': | ||||
| from gklearn.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel | from gklearn.kernels.weisfeilerLehmanKernel import weisfeilerlehmankernel | ||||