| @@ -73,7 +73,7 @@ def knn_cv(dataset, kernel_options, trainset=None, n_neighbors=1, n_splits=50, t | |||||
| y_all = dataset.targets | y_all = dataset.targets | ||||
| # compute kernel distances. | # compute kernel distances. | ||||
| dis_mat = __compute_kernel_distances(dataset, kernel_options, trainset=trainset) | |||||
| dis_mat = _compute_kernel_distances(dataset, kernel_options, trainset=trainset) | |||||
| rs = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=0) | rs = ShuffleSplit(n_splits=n_splits, test_size=test_size, random_state=0) | ||||
| @@ -121,7 +121,7 @@ def knn_cv(dataset, kernel_options, trainset=None, n_neighbors=1, n_splits=50, t | |||||
| return results | return results | ||||
| def __compute_kernel_distances(dataset, kernel_options, trainset=None): | |||||
| def _compute_kernel_distances(dataset, kernel_options, trainset=None): | |||||
| graph_kernel = get_graph_kernel_by_name(kernel_options['name'], | graph_kernel = get_graph_kernel_by_name(kernel_options['name'], | ||||
| node_labels=dataset.node_labels, | node_labels=dataset.node_labels, | ||||
| edge_labels=dataset.edge_labels, | edge_labels=dataset.edge_labels, | ||||