| @@ -25,11 +25,11 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| def __init__(self, **kwargs): | |||
| GraphKernel.__init__(self) | |||
| self.__node_labels = kwargs.get('node_labels', []) | |||
| self.__edge_labels = kwargs.get('edge_labels', []) | |||
| self.__height = int(kwargs.get('height', 0)) | |||
| self.__base_kernel = kwargs.get('base_kernel', 'subtree') | |||
| self.__ds_infos = kwargs.get('ds_infos', {}) | |||
| self._node_labels = kwargs.get('node_labels', []) | |||
| self._edge_labels = kwargs.get('edge_labels', []) | |||
| self._height = int(kwargs.get('height', 0)) | |||
| self._base_kernel = kwargs.get('base_kernel', 'subtree') | |||
| self._ds_infos = kwargs.get('ds_infos', {}) | |||
| def _compute_gm_series(self): | |||
| @@ -37,23 +37,23 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| import warnings | |||
| warnings.warn('A part of the computation is parallelized.') | |||
| self.__add_dummy_node_labels(self._graphs) | |||
| self._add_dummy_node_labels(self._graphs) | |||
| # for WL subtree kernel | |||
| if self.__base_kernel == 'subtree': | |||
| gram_matrix = self.__subtree_kernel_do(self._graphs) | |||
| if self._base_kernel == 'subtree': | |||
| gram_matrix = self._subtree_kernel_do(self._graphs) | |||
| # for WL shortest path kernel | |||
| elif self.__base_kernel == 'sp': | |||
| gram_matrix = self.__sp_kernel_do(self._graphs) | |||
| elif self._base_kernel == 'sp': | |||
| gram_matrix = self._sp_kernel_do(self._graphs) | |||
| # for WL edge kernel | |||
| elif self.__base_kernel == 'edge': | |||
| gram_matrix = self.__edge_kernel_do(self._graphs) | |||
| elif self._base_kernel == 'edge': | |||
| gram_matrix = self._edge_kernel_do(self._graphs) | |||
| # for user defined base kernel | |||
| else: | |||
| gram_matrix = self.__user_kernel_do(self._graphs) | |||
| gram_matrix = self._user_kernel_do(self._graphs) | |||
| return gram_matrix | |||
| @@ -70,23 +70,23 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| import warnings | |||
| warnings.warn('A part of the computation is parallelized.') | |||
| self.__add_dummy_node_labels(g_list + [g1]) | |||
| self._add_dummy_node_labels(g_list + [g1]) | |||
| # for WL subtree kernel | |||
| if self.__base_kernel == 'subtree': | |||
| gram_matrix = self.__subtree_kernel_do(g_list + [g1]) | |||
| if self._base_kernel == 'subtree': | |||
| gram_matrix = self._subtree_kernel_do(g_list + [g1]) | |||
| # for WL shortest path kernel | |||
| elif self.__base_kernel == 'sp': | |||
| gram_matrix = self.__sp_kernel_do(g_list + [g1]) | |||
| elif self._base_kernel == 'sp': | |||
| gram_matrix = self._sp_kernel_do(g_list + [g1]) | |||
| # for WL edge kernel | |||
| elif self.__base_kernel == 'edge': | |||
| gram_matrix = self.__edge_kernel_do(g_list + [g1]) | |||
| elif self._base_kernel == 'edge': | |||
| gram_matrix = self._edge_kernel_do(g_list + [g1]) | |||
| # for user defined base kernel | |||
| else: | |||
| gram_matrix = self.__user_kernel_do(g_list + [g1]) | |||
| gram_matrix = self._user_kernel_do(g_list + [g1]) | |||
| return list(gram_matrix[-1][0:-1]) | |||
| @@ -103,34 +103,34 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| def _compute_single_kernel_series(self, g1, g2): # @todo: this should be better. | |||
| self.__add_dummy_node_labels([g1] + [g2]) | |||
| self._add_dummy_node_labels([g1] + [g2]) | |||
| # for WL subtree kernel | |||
| if self.__base_kernel == 'subtree': | |||
| gram_matrix = self.__subtree_kernel_do([g1] + [g2]) | |||
| if self._base_kernel == 'subtree': | |||
| gram_matrix = self._subtree_kernel_do([g1] + [g2]) | |||
| # for WL shortest path kernel | |||
| elif self.__base_kernel == 'sp': | |||
| gram_matrix = self.__sp_kernel_do([g1] + [g2]) | |||
| elif self._base_kernel == 'sp': | |||
| gram_matrix = self._sp_kernel_do([g1] + [g2]) | |||
| # for WL edge kernel | |||
| elif self.__base_kernel == 'edge': | |||
| gram_matrix = self.__edge_kernel_do([g1] + [g2]) | |||
| elif self._base_kernel == 'edge': | |||
| gram_matrix = self._edge_kernel_do([g1] + [g2]) | |||
| # for user defined base kernel | |||
| else: | |||
| gram_matrix = self.__user_kernel_do([g1] + [g2]) | |||
| gram_matrix = self._user_kernel_do([g1] + [g2]) | |||
| return gram_matrix[0][1] | |||
| def __subtree_kernel_do(self, Gn): | |||
| """Calculate Weisfeiler-Lehman kernels between graphs. | |||
| def _subtree_kernel_do(self, Gn): | |||
| """Compute Weisfeiler-Lehman kernels between graphs. | |||
| Parameters | |||
| ---------- | |||
| Gn : List of NetworkX graph | |||
| List of graphs between which the kernels are calculated. | |||
| List of graphs between which the kernels are computed. | |||
| Return | |||
| ------ | |||
| @@ -146,17 +146,17 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| for G in Gn: | |||
| # set all labels into a tuple. | |||
| for nd, attrs in G.nodes(data=True): # @todo: there may be a better way. | |||
| G.nodes[nd]['label_tuple'] = tuple(attrs[name] for name in self.__node_labels) | |||
| G.nodes[nd]['label_tuple'] = tuple(attrs[name] for name in self._node_labels) | |||
| # get the set of original labels | |||
| labels_ori = list(nx.get_node_attributes(G, 'label_tuple').values()) | |||
| # number of occurence of each label in G | |||
| all_num_of_each_label.append(dict(Counter(labels_ori))) | |||
| # calculate subtree kernel with the 0th iteration and add it to the final kernel. | |||
| self.__compute_gram_matrix(gram_matrix, all_num_of_each_label, Gn) | |||
| # Compute subtree kernel with the 0th iteration and add it to the final kernel. | |||
| self._compute_gram_itr(gram_matrix, all_num_of_each_label, Gn) | |||
| # iterate each height | |||
| for h in range(1, self.__height + 1): | |||
| for h in range(1, self._height + 1): | |||
| all_set_compressed = {} # a dictionary mapping original labels to new ones in all graphs in this iteration | |||
| num_of_labels_occured = 0 # number of the set of letters that occur before as node labels at least once in all graphs | |||
| # all_labels_ori = set() # all unique orignal labels in all graphs in this iteration | |||
| @@ -198,13 +198,13 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| # all_labels_ori.update(labels_comp) | |||
| all_num_of_each_label.append(dict(Counter(labels_comp))) | |||
| # calculate subtree kernel with h iterations and add it to the final kernel | |||
| self.__compute_gram_matrix(gram_matrix, all_num_of_each_label, Gn) | |||
| # Compute subtree kernel with h iterations and add it to the final kernel | |||
| self._compute_gram_itr(gram_matrix, all_num_of_each_label, Gn) | |||
| return gram_matrix | |||
| def __compute_gram_matrix(self, gram_matrix, all_num_of_each_label, Gn): | |||
| def _compute_gram_itr(self, gram_matrix, all_num_of_each_label, Gn): | |||
| """Compute Gram matrix using the base kernel. | |||
| """ | |||
| if self._parallel == 'imap_unordered': | |||
| @@ -218,12 +218,12 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| elif self._parallel is None: | |||
| for i in range(len(gram_matrix)): | |||
| for j in range(i, len(gram_matrix)): | |||
| gram_matrix[i][j] = self.__compute_subtree_kernel(all_num_of_each_label[i], | |||
| gram_matrix[i][j] = self._compute_subtree_kernel(all_num_of_each_label[i], | |||
| all_num_of_each_label[j], gram_matrix[i][j]) | |||
| gram_matrix[j][i] = gram_matrix[i][j] | |||
| def __compute_subtree_kernel(self, num_of_each_label1, num_of_each_label2, kernel): | |||
| def _compute_subtree_kernel(self, num_of_each_label1, num_of_each_label2, kernel): | |||
| """Compute the subtree kernel. | |||
| """ | |||
| labels = set(list(num_of_each_label1.keys()) + list(num_of_each_label2.keys())) | |||
| @@ -240,16 +240,16 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| def _wrapper_compute_subtree_kernel(self, gram_matrix, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self.__compute_subtree_kernel(G_alllabels[i], G_alllabels[j], gram_matrix[i][j]) | |||
| return i, j, self._compute_subtree_kernel(G_alllabels[i], G_alllabels[j], gram_matrix[i][j]) | |||
| def _wl_spkernel_do(Gn, node_label, edge_label, height): | |||
| """Calculate Weisfeiler-Lehman shortest path kernels between graphs. | |||
| """Compute Weisfeiler-Lehman shortest path kernels between graphs. | |||
| Parameters | |||
| ---------- | |||
| Gn : List of NetworkX graph | |||
| List of graphs between which the kernels are calculated. | |||
| List of graphs between which the kernels are computed. | |||
| node_label : string | |||
| node attribute used as label. | |||
| edge_label : string | |||
| @@ -312,7 +312,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| for node in G.nodes(data = True): | |||
| node[1][node_label] = set_compressed[set_multisets[node[0]]] | |||
| # calculate subtree kernel with h iterations and add it to the final kernel | |||
| # Compute subtree kernel with h iterations and add it to the final kernel | |||
| for i in range(0, len(Gn)): | |||
| for j in range(i, len(Gn)): | |||
| for e1 in Gn[i].edges(data = True): | |||
| @@ -326,12 +326,12 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| def _wl_edgekernel_do(Gn, node_label, edge_label, height): | |||
| """Calculate Weisfeiler-Lehman edge kernels between graphs. | |||
| """Compute Weisfeiler-Lehman edge kernels between graphs. | |||
| Parameters | |||
| ---------- | |||
| Gn : List of NetworkX graph | |||
| List of graphs between which the kernels are calculated. | |||
| List of graphs between which the kernels are computed. | |||
| node_label : string | |||
| node attribute used as label. | |||
| edge_label : string | |||
| @@ -390,7 +390,7 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| for node in G.nodes(data = True): | |||
| node[1][node_label] = set_compressed[set_multisets[node[0]]] | |||
| # calculate subtree kernel with h iterations and add it to the final kernel | |||
| # Compute subtree kernel with h iterations and add it to the final kernel | |||
| for i in range(0, len(Gn)): | |||
| for j in range(i, len(Gn)): | |||
| for e1 in Gn[i].edges(data = True): | |||
| @@ -403,12 +403,12 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| def _wl_userkernel_do(Gn, node_label, edge_label, height, base_kernel): | |||
| """Calculate Weisfeiler-Lehman kernels based on user-defined kernel between graphs. | |||
| """Compute Weisfeiler-Lehman kernels based on user-defined kernel between graphs. | |||
| Parameters | |||
| ---------- | |||
| Gn : List of NetworkX graph | |||
| List of graphs between which the kernels are calculated. | |||
| List of graphs between which the kernels are computed. | |||
| node_label : string | |||
| node attribute used as label. | |||
| edge_label : string | |||
| @@ -463,17 +463,17 @@ class WeisfeilerLehman(GraphKernel): # @todo: total parallelization and sp, edge | |||
| for node in G.nodes(data = True): | |||
| node[1][node_label] = set_compressed[set_multisets[node[0]]] | |||
| # calculate kernel with h iterations and add it to the final kernel | |||
| # Compute kernel with h iterations and add it to the final kernel | |||
| gram_matrix += base_kernel(Gn, node_label, edge_label) | |||
| return gram_matrix | |||
| def __add_dummy_node_labels(self, Gn): | |||
| if len(self.__node_labels) == 0 or (len(self.__node_labels) == 1 and self.__node_labels[0] == SpecialLabel.DUMMY): | |||
| def _add_dummy_node_labels(self, Gn): | |||
| if len(self._node_labels) == 0 or (len(self._node_labels) == 1 and self._node_labels[0] == SpecialLabel.DUMMY): | |||
| for i in range(len(Gn)): | |||
| nx.set_node_attributes(Gn[i], '0', SpecialLabel.DUMMY) | |||
| self.__node_labels = [SpecialLabel.DUMMY] | |||
| self._node_labels = [SpecialLabel.DUMMY] | |||
| class WLSubtree(WeisfeilerLehman): | |||