| @@ -0,0 +1,419 @@ | |||||
| """ Obtain all kinds of attributes of a graph dataset. | |||||
| This file is for old version of graphkit-learn. | |||||
| """ | |||||
| def get_dataset_attributes(Gn, | |||||
| target=None, | |||||
| attr_names=[], | |||||
| node_label=None, | |||||
| edge_label=None): | |||||
| """Returns the structure and property information of the graph dataset Gn. | |||||
| Parameters | |||||
| ---------- | |||||
| Gn : List of NetworkX graph | |||||
| List of graphs whose information will be returned. | |||||
| target : list | |||||
| The list of classification targets corresponding to Gn. Only works for | |||||
| classification problems. | |||||
| attr_names : list | |||||
| List of strings which indicate which informations will be returned. The | |||||
| possible choices includes: | |||||
| 'substructures': sub-structures Gn contains, including 'linear', 'non | |||||
| linear' and 'cyclic'. | |||||
| 'node_labeled': whether vertices have symbolic labels. | |||||
| 'edge_labeled': whether egdes have symbolic labels. | |||||
| 'is_directed': whether graphs in Gn are directed. | |||||
| 'dataset_size': number of graphs in Gn. | |||||
| 'ave_node_num': average number of vertices of graphs in Gn. | |||||
| 'min_node_num': minimum number of vertices of graphs in Gn. | |||||
| 'max_node_num': maximum number of vertices of graphs in Gn. | |||||
| 'ave_edge_num': average number of edges of graphs in Gn. | |||||
| 'min_edge_num': minimum number of edges of graphs in Gn. | |||||
| 'max_edge_num': maximum number of edges of graphs in Gn. | |||||
| 'ave_node_degree': average vertex degree of graphs in Gn. | |||||
| 'min_node_degree': minimum vertex degree of graphs in Gn. | |||||
| 'max_node_degree': maximum vertex degree of graphs in Gn. | |||||
| 'ave_fill_factor': average fill factor (number_of_edges / | |||||
| (number_of_nodes ** 2)) of graphs in Gn. | |||||
| 'min_fill_factor': minimum fill factor of graphs in Gn. | |||||
| 'max_fill_factor': maximum fill factor of graphs in Gn. | |||||
| 'node_label_num': number of symbolic vertex labels. | |||||
| 'edge_label_num': number of symbolic edge labels. | |||||
| 'node_attr_dim': number of dimensions of non-symbolic vertex labels. | |||||
| Extracted from the 'attributes' attribute of graph nodes. | |||||
| 'edge_attr_dim': number of dimensions of non-symbolic edge labels. | |||||
| Extracted from the 'attributes' attribute of graph edges. | |||||
| 'class_number': number of classes. Only available for classification problems. | |||||
| node_label : string | |||||
| Node attribute used as label. The default node label is atom. Mandatory | |||||
| when 'node_labeled' or 'node_label_num' is required. | |||||
| edge_label : string | |||||
| Edge attribute used as label. The default edge label is bond_type. | |||||
| Mandatory when 'edge_labeled' or 'edge_label_num' is required. | |||||
| Return | |||||
| ------ | |||||
| attrs : dict | |||||
| Value for each property. | |||||
| """ | |||||
| import networkx as nx | |||||
| import numpy as np | |||||
| attrs = {} | |||||
| def get_dataset_size(Gn): | |||||
| return len(Gn) | |||||
| def get_all_node_num(Gn): | |||||
| return [nx.number_of_nodes(G) for G in Gn] | |||||
| def get_ave_node_num(all_node_num): | |||||
| return np.mean(all_node_num) | |||||
| def get_min_node_num(all_node_num): | |||||
| return np.amin(all_node_num) | |||||
| def get_max_node_num(all_node_num): | |||||
| return np.amax(all_node_num) | |||||
| def get_all_edge_num(Gn): | |||||
| return [nx.number_of_edges(G) for G in Gn] | |||||
| def get_ave_edge_num(all_edge_num): | |||||
| return np.mean(all_edge_num) | |||||
| def get_min_edge_num(all_edge_num): | |||||
| return np.amin(all_edge_num) | |||||
| def get_max_edge_num(all_edge_num): | |||||
| return np.amax(all_edge_num) | |||||
| def is_node_labeled(Gn): | |||||
| return False if node_label is None else True | |||||
| def get_node_label_num(Gn): | |||||
| nl = set() | |||||
| for G in Gn: | |||||
| nl = nl | set(nx.get_node_attributes(G, node_label).values()) | |||||
| return len(nl) | |||||
| def is_edge_labeled(Gn): | |||||
| return False if edge_label is None else True | |||||
| def get_edge_label_num(Gn): | |||||
| el = set() | |||||
| for G in Gn: | |||||
| el = el | set(nx.get_edge_attributes(G, edge_label).values()) | |||||
| return len(el) | |||||
| def is_directed(Gn): | |||||
| return nx.is_directed(Gn[0]) | |||||
| def get_ave_node_degree(Gn): | |||||
| return np.mean([np.mean(list(dict(G.degree()).values())) for G in Gn]) | |||||
| def get_max_node_degree(Gn): | |||||
| return np.amax([np.mean(list(dict(G.degree()).values())) for G in Gn]) | |||||
| def get_min_node_degree(Gn): | |||||
| return np.amin([np.mean(list(dict(G.degree()).values())) for G in Gn]) | |||||
| # get fill factor, the number of non-zero entries in the adjacency matrix. | |||||
| def get_ave_fill_factor(Gn): | |||||
| return np.mean([nx.number_of_edges(G) / (nx.number_of_nodes(G) | |||||
| * nx.number_of_nodes(G)) for G in Gn]) | |||||
| def get_max_fill_factor(Gn): | |||||
| return np.amax([nx.number_of_edges(G) / (nx.number_of_nodes(G) | |||||
| * nx.number_of_nodes(G)) for G in Gn]) | |||||
| def get_min_fill_factor(Gn): | |||||
| return np.amin([nx.number_of_edges(G) / (nx.number_of_nodes(G) | |||||
| * nx.number_of_nodes(G)) for G in Gn]) | |||||
| def get_substructures(Gn): | |||||
| subs = set() | |||||
| for G in Gn: | |||||
| degrees = list(dict(G.degree()).values()) | |||||
| if any(i == 2 for i in degrees): | |||||
| subs.add('linear') | |||||
| if np.amax(degrees) >= 3: | |||||
| subs.add('non linear') | |||||
| if 'linear' in subs and 'non linear' in subs: | |||||
| break | |||||
| if is_directed(Gn): | |||||
| for G in Gn: | |||||
| if len(list(nx.find_cycle(G))) > 0: | |||||
| subs.add('cyclic') | |||||
| break | |||||
| # else: | |||||
| # # @todo: this method does not work for big graph with large amount of edges like D&D, try a better way. | |||||
| # upper = np.amin([nx.number_of_edges(G) for G in Gn]) * 2 + 10 | |||||
| # for G in Gn: | |||||
| # if (nx.number_of_edges(G) < upper): | |||||
| # cyc = list(nx.simple_cycles(G.to_directed())) | |||||
| # if any(len(i) > 2 for i in cyc): | |||||
| # subs.add('cyclic') | |||||
| # break | |||||
| # if 'cyclic' not in subs: | |||||
| # for G in Gn: | |||||
| # cyc = list(nx.simple_cycles(G.to_directed())) | |||||
| # if any(len(i) > 2 for i in cyc): | |||||
| # subs.add('cyclic') | |||||
| # break | |||||
| return subs | |||||
| def get_class_num(target): | |||||
| return len(set(target)) | |||||
| def get_node_attr_dim(Gn): | |||||
| for G in Gn: | |||||
| for n in G.nodes(data=True): | |||||
| if 'attributes' in n[1]: | |||||
| return len(n[1]['attributes']) | |||||
| return 0 | |||||
| def get_edge_attr_dim(Gn): | |||||
| for G in Gn: | |||||
| if nx.number_of_edges(G) > 0: | |||||
| for e in G.edges(data=True): | |||||
| if 'attributes' in e[2]: | |||||
| return len(e[2]['attributes']) | |||||
| return 0 | |||||
| if attr_names == []: | |||||
| attr_names = [ | |||||
| 'substructures', | |||||
| 'node_labeled', | |||||
| 'edge_labeled', | |||||
| 'is_directed', | |||||
| 'dataset_size', | |||||
| 'ave_node_num', | |||||
| 'min_node_num', | |||||
| 'max_node_num', | |||||
| 'ave_edge_num', | |||||
| 'min_edge_num', | |||||
| 'max_edge_num', | |||||
| 'ave_node_degree', | |||||
| 'min_node_degree', | |||||
| 'max_node_degree', | |||||
| 'ave_fill_factor', | |||||
| 'min_fill_factor', | |||||
| 'max_fill_factor', | |||||
| 'node_label_num', | |||||
| 'edge_label_num', | |||||
| 'node_attr_dim', | |||||
| 'edge_attr_dim', | |||||
| 'class_number', | |||||
| ] | |||||
| # dataset size | |||||
| if 'dataset_size' in attr_names: | |||||
| attrs.update({'dataset_size': get_dataset_size(Gn)}) | |||||
| # graph node number | |||||
| if any(i in attr_names | |||||
| for i in ['ave_node_num', 'min_node_num', 'max_node_num']): | |||||
| all_node_num = get_all_node_num(Gn) | |||||
| if 'ave_node_num' in attr_names: | |||||
| attrs.update({'ave_node_num': get_ave_node_num(all_node_num)}) | |||||
| if 'min_node_num' in attr_names: | |||||
| attrs.update({'min_node_num': get_min_node_num(all_node_num)}) | |||||
| if 'max_node_num' in attr_names: | |||||
| attrs.update({'max_node_num': get_max_node_num(all_node_num)}) | |||||
| # graph edge number | |||||
| if any(i in attr_names for i in | |||||
| ['ave_edge_num', 'min_edge_num', 'max_edge_num']): | |||||
| all_edge_num = get_all_edge_num(Gn) | |||||
| if 'ave_edge_num' in attr_names: | |||||
| attrs.update({'ave_edge_num': get_ave_edge_num(all_edge_num)}) | |||||
| if 'max_edge_num' in attr_names: | |||||
| attrs.update({'max_edge_num': get_max_edge_num(all_edge_num)}) | |||||
| if 'min_edge_num' in attr_names: | |||||
| attrs.update({'min_edge_num': get_min_edge_num(all_edge_num)}) | |||||
| # label number | |||||
| if any(i in attr_names for i in ['node_labeled', 'node_label_num']): | |||||
| is_nl = is_node_labeled(Gn) | |||||
| node_label_num = get_node_label_num(Gn) | |||||
| if 'node_labeled' in attr_names: | |||||
| # graphs are considered node unlabeled if all nodes have the same label. | |||||
| attrs.update({'node_labeled': is_nl if node_label_num > 1 else False}) | |||||
| if 'node_label_num' in attr_names: | |||||
| attrs.update({'node_label_num': node_label_num}) | |||||
| if any(i in attr_names for i in ['edge_labeled', 'edge_label_num']): | |||||
| is_el = is_edge_labeled(Gn) | |||||
| edge_label_num = get_edge_label_num(Gn) | |||||
| if 'edge_labeled' in attr_names: | |||||
| # graphs are considered edge unlabeled if all edges have the same label. | |||||
| attrs.update({'edge_labeled': is_el if edge_label_num > 1 else False}) | |||||
| if 'edge_label_num' in attr_names: | |||||
| attrs.update({'edge_label_num': edge_label_num}) | |||||
| if 'is_directed' in attr_names: | |||||
| attrs.update({'is_directed': is_directed(Gn)}) | |||||
| if 'ave_node_degree' in attr_names: | |||||
| attrs.update({'ave_node_degree': get_ave_node_degree(Gn)}) | |||||
| if 'max_node_degree' in attr_names: | |||||
| attrs.update({'max_node_degree': get_max_node_degree(Gn)}) | |||||
| if 'min_node_degree' in attr_names: | |||||
| attrs.update({'min_node_degree': get_min_node_degree(Gn)}) | |||||
| if 'ave_fill_factor' in attr_names: | |||||
| attrs.update({'ave_fill_factor': get_ave_fill_factor(Gn)}) | |||||
| if 'max_fill_factor' in attr_names: | |||||
| attrs.update({'max_fill_factor': get_max_fill_factor(Gn)}) | |||||
| if 'min_fill_factor' in attr_names: | |||||
| attrs.update({'min_fill_factor': get_min_fill_factor(Gn)}) | |||||
| if 'substructures' in attr_names: | |||||
| attrs.update({'substructures': get_substructures(Gn)}) | |||||
| if 'class_number' in attr_names: | |||||
| attrs.update({'class_number': get_class_num(target)}) | |||||
| if 'node_attr_dim' in attr_names: | |||||
| attrs['node_attr_dim'] = get_node_attr_dim(Gn) | |||||
| if 'edge_attr_dim' in attr_names: | |||||
| attrs['edge_attr_dim'] = get_edge_attr_dim(Gn) | |||||
| from collections import OrderedDict | |||||
| return OrderedDict( | |||||
| sorted(attrs.items(), key=lambda i: attr_names.index(i[0]))) | |||||
| def load_predefined_dataset(ds_name): | |||||
| import os | |||||
| from gklearn.utils.graphfiles import loadDataset | |||||
| current_path = os.path.dirname(os.path.realpath(__file__)) + '/' | |||||
| if ds_name == 'Acyclic': | |||||
| ds_file = current_path + '../../datasets/Acyclic/dataset_bps.ds' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'AIDS': | |||||
| ds_file = current_path + '../../datasets/AIDS/AIDS_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'Alkane': | |||||
| ds_file = current_path + '../../datasets/Alkane/dataset.ds' | |||||
| fn_targets = current_path + '../../datasets/Alkane/dataset_boiling_point_names.txt' | |||||
| graphs, targets = loadDataset(ds_file, filename_y=fn_targets) | |||||
| elif ds_name == 'COIL-DEL': | |||||
| ds_file = current_path + '../../datasets/COIL-DEL/COIL-DEL_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'COIL-RAG': | |||||
| ds_file = current_path + '../../datasets/COIL-RAG/COIL-RAG_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'COLORS-3': | |||||
| ds_file = current_path + '../../datasets/COLORS-3/COLORS-3_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'Cuneiform': | |||||
| ds_file = current_path + '../../datasets/Cuneiform/Cuneiform_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'DD': | |||||
| ds_file = current_path + '../../datasets/DD/DD_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'ENZYMES': | |||||
| ds_file = current_path + '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'Fingerprint': | |||||
| ds_file = current_path + '../../datasets/Fingerprint/Fingerprint_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'FRANKENSTEIN': | |||||
| ds_file = current_path + '../../datasets/FRANKENSTEIN/FRANKENSTEIN_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'Letter-high': # node non-symb | |||||
| ds_file = current_path + '../../datasets/Letter-high/Letter-high_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'Letter-low': # node non-symb | |||||
| ds_file = current_path + '../../datasets/Letter-low/Letter-low_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'Letter-med': # node non-symb | |||||
| ds_file = current_path + '../../datasets/Letter-med/Letter-med_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'MAO': | |||||
| ds_file = current_path + '../../datasets/MAO/dataset.ds' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'Monoterpenoides': | |||||
| ds_file = current_path + '../../datasets/Monoterpenoides/dataset_10+.ds' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'MUTAG': | |||||
| ds_file = current_path + '../../datasets/MUTAG/MUTAG_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'NCI1': | |||||
| ds_file = current_path + '../../datasets/NCI1/NCI1_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'NCI109': | |||||
| ds_file = current_path + '../../datasets/NCI109/NCI109_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'PAH': | |||||
| ds_file = current_path + '../../datasets/PAH/dataset.ds' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'SYNTHETIC': | |||||
| pass | |||||
| elif ds_name == 'SYNTHETICnew': | |||||
| ds_file = current_path + '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt' | |||||
| graphs, targets = loadDataset(ds_file) | |||||
| elif ds_name == 'Synthie': | |||||
| pass | |||||
| else: | |||||
| raise Exception('The dataset name "', ds_name, '" is not pre-defined.') | |||||
| return graphs, targets | |||||