| @@ -0,0 +1,293 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Tue Aug 18 11:21:31 2020 | |||
| @author: ljia | |||
| @references: | |||
| [1] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: | |||
| Hardness results and efficient alternatives. Learning Theory and Kernel | |||
| Machines, pages 129–143, 2003. | |||
| """ | |||
| import sys | |||
| from tqdm import tqdm | |||
| import numpy as np | |||
| import networkx as nx | |||
| from gklearn.utils import SpecialLabel | |||
| from gklearn.utils.parallel import parallel_gm, parallel_me | |||
| from gklearn.utils.utils import direct_product_graph | |||
| from gklearn.kernels import GraphKernel | |||
| class CommonWalk(GraphKernel): | |||
| def __init__(self, **kwargs): | |||
| GraphKernel.__init__(self) | |||
| self.__node_labels = kwargs.get('node_labels', []) | |||
| self.__edge_labels = kwargs.get('edge_labels', []) | |||
| self.__weight = kwargs.get('weight', 1) | |||
| self.__compute_method = kwargs.get('compute_method', None) | |||
| self.__ds_infos = kwargs.get('ds_infos', {}) | |||
| self.__compute_method = self.__compute_method.lower() | |||
| def _compute_gm_series(self): | |||
| self.__check_graphs(self._graphs) | |||
| self.__add_dummy_labels(self._graphs) | |||
| if not self.__ds_infos['directed']: # convert | |||
| self._graphs = [G.to_directed() for G in self._graphs] | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| from itertools import combinations_with_replacement | |||
| itr = combinations_with_replacement(range(0, len(self._graphs)), 2) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(itr, desc='calculating kernels', file=sys.stdout) | |||
| else: | |||
| iterator = itr | |||
| # direct product graph method - exponential | |||
| if self.__compute_method == 'exp': | |||
| for i, j in iterator: | |||
| kernel = self.__kernel_do_exp(self._graphs[i], self._graphs[j], self.__weight) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel | |||
| # direct product graph method - geometric | |||
| elif self.__compute_method == 'geo': | |||
| for i, j in iterator: | |||
| kernel = self.__kernel_do_geo(self._graphs[i], self._graphs[j], self.__weight) | |||
| gram_matrix[i][j] = kernel | |||
| gram_matrix[j][i] = kernel | |||
| return gram_matrix | |||
| def _compute_gm_imap_unordered(self): | |||
| self.__check_graphs(self._graphs) | |||
| self.__add_dummy_labels(self._graphs) | |||
| if not self.__ds_infos['directed']: # convert | |||
| self._graphs = [G.to_directed() for G in self._graphs] | |||
| # compute Gram matrix. | |||
| gram_matrix = np.zeros((len(self._graphs), len(self._graphs))) | |||
| # def init_worker(gn_toshare): | |||
| # global G_gn | |||
| # G_gn = gn_toshare | |||
| # direct product graph method - exponential | |||
| if self.__compute_method == 'exp': | |||
| do_fun = self._wrapper_kernel_do_exp | |||
| # direct product graph method - geometric | |||
| elif self.__compute_method == 'geo': | |||
| do_fun = self._wrapper_kernel_do_geo | |||
| parallel_gm(do_fun, gram_matrix, self._graphs, init_worker=_init_worker_gm, | |||
| glbv=(self._graphs,), n_jobs=self._n_jobs, verbose=self._verbose) | |||
| return gram_matrix | |||
| def _compute_kernel_list_series(self, g1, g_list): | |||
| self.__check_graphs(g_list + [g1]) | |||
| self.__add_dummy_labels(g_list + [g1]) | |||
| if not self.__ds_infos['directed']: # convert | |||
| g1 = g1.to_directed() | |||
| g_list = [G.to_directed() for G in g_list] | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| if self._verbose >= 2: | |||
| iterator = tqdm(range(len(g_list)), desc='calculating kernels', file=sys.stdout) | |||
| else: | |||
| iterator = range(len(g_list)) | |||
| # direct product graph method - exponential | |||
| if self.__compute_method == 'exp': | |||
| for i in iterator: | |||
| kernel = self.__kernel_do_exp(g1, g_list[i], self.__weight) | |||
| kernel_list[i] = kernel | |||
| # direct product graph method - geometric | |||
| elif self.__compute_method == 'geo': | |||
| for i in iterator: | |||
| kernel = self.__kernel_do_geo(g1, g_list[i], self.__weight) | |||
| kernel_list[i] = kernel | |||
| return kernel_list | |||
| def _compute_kernel_list_imap_unordered(self, g1, g_list): | |||
| self.__check_graphs(g_list + [g1]) | |||
| self.__add_dummy_labels(g_list + [g1]) | |||
| if not self.__ds_infos['directed']: # convert | |||
| g1 = g1.to_directed() | |||
| g_list = [G.to_directed() for G in g_list] | |||
| # compute kernel list. | |||
| kernel_list = [None] * len(g_list) | |||
| # def init_worker(g1_toshare, g_list_toshare): | |||
| # global G_g1, G_g_list | |||
| # G_g1 = g1_toshare | |||
| # G_g_list = g_list_toshare | |||
| # direct product graph method - exponential | |||
| if self.__compute_method == 'exp': | |||
| do_fun = self._wrapper_kernel_list_do_exp | |||
| # direct product graph method - geometric | |||
| elif self.__compute_method == 'geo': | |||
| do_fun = self._wrapper_kernel_list_do_geo | |||
| def func_assign(result, var_to_assign): | |||
| var_to_assign[result[0]] = result[1] | |||
| itr = range(len(g_list)) | |||
| len_itr = len(g_list) | |||
| parallel_me(do_fun, func_assign, kernel_list, itr, len_itr=len_itr, | |||
| init_worker=_init_worker_list, glbv=(g1, g_list), method='imap_unordered', | |||
| n_jobs=self._n_jobs, itr_desc='calculating kernels', verbose=self._verbose) | |||
| return kernel_list | |||
| def _wrapper_kernel_list_do_exp(self, itr): | |||
| return itr, self.__kernel_do_exp(G_g1, G_g_list[itr], self.__weight) | |||
| def _wrapper_kernel_list_do_geo(self, itr): | |||
| return itr, self.__kernel_do_geo(G_g1, G_g_list[itr], self.__weight) | |||
| def _compute_single_kernel_series(self, g1, g2): | |||
| self.__check_graphs([g1] + [g2]) | |||
| self.__add_dummy_labels([g1] + [g2]) | |||
| if not self.__ds_infos['directed']: # convert | |||
| g1 = g1.to_directed() | |||
| g2 = g2.to_directed() | |||
| # direct product graph method - exponential | |||
| if self.__compute_method == 'exp': | |||
| kernel = self.__kernel_do_exp(g1, g2, self.__weight) | |||
| # direct product graph method - geometric | |||
| elif self.__compute_method == 'geo': | |||
| kernel = self.__kernel_do_geo(g1, g2, self.__weight) | |||
| return kernel | |||
| def __kernel_do_exp(self, g1, g2, beta): | |||
| """Calculate common walk graph kernel between 2 graphs using exponential | |||
| series. | |||
| Parameters | |||
| ---------- | |||
| g1, g2 : NetworkX graphs | |||
| Graphs between which the kernels are calculated. | |||
| beta : integer | |||
| Weight. | |||
| Return | |||
| ------ | |||
| kernel : float | |||
| The common walk Kernel between 2 graphs. | |||
| """ | |||
| # get tensor product / direct product | |||
| gp = direct_product_graph(g1, g2, self.__node_labels, self.__edge_labels) | |||
| # return 0 if the direct product graph have no more than 1 node. | |||
| if nx.number_of_nodes(gp) < 2: | |||
| return 0 | |||
| A = nx.adjacency_matrix(gp).todense() | |||
| ew, ev = np.linalg.eig(A) | |||
| # # remove imaginary part if possible. | |||
| # # @todo: don't know if it is necessary. | |||
| # for i in range(len(ew)): | |||
| # if np.abs(ew[i].imag) < 1e-9: | |||
| # ew[i] = ew[i].real | |||
| # for i in range(ev.shape[0]): | |||
| # for j in range(ev.shape[1]): | |||
| # if np.abs(ev[i, j].imag) < 1e-9: | |||
| # ev[i, j] = ev[i, j].real | |||
| D = np.zeros((len(ew), len(ew)), dtype=complex) # @todo: use complex? | |||
| for i in range(len(ew)): | |||
| D[i][i] = np.exp(beta * ew[i]) | |||
| exp_D = ev * D * ev.T | |||
| kernel = exp_D.sum() | |||
| if (kernel.real == 0 and np.abs(kernel.imag) < 1e-9) or np.abs(kernel.imag / kernel.real) < 1e-9: | |||
| kernel = kernel.real | |||
| return kernel | |||
| def _wrapper_kernel_do_exp(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self.__kernel_do_exp(G_gn[i], G_gn[j], self.__weight) | |||
| def __kernel_do_geo(self, g1, g2, gamma): | |||
| """Calculate common walk graph kernel between 2 graphs using geometric | |||
| series. | |||
| Parameters | |||
| ---------- | |||
| g1, g2 : NetworkX graphs | |||
| Graphs between which the kernels are calculated. | |||
| gamma : integer | |||
| Weight. | |||
| Return | |||
| ------ | |||
| kernel : float | |||
| The common walk Kernel between 2 graphs. | |||
| """ | |||
| # get tensor product / direct product | |||
| gp = direct_product_graph(g1, g2, self.__node_labels, self.__edge_labels) | |||
| # return 0 if the direct product graph have no more than 1 node. | |||
| if nx.number_of_nodes(gp) < 2: | |||
| return 0 | |||
| A = nx.adjacency_matrix(gp).todense() | |||
| mat = np.identity(len(A)) - gamma * A | |||
| # try: | |||
| return mat.I.sum() | |||
| # except np.linalg.LinAlgError: | |||
| # return np.nan | |||
| def _wrapper_kernel_do_geo(self, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, self.__kernel_do_geo(G_gn[i], G_gn[j], self.__weight) | |||
| def __check_graphs(self, Gn): | |||
| for g in Gn: | |||
| if nx.number_of_nodes(g) == 1: | |||
| raise Exception('Graphs must contain more than 1 nodes to construct adjacency matrices.') | |||
| def __add_dummy_labels(self, Gn): | |||
| if len(self.__node_labels) == 0 or (len(self.__node_labels) == 1 and self.__node_labels[0] == SpecialLabel.DUMMY): | |||
| for i in range(len(Gn)): | |||
| nx.set_node_attributes(Gn[i], '0', SpecialLabel.DUMMY) | |||
| self.__node_labels = [SpecialLabel.DUMMY] | |||
| if len(self.__edge_labels) == 0 or (len(self.__edge_labels) == 1 and self.__edge_labels[0] == SpecialLabel.DUMMY): | |||
| for i in range(len(Gn)): | |||
| nx.set_edge_attributes(Gn[i], '0', SpecialLabel.DUMMY) | |||
| self.__edge_labels = [SpecialLabel.DUMMY] | |||
| def _init_worker_gm(gn_toshare): | |||
| global G_gn | |||
| G_gn = gn_toshare | |||
| def _init_worker_list(g1_toshare, g_list_toshare): | |||
| global G_g1, G_g_list | |||
| G_g1 = g1_toshare | |||
| G_g_list = g_list_toshare | |||