| @@ -0,0 +1,585 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Thu Dec 19 17:16:23 2019 | |||
| @author: ljia | |||
| """ | |||
| import numpy as np | |||
| from sklearn.manifold import TSNE, Isomap | |||
| import matplotlib.pyplot as plt | |||
| from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes, mark_inset | |||
| from tqdm import tqdm | |||
| from gklearn.utils.graphfiles import loadDataset, loadGXL | |||
| from gklearn.preimage.utils import kernel_distance_matrix, compute_kernel, dis_gstar, get_same_item_indices | |||
| def visualize_graph_dataset(dis_measure, visual_method, draw_figure, | |||
| draw_params={}, dis_mat=None, Gn=None, | |||
| median_set=None): | |||
| def draw_zoomed_axes(Gn_embedded, ax): | |||
| margin = 0.01 | |||
| if dis_measure == 'graph-kernel': | |||
| index = -2 | |||
| elif dis_measure == 'ged': | |||
| index = -1 | |||
| x1 = np.min(Gn_embedded[median_set + [index], 0]) - margin * np.max(Gn_embedded) | |||
| x2 = np.max(Gn_embedded[median_set + [index], 0]) + margin * np.max(Gn_embedded) | |||
| y1 = np.min(Gn_embedded[median_set + [index], 1]) - margin * np.max(Gn_embedded) | |||
| y2 = np.max(Gn_embedded[median_set + [index], 1]) + margin * np.max(Gn_embedded) | |||
| if (x1 < 0 and y1 < 0) or ((x1 > 0 and y1 > 0)): | |||
| loc = 2 | |||
| else: | |||
| loc = 3 | |||
| axins = zoomed_inset_axes(ax, 4, loc=loc) # zoom-factor: 2.5, location: upper-left | |||
| draw_figure(axins, Gn_embedded, dis_measure=dis_measure, | |||
| median_set=median_set, **draw_params) | |||
| axins.set_xlim(x1, x2) # apply the x-limits | |||
| axins.set_ylim(y1, y2) # apply the y-limits | |||
| plt.yticks(visible=False) | |||
| plt.xticks(visible=False) | |||
| loc1 = 1 if loc == 2 else 3 | |||
| mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="0.5") | |||
| if dis_mat is None: | |||
| if dis_measure == 'graph-kernel': | |||
| gkernel = 'untilhpathkernel' | |||
| node_label = 'atom' | |||
| edge_label = 'bond_type' | |||
| dis_mat, _, _, _ = kernel_distance_matrix(Gn, node_label, edge_label, | |||
| Kmatrix=None, gkernel=gkernel) | |||
| elif dis_measure == 'ged': | |||
| pass | |||
| if visual_method == 'tsne': | |||
| Gn_embedded = TSNE(n_components=2, metric='precomputed').fit_transform(dis_mat) | |||
| elif visual_method == 'isomap': | |||
| Gn_embedded = Isomap(n_components=2, metric='precomputed').fit_transform(dis_mat) | |||
| print(Gn_embedded.shape) | |||
| fig, ax = plt.subplots() | |||
| draw_figure(plt, Gn_embedded, dis_measure=dis_measure, legend=True, | |||
| median_set=median_set, **draw_params) | |||
| # draw_zoomed_axes(Gn_embedded, ax) | |||
| plt.show() | |||
| plt.clf() | |||
| return | |||
| def draw_figure(ax, Gn_embedded, dis_measure=None, y_idx=None, legend=False, | |||
| median_set=None): | |||
| from matplotlib import colors as mcolors | |||
| colors = list(dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS)) | |||
| # colors = ['#08306b', '#08519c', '#2171b5', '#4292c6', '#6baed6', '#9ecae1', | |||
| # '#c6dbef', '#deebf7'] | |||
| # for i, values in enumerate(y_idx.values()): | |||
| # for item in values: | |||
| ## ax.scatter(Gn_embedded[item,0], Gn_embedded[item,1], c=colors[i]) # , c='b') | |||
| # ax.scatter(Gn_embedded[item,0], Gn_embedded[item,1], c='b') | |||
| # ax.scatter(Gn_embedded[:,0], Gn_embedded[:,1], c='b') | |||
| h1 = ax.scatter(Gn_embedded[median_set, 0], Gn_embedded[median_set, 1], c='b') | |||
| if dis_measure == 'graph-kernel': | |||
| h2 = ax.scatter(Gn_embedded[-1, 0], Gn_embedded[-1, 1], c='darkorchid') # \psi | |||
| h3 = ax.scatter(Gn_embedded[-2, 0], Gn_embedded[-2, 1], c='gold') # gen median | |||
| h4 = ax.scatter(Gn_embedded[-3, 0], Gn_embedded[-3, 1], c='r') #c='g', marker='+') # set median | |||
| elif dis_measure == 'ged': | |||
| h3 = ax.scatter(Gn_embedded[-1, 0], Gn_embedded[-1, 1], c='gold') # gen median | |||
| h4 = ax.scatter(Gn_embedded[-2, 0], Gn_embedded[-2, 1], c='r') #c='g', marker='+') # set median | |||
| if legend: | |||
| # fig.subplots_adjust(bottom=0.17) | |||
| if dis_measure == 'graph-kernel': | |||
| ax.legend([h1, h2, h3, h4], | |||
| ['k closest graphs', 'true median', 'gen median', 'set median']) | |||
| elif dis_measure == 'ged': | |||
| ax.legend([h1, h3, h4], ['k closest graphs', 'gen median', 'set median']) | |||
| # fig.legend(handles, labels, loc='lower center', ncol=2, frameon=False) # , ncol=5, labelspacing=0.1, handletextpad=0.4, columnspacing=0.6) | |||
| # plt.savefig('symbolic_and_non_comparison_vertical_short.eps', format='eps', dpi=300, transparent=True, | |||
| # bbox_inches='tight') | |||
| # plt.show() | |||
| ############################################################################### | |||
| def visualize_distances_in_kernel(): | |||
| ds = {'name': 'monoterpenoides', | |||
| 'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||
| Gn, y_all = loadDataset(ds['dataset']) | |||
| # Gn = Gn[0:50] | |||
| fname_medians = 'expert.treelet' | |||
| # add set median. | |||
| fname_sm = 'results/test_k_closest_graphs/set_median.' + fname_medians + '.gxl' | |||
| set_median = loadGXL(fname_sm) | |||
| Gn.append(set_median) | |||
| # add generalized median (estimated pre-image.) | |||
| fname_gm = 'results/test_k_closest_graphs/gen_median.' + fname_medians + '.gxl' | |||
| gen_median = loadGXL(fname_gm) | |||
| Gn.append(gen_median) | |||
| # compute distance matrix | |||
| median_set = [22, 29, 54, 74] | |||
| gkernel = 'treeletkernel' | |||
| node_label = 'atom' | |||
| edge_label = 'bond_type' | |||
| Gn_median_set = [Gn[i].copy() for i in median_set] | |||
| Kmatrix_median = compute_kernel(Gn + Gn_median_set, gkernel, node_label, | |||
| edge_label, True) | |||
| Kmatrix = Kmatrix_median[0:len(Gn), 0:len(Gn)] | |||
| dis_mat, _, _, _ = kernel_distance_matrix(Gn, node_label, edge_label, | |||
| Kmatrix=Kmatrix, gkernel=gkernel) | |||
| print('average distances: ', np.mean(np.mean(dis_mat[0:len(Gn)-2, 0:len(Gn)-2]))) | |||
| print('min distances: ', np.min(np.min(dis_mat[0:len(Gn)-2, 0:len(Gn)-2]))) | |||
| print('max distances: ', np.max(np.max(dis_mat[0:len(Gn)-2, 0:len(Gn)-2]))) | |||
| # add distances for the image of exact median \psi. | |||
| dis_k_median_list = [] | |||
| for idx, g in enumerate(Gn): | |||
| dis_k_median_list.append(dis_gstar(idx, range(len(Gn), len(Gn) + len(Gn_median_set)), | |||
| [1 / len(Gn_median_set)] * len(Gn_median_set), | |||
| Kmatrix_median, withterm3=False)) | |||
| dis_mat_median = np.zeros((len(Gn) + 1, len(Gn) + 1)) | |||
| for i in range(len(Gn)): | |||
| for j in range(i, len(Gn)): | |||
| dis_mat_median[i, j] = dis_mat[i, j] | |||
| dis_mat_median[j, i] = dis_mat_median[i, j] | |||
| for i in range(len(Gn)): | |||
| dis_mat_median[i, -1] = dis_k_median_list[i] | |||
| dis_mat_median[-1, i] = dis_k_median_list[i] | |||
| # get indices by classes. | |||
| y_idx = get_same_item_indices(y_all) | |||
| # visualization. | |||
| # visualize_graph_dataset('graph-kernel', 'tsne', Gn) | |||
| # visualize_graph_dataset('graph-kernel', 'tsne', draw_figure, | |||
| # draw_params={'y_idx': y_idx}, dis_mat=dis_mat_median) | |||
| visualize_graph_dataset('graph-kernel', 'tsne', draw_figure, | |||
| draw_params={'y_idx': y_idx}, dis_mat=dis_mat_median, | |||
| median_set=median_set) | |||
| def visualize_distances_in_ged(): | |||
| from gklearn.preimage.fitDistance import compute_geds | |||
| from gklearn.preimage.ged import GED | |||
| ds = {'name': 'monoterpenoides', | |||
| 'dataset': '../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb | |||
| Gn, y_all = loadDataset(ds['dataset']) | |||
| # Gn = Gn[0:50] | |||
| # add set median. | |||
| fname_medians = 'expert.treelet' | |||
| fname_sm = 'preimage/results/test_k_closest_graphs/set_median.' + fname_medians + '.gxl' | |||
| set_median = loadGXL(fname_sm) | |||
| Gn.append(set_median) | |||
| # add generalized median (estimated pre-image.) | |||
| fname_gm = 'preimage/results/test_k_closest_graphs/gen_median.' + fname_medians + '.gxl' | |||
| gen_median = loadGXL(fname_gm) | |||
| Gn.append(gen_median) | |||
| # compute/load ged matrix. | |||
| # # compute. | |||
| ## k = 4 | |||
| ## edit_costs = [0.16229209837639536, 0.06612870523413916, 0.04030113378793905, 0.20723547009415202, 0.3338607220394598, 0.27054392518077297] | |||
| # edit_costs = [3, 3, 1, 3, 3, 1] | |||
| ## edit_costs = [7, 3, 5, 9, 2, 6] | |||
| # algo_options = '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1' | |||
| # params_ged = {'lib': 'gedlibpy', 'cost': 'CONSTANT', 'method': 'IPFP', | |||
| # 'algo_options': algo_options, 'stabilizer': None, | |||
| # 'edit_cost_constant': edit_costs} | |||
| # _, ged_mat, _ = compute_geds(Gn, params_ged=params_ged, parallel=True) | |||
| # np.savez('results/test_k_closest_graphs/ged_mat.' + fname_medians + '.with_medians.gm', ged_mat=ged_mat) | |||
| # load from file. | |||
| gmfile = np.load('results/test_k_closest_graphs/ged_mat.' + fname_medians + '.with_medians.gm.npz') | |||
| ged_mat = gmfile['ged_mat'] | |||
| # # change medians. | |||
| # edit_costs = [3, 3, 1, 3, 3, 1] | |||
| # algo_options = '--threads 8 --initial-solutions 40 --ratio-runs-from-initial-solutions 1' | |||
| # params_ged = {'lib': 'gedlibpy', 'cost': 'CONSTANT', 'method': 'IPFP', | |||
| # 'algo_options': algo_options, 'stabilizer': None, | |||
| # 'edit_cost_constant': edit_costs} | |||
| # for idx in tqdm(range(len(Gn) - 2), desc='computing GEDs', file=sys.stdout): | |||
| # dis, _, _ = GED(Gn[idx], set_median, **params_ged) | |||
| # ged_mat[idx, -2] = dis | |||
| # ged_mat[-2, idx] = dis | |||
| # dis, _, _ = GED(Gn[idx], gen_median, **params_ged) | |||
| # ged_mat[idx, -1] = dis | |||
| # ged_mat[-1, idx] = dis | |||
| # np.savez('results/test_k_closest_graphs/ged_mat.' + fname_medians + '.with_medians.gm', | |||
| # ged_mat=ged_mat) | |||
| # get indices by classes. | |||
| y_idx = get_same_item_indices(y_all) | |||
| # visualization. | |||
| median_set = [22, 29, 54, 74] | |||
| visualize_graph_dataset('ged', 'tsne', draw_figure, | |||
| draw_params={'y_idx': y_idx}, dis_mat=ged_mat, | |||
| median_set=median_set) | |||
| ############################################################################### | |||
| def visualize_distances_in_kernel_monoterpenoides(): | |||
| import os | |||
| ds = {'dataset': '../datasets/monoterpenoides/dataset_10+.ds', | |||
| 'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '../../datasets/monoterpenoides/'} # node/edge symb | |||
| Gn_original, y_all = loadDataset(ds['dataset']) | |||
| # Gn = Gn[0:50] | |||
| # compute distance matrix | |||
| # median_set = [22, 29, 54, 74] | |||
| gkernel = 'treeletkernel' | |||
| fit_method = 'expert' | |||
| node_label = 'atom' | |||
| edge_label = 'bond_type' | |||
| ds_name = 'monoterpenoides' | |||
| fname_medians = fit_method + '.' + gkernel | |||
| dir_output = 'results/xp_monoterpenoides/' | |||
| repeat = 0 | |||
| # get indices by classes. | |||
| y_idx = get_same_item_indices(y_all) | |||
| for i, (y, values) in enumerate(y_idx.items()): | |||
| print('\ny =', y) | |||
| k = len(values) | |||
| Gn = [Gn_original[g].copy() for g in values] | |||
| # add set median. | |||
| fname_sm = dir_output + 'medians/' + str(int(y)) + '/set_median.k' + str(int(k)) \ | |||
| + '.y' + str(int(y)) + '.repeat' + str(repeat) + '.gxl' | |||
| set_median = loadGXL(fname_sm) | |||
| Gn.append(set_median) | |||
| # add generalized median (estimated pre-image.) | |||
| fname_gm = dir_output + 'medians/' + str(int(y)) + '/gen_median.k' + str(int(k)) \ | |||
| + '.y' + str(int(y)) + '.repeat' + str(repeat) + '.gxl' | |||
| gen_median = loadGXL(fname_gm) | |||
| Gn.append(gen_median) | |||
| # compute distance matrix | |||
| median_set = range(0, len(values)) | |||
| Gn_median_set = [Gn[i].copy() for i in median_set] | |||
| Kmatrix_median = compute_kernel(Gn + Gn_median_set, gkernel, node_label, | |||
| edge_label, False) | |||
| Kmatrix = Kmatrix_median[0:len(Gn), 0:len(Gn)] | |||
| dis_mat, _, _, _ = kernel_distance_matrix(Gn, node_label, edge_label, | |||
| Kmatrix=Kmatrix, gkernel=gkernel) | |||
| print('average distances: ', np.mean(np.mean(dis_mat[0:len(Gn)-2, 0:len(Gn)-2]))) | |||
| print('min distances: ', np.min(np.min(dis_mat[0:len(Gn)-2, 0:len(Gn)-2]))) | |||
| print('max distances: ', np.max(np.max(dis_mat[0:len(Gn)-2, 0:len(Gn)-2]))) | |||
| # add distances for the image of exact median \psi. | |||
| dis_k_median_list = [] | |||
| for idx, g in enumerate(Gn): | |||
| dis_k_median_list.append(dis_gstar(idx, range(len(Gn), len(Gn) + len(Gn_median_set)), | |||
| [1 / len(Gn_median_set)] * len(Gn_median_set), | |||
| Kmatrix_median, withterm3=False)) | |||
| dis_mat_median = np.zeros((len(Gn) + 1, len(Gn) + 1)) | |||
| for i in range(len(Gn)): | |||
| for j in range(i, len(Gn)): | |||
| dis_mat_median[i, j] = dis_mat[i, j] | |||
| dis_mat_median[j, i] = dis_mat_median[i, j] | |||
| for i in range(len(Gn)): | |||
| dis_mat_median[i, -1] = dis_k_median_list[i] | |||
| dis_mat_median[-1, i] = dis_k_median_list[i] | |||
| # visualization. | |||
| # visualize_graph_dataset('graph-kernel', 'tsne', Gn) | |||
| # visualize_graph_dataset('graph-kernel', 'tsne', draw_figure, | |||
| # draw_params={'y_idx': y_idx}, dis_mat=dis_mat_median) | |||
| visualize_graph_dataset('graph-kernel', 'tsne', draw_figure, | |||
| draw_params={'y_idx': y_idx}, dis_mat=dis_mat_median, | |||
| median_set=median_set) | |||
| def visualize_distances_in_ged_monoterpenoides(): | |||
| from gklearn.preimage.fitDistance import compute_geds | |||
| from gklearn.preimage.ged import GED | |||
| import os | |||
| ds = {'dataset': '../datasets/monoterpenoides/dataset_10+.ds', | |||
| 'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '../../datasets/monoterpenoides/'} # node/edge symb | |||
| Gn_original, y_all = loadDataset(ds['dataset']) | |||
| # Gn = Gn[0:50] | |||
| # compute distance matrix | |||
| # median_set = [22, 29, 54, 74] | |||
| gkernel = 'treeletkernel' | |||
| fit_method = 'expert' | |||
| ds_name = 'monoterpenoides' | |||
| fname_medians = fit_method + '.' + gkernel | |||
| dir_output = 'results/xp_monoterpenoides/' | |||
| repeat = 0 | |||
| # edit_costs = [0.16229209837639536, 0.06612870523413916, 0.04030113378793905, 0.20723547009415202, 0.3338607220394598, 0.27054392518077297] | |||
| edit_costs = [3, 3, 1, 3, 3, 1] | |||
| # edit_costs = [7, 3, 5, 9, 2, 6] | |||
| # get indices by classes. | |||
| y_idx = get_same_item_indices(y_all) | |||
| for i, (y, values) in enumerate(y_idx.items()): | |||
| print('\ny =', y) | |||
| k = len(values) | |||
| Gn = [Gn_original[g].copy() for g in values] | |||
| # add set median. | |||
| fname_sm = dir_output + 'medians/' + str(int(y)) + '/set_median.k' + str(int(k)) \ | |||
| + '.y' + str(int(y)) + '.repeat' + str(repeat) + '.gxl' | |||
| set_median = loadGXL(fname_sm) | |||
| Gn.append(set_median) | |||
| # add generalized median (estimated pre-image.) | |||
| fname_gm = dir_output + 'medians/' + str(int(y)) + '/gen_median.k' + str(int(k)) \ | |||
| + '.y' + str(int(y)) + '.repeat' + str(repeat) + '.gxl' | |||
| gen_median = loadGXL(fname_gm) | |||
| Gn.append(gen_median) | |||
| # compute/load ged matrix. | |||
| # compute. | |||
| algo_options = '--threads 1 --initial-solutions 40 --ratio-runs-from-initial-solutions 1' | |||
| params_ged = {'dataset': ds_name, 'lib': 'gedlibpy', 'cost': 'CONSTANT', | |||
| 'method': 'IPFP', 'algo_options': algo_options, | |||
| 'stabilizer': None, 'edit_cost_constant': edit_costs} | |||
| _, ged_mat, _ = compute_geds(Gn, params_ged=params_ged, parallel=True) | |||
| np.savez(dir_output + 'ged_mat.' + fname_medians + '.y' + str(int(y)) \ | |||
| + '.with_medians.gm', ged_mat=ged_mat) | |||
| # # load from file. | |||
| # gmfile = np.load('dir_output + 'ged_mat.' + fname_medians + '.y' + str(int(y)) + '.with_medians.gm.npz') | |||
| # ged_mat = gmfile['ged_mat'] | |||
| # # change medians. | |||
| # algo_options = '--threads 1 --initial-solutions 40 --ratio-runs-from-initial-solutions 1' | |||
| # params_ged = {'lib': 'gedlibpy', 'cost': 'CONSTANT', 'method': 'IPFP', | |||
| # 'algo_options': algo_options, 'stabilizer': None, | |||
| # 'edit_cost_constant': edit_costs} | |||
| # for idx in tqdm(range(len(Gn) - 2), desc='computing GEDs', file=sys.stdout): | |||
| # dis, _, _ = GED(Gn[idx], set_median, **params_ged) | |||
| # ged_mat[idx, -2] = dis | |||
| # ged_mat[-2, idx] = dis | |||
| # dis, _, _ = GED(Gn[idx], gen_median, **params_ged) | |||
| # ged_mat[idx, -1] = dis | |||
| # ged_mat[-1, idx] = dis | |||
| # np.savez(dir_output + 'ged_mat.' + fname_medians + '.y' + str(int(y)) + '.with_medians.gm', | |||
| # ged_mat=ged_mat) | |||
| # visualization. | |||
| median_set = range(0, len(values)) | |||
| visualize_graph_dataset('ged', 'tsne', draw_figure, | |||
| draw_params={'y_idx': y_idx}, dis_mat=ged_mat, | |||
| median_set=median_set) | |||
| ############################################################################### | |||
| def visualize_distances_in_kernel_letter_h(): | |||
| ds = {'dataset': 'cpp_ext/data/collections/Letter.xml', | |||
| 'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/data/datasets/Letter/HIGH/'} # node/edge symb | |||
| Gn_original, y_all = loadDataset(ds['dataset'], extra_params=ds['graph_dir']) | |||
| # Gn = Gn[0:50] | |||
| # compute distance matrix | |||
| # median_set = [22, 29, 54, 74] | |||
| gkernel = 'structuralspkernel' | |||
| fit_method = 'expert' | |||
| node_label = None | |||
| edge_label = None | |||
| ds_name = 'letter-h' | |||
| fname_medians = fit_method + '.' + gkernel | |||
| dir_output = 'results/xp_letter_h/' | |||
| k = 150 | |||
| repeat = 0 | |||
| # get indices by classes. | |||
| y_idx = get_same_item_indices(y_all) | |||
| for i, (y, values) in enumerate(y_idx.items()): | |||
| print('\ny =', y) | |||
| Gn = [Gn_original[g].copy() for g in values] | |||
| # add set median. | |||
| fname_sm = dir_output + 'medians/' + y + '/set_median.k' + str(int(k)) \ | |||
| + '.y' + y + '.repeat' + str(repeat) + '.gxl' | |||
| set_median = loadGXL(fname_sm) | |||
| Gn.append(set_median) | |||
| # add generalized median (estimated pre-image.) | |||
| fname_gm = dir_output + 'medians/' + y + '/gen_median.k' + str(int(k)) \ | |||
| + '.y' + y + '.repeat' + str(repeat) + '.gxl' | |||
| gen_median = loadGXL(fname_gm) | |||
| Gn.append(gen_median) | |||
| # compute distance matrix | |||
| median_set = range(0, len(values)) | |||
| Gn_median_set = [Gn[i].copy() for i in median_set] | |||
| Kmatrix_median = compute_kernel(Gn + Gn_median_set, gkernel, node_label, | |||
| edge_label, False) | |||
| Kmatrix = Kmatrix_median[0:len(Gn), 0:len(Gn)] | |||
| dis_mat, _, _, _ = kernel_distance_matrix(Gn, node_label, edge_label, | |||
| Kmatrix=Kmatrix, gkernel=gkernel) | |||
| print('average distances: ', np.mean(np.mean(dis_mat[0:len(Gn)-2, 0:len(Gn)-2]))) | |||
| print('min distances: ', np.min(np.min(dis_mat[0:len(Gn)-2, 0:len(Gn)-2]))) | |||
| print('max distances: ', np.max(np.max(dis_mat[0:len(Gn)-2, 0:len(Gn)-2]))) | |||
| # add distances for the image of exact median \psi. | |||
| dis_k_median_list = [] | |||
| for idx, g in enumerate(Gn): | |||
| dis_k_median_list.append(dis_gstar(idx, range(len(Gn), len(Gn) + len(Gn_median_set)), | |||
| [1 / len(Gn_median_set)] * len(Gn_median_set), | |||
| Kmatrix_median, withterm3=False)) | |||
| dis_mat_median = np.zeros((len(Gn) + 1, len(Gn) + 1)) | |||
| for i in range(len(Gn)): | |||
| for j in range(i, len(Gn)): | |||
| dis_mat_median[i, j] = dis_mat[i, j] | |||
| dis_mat_median[j, i] = dis_mat_median[i, j] | |||
| for i in range(len(Gn)): | |||
| dis_mat_median[i, -1] = dis_k_median_list[i] | |||
| dis_mat_median[-1, i] = dis_k_median_list[i] | |||
| # visualization. | |||
| # visualize_graph_dataset('graph-kernel', 'tsne', Gn) | |||
| # visualize_graph_dataset('graph-kernel', 'tsne', draw_figure, | |||
| # draw_params={'y_idx': y_idx}, dis_mat=dis_mat_median) | |||
| visualize_graph_dataset('graph-kernel', 'tsne', draw_figure, | |||
| draw_params={'y_idx': y_idx}, dis_mat=dis_mat_median, | |||
| median_set=median_set) | |||
| def visualize_distances_in_ged_letter_h(): | |||
| from fitDistance import compute_geds | |||
| from preimage.test_k_closest_graphs import reform_attributes | |||
| ds = {'dataset': 'cpp_ext/data/collections/Letter.xml', | |||
| 'graph_dir': os.path.dirname(os.path.realpath(__file__)) + '/cpp_ext/data/datasets/Letter/HIGH/'} # node/edge symb | |||
| Gn_original, y_all = loadDataset(ds['dataset'], extra_params=ds['graph_dir']) | |||
| # Gn = Gn[0:50] | |||
| # compute distance matrix | |||
| # median_set = [22, 29, 54, 74] | |||
| gkernel = 'structuralspkernel' | |||
| fit_method = 'expert' | |||
| ds_name = 'letter-h' | |||
| fname_medians = fit_method + '.' + gkernel | |||
| dir_output = 'results/xp_letter_h/' | |||
| k = 150 | |||
| repeat = 0 | |||
| # edit_costs = [0.16229209837639536, 0.06612870523413916, 0.04030113378793905, 0.20723547009415202, 0.3338607220394598, 0.27054392518077297] | |||
| edit_costs = [3, 3, 1, 3, 3, 1] | |||
| # edit_costs = [7, 3, 5, 9, 2, 6] | |||
| # get indices by classes. | |||
| y_idx = get_same_item_indices(y_all) | |||
| for i, (y, values) in enumerate(y_idx.items()): | |||
| print('\ny =', y) | |||
| Gn = [Gn_original[g].copy() for g in values] | |||
| # add set median. | |||
| fname_sm = dir_output + 'medians/' + y + '/set_median.k' + str(int(k)) \ | |||
| + '.y' + y + '.repeat' + str(repeat) + '.gxl' | |||
| set_median = loadGXL(fname_sm) | |||
| Gn.append(set_median) | |||
| # add generalized median (estimated pre-image.) | |||
| fname_gm = dir_output + 'medians/' + y + '/gen_median.k' + str(int(k)) \ | |||
| + '.y' + y + '.repeat' + str(repeat) + '.gxl' | |||
| gen_median = loadGXL(fname_gm) | |||
| Gn.append(gen_median) | |||
| # compute/load ged matrix. | |||
| # compute. | |||
| algo_options = '--threads 1 --initial-solutions 40 --ratio-runs-from-initial-solutions 1' | |||
| params_ged = {'dataset': 'Letter', 'lib': 'gedlibpy', 'cost': 'CONSTANT', | |||
| 'method': 'IPFP', 'algo_options': algo_options, | |||
| 'stabilizer': None, 'edit_cost_constant': edit_costs} | |||
| for g in Gn: | |||
| reform_attributes(g) | |||
| _, ged_mat, _ = compute_geds(Gn, params_ged=params_ged, parallel=True) | |||
| np.savez(dir_output + 'ged_mat.' + fname_medians + '.y' + y + '.with_medians.gm', ged_mat=ged_mat) | |||
| # # load from file. | |||
| # gmfile = np.load('dir_output + 'ged_mat.' + fname_medians + '.y' + y + '.with_medians.gm.npz') | |||
| # ged_mat = gmfile['ged_mat'] | |||
| # # change medians. | |||
| # algo_options = '--threads 1 --initial-solutions 40 --ratio-runs-from-initial-solutions 1' | |||
| # params_ged = {'lib': 'gedlibpy', 'cost': 'CONSTANT', 'method': 'IPFP', | |||
| # 'algo_options': algo_options, 'stabilizer': None, | |||
| # 'edit_cost_constant': edit_costs} | |||
| # for idx in tqdm(range(len(Gn) - 2), desc='computing GEDs', file=sys.stdout): | |||
| # dis, _, _ = GED(Gn[idx], set_median, **params_ged) | |||
| # ged_mat[idx, -2] = dis | |||
| # ged_mat[-2, idx] = dis | |||
| # dis, _, _ = GED(Gn[idx], gen_median, **params_ged) | |||
| # ged_mat[idx, -1] = dis | |||
| # ged_mat[-1, idx] = dis | |||
| # np.savez(dir_output + 'ged_mat.' + fname_medians + '.y' + y + '.with_medians.gm', | |||
| # ged_mat=ged_mat) | |||
| # visualization. | |||
| median_set = range(0, len(values)) | |||
| visualize_graph_dataset('ged', 'tsne', draw_figure, | |||
| draw_params={'y_idx': y_idx}, dis_mat=ged_mat, | |||
| median_set=median_set) | |||
| if __name__ == '__main__': | |||
| visualize_distances_in_kernel_letter_h() | |||
| # visualize_distances_in_ged_letter_h() | |||
| # visualize_distances_in_kernel_monoterpenoides() | |||
| # visualize_distances_in_kernel_monoterpenoides() | |||
| # visualize_distances_in_kernel() | |||
| # visualize_distances_in_ged() | |||
| #def draw_figure_dis_k(ax, Gn_embedded, y_idx=None, legend=False): | |||
| # from matplotlib import colors as mcolors | |||
| # colors = list(dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS)) | |||
| ## colors = ['#08306b', '#08519c', '#2171b5', '#4292c6', '#6baed6', '#9ecae1', | |||
| ## '#c6dbef', '#deebf7'] | |||
| # for i, values in enumerate(y_idx.values()): | |||
| # for item in values: | |||
| ## ax.scatter(Gn_embedded[item,0], Gn_embedded[item,1], c=colors[i]) # , c='b') | |||
| # ax.scatter(Gn_embedded[item,0], Gn_embedded[item,1], c='b') | |||
| # h1 = ax.scatter(Gn_embedded[[12, 13, 22, 29], 0], Gn_embedded[[12, 13, 22, 29], 1], c='r') | |||
| # h2 = ax.scatter(Gn_embedded[-1, 0], Gn_embedded[-1, 1], c='darkorchid') # \psi | |||
| # h3 = ax.scatter(Gn_embedded[-2, 0], Gn_embedded[-2, 1], c='gold') # gen median | |||
| # h4 = ax.scatter(Gn_embedded[-3, 0], Gn_embedded[-3, 1], c='r', marker='+') # set median | |||
| # if legend: | |||
| ## fig.subplots_adjust(bottom=0.17) | |||
| # ax.legend([h1, h2, h3, h4], ['k clostest graphs', 'true median', 'gen median', 'set median']) | |||
| ## fig.legend(handles, labels, loc='lower center', ncol=2, frameon=False) # , ncol=5, labelspacing=0.1, handletextpad=0.4, columnspacing=0.6) | |||
| ## plt.savefig('symbolic_and_non_comparison_vertical_short.eps', format='eps', dpi=300, transparent=True, | |||
| ## bbox_inches='tight') | |||
| ## plt.show() | |||
| #def draw_figure_ged(ax, Gn_embedded, y_idx=None, legend=False): | |||
| # from matplotlib import colors as mcolors | |||
| # colors = list(dict(mcolors.BASE_COLORS, **mcolors.CSS4_COLORS)) | |||
| ## colors = ['#08306b', '#08519c', '#2171b5', '#4292c6', '#6baed6', '#9ecae1', | |||
| ## '#c6dbef', '#deebf7'] | |||
| # for i, values in enumerate(y_idx.values()): | |||
| # for item in values: | |||
| ## ax.scatter(Gn_embedded[item,0], Gn_embedded[item,1], c=colors[i]) # , c='b') | |||
| # ax.scatter(Gn_embedded[item,0], Gn_embedded[item,1], c='b') | |||
| # h1 = ax.scatter(Gn_embedded[[12, 13, 22, 29], 0], Gn_embedded[[12, 13, 22, 29], 1], c='r') | |||
| ## h2 = ax.scatter(Gn_embedded[-1, 0], Gn_embedded[-1, 1], c='darkorchid') # \psi | |||
| # h3 = ax.scatter(Gn_embedded[-1, 0], Gn_embedded[-1, 1], c='gold') # gen median | |||
| # h4 = ax.scatter(Gn_embedded[-2, 0], Gn_embedded[-2, 1], c='r', marker='+') # set median | |||
| # if legend: | |||
| ## fig.subplots_adjust(bottom=0.17) | |||
| # ax.legend([h1, h3, h4], ['k clostest graphs', 'gen median', 'set median']) | |||
| ## fig.legend(handles, labels, loc='lower center', ncol=2, frameon=False) # , ncol=5, labelspacing=0.1, handletextpad=0.4, columnspacing=0.6) | |||
| ## plt.savefig('symbolic_and_non_comparison_vertical_short.eps', format='eps', dpi=300, transparent=True, | |||
| ## bbox_inches='tight') | |||
| ## plt.show() | |||