|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- {
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "scrolled": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "ENZYMES\n",
- "\n",
- "--- This is a classification problem ---\n",
- "\n",
- "\n",
- "I. Loading dataset from file...\n",
- "\n",
- "2. Calculating gram matrices. This could take a while...\n",
- "\n",
- " None edge weight specified. Set all weight to 1.\n",
- "\n",
- "getting sp graphs: 100%|██████████| 600/600 [00:01<00:00, 387.62it/s]\n",
- "calculating kernels: 0%| | 116/180300.0 [00:36<13:08:20, 3.81it/s]"
- ]
- },
- {
- "ename": "KeyboardInterrupt",
- "evalue": "",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m<ipython-input-1-90cefd800f5f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[0mdatafile_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'dataset_y'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'dataset_y'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mds\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0mextra_params\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'extra_params'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'extra_params'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mds\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 61\u001b[0;31m ds_name=ds['name'])\n\u001b[0m\u001b[1;32m 62\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/utils/model_selection_precomputed.py\u001b[0m in \u001b[0;36mmodel_selection_for_precomputed_kernel\u001b[0;34m(datafile, estimator, param_grid_precomputed, param_grid, model_type, NUM_TRIALS, datafile_y, extra_params, ds_name)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0mnb_gm_ignore\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m \u001b[0;31m# the number of gram matrices those should not be considered, as they may contain elements that are not numbers (NaN)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams_out\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam_list_precomputed\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 103\u001b[0;31m \u001b[0mrtn_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mestimator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mparams_out\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 104\u001b[0m \u001b[0mKmatrix\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrtn_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[0mcurrent_run_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrtn_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/kernels/spKernel.py\u001b[0m in \u001b[0;36mspkernel\u001b[0;34m(node_label, edge_weight, node_kernels, *args)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mGn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0me1\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mGn\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0medges\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 95\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0me2\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mGn\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0medges\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 96\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0me1\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'cost'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0me2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'cost'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 97\u001b[0m \u001b[0mkn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnode_kernels\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'mix'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
- ]
- }
- ],
- "source": [
- "%load_ext line_profiler\n",
- "%matplotlib inline\n",
- "import functools\n",
- "from libs import *\n",
- "from pygraph.kernels.spKernel import spkernel\n",
- "from pygraph.utils.kernels import deltakernel, kernelsum\n",
- "from sklearn.metrics.pairwise import rbf_kernel\n",
- "\n",
- "dslist = [ \n",
- "# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', 'task': 'regression'}, # node symb\n",
- "# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb\n",
- "# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds',}, # unlabeled\n",
- "# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, # node/edge symb\n",
- "# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds',}, # node/edge symb\n",
- "# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',\n",
- "# 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb\n",
- "# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', \n",
- "# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt',}, # contains single node graph, node symb\n",
- "# {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb\n",
- "# {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb\n",
- " {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, # node symb/nsymb\n",
- "# {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb\n",
- "# {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb\n",
- "# {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb\n",
- "# {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb\n",
- "# {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb\n",
- "\n",
- "# {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb\n",
- "# {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb\n",
- "# {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',\n",
- "# 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}}, # node symb\n",
- "# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb\n",
- "# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',\n",
- "# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb\n",
- "# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',\n",
- "# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb\n",
- "# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',\n",
- "# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb\n",
- " \n",
- "# # not working below\n",
- "# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},\n",
- "# {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},\n",
- "# {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},\n",
- "# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},\n",
- "]\n",
- "estimator = spkernel\n",
- "mixkernel = functools.partial(kernelsum, deltakernel, rbf_kernel)\n",
- "param_grid_precomputed = {'node_kernels': [{'symb': deltakernel, 'nsymb': rbf_kernel, 'mix': mixkernel}]}\n",
- "param_grid = [{'C': np.logspace(-10, 10, num = 41, base = 10)}, \n",
- " {'alpha': np.logspace(-10, 10, num = 41, base = 10)}]\n",
- "\n",
- "for ds in dslist:\n",
- " print()\n",
- " print(ds['name'])\n",
- " model_selection_for_precomputed_kernel(\n",
- " ds['dataset'], estimator, param_grid_precomputed, \n",
- " (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \n",
- " (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30,\n",
- " datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),\n",
- " extra_params=(ds['extra_params'] if 'extra_params' in ds else None),\n",
- " ds_name=ds['name'])\n",
- " print()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "--- This is a regression problem ---\n",
- "\n",
- "1. Loading dataset from file...\n",
- "\n",
- "2. Calculating gram matrices. This could take a while...\n",
- "--- shortest path kernel matrix of size 183 built in 13.54222846031189 seconds ---\n",
- "\n",
- "gram matrix with parameters {} is: \n",
- "[[1. 0.23570226 1. ... 0.07784989 0.07784989 0.07784989]\n",
- " [0.23570226 1. 0.23570226 ... 0. 0. 0.16514456]\n",
- " [1. 0.23570226 1. ... 0.07784989 0.07784989 0.07784989]\n",
- " ...\n",
- " [0.07784989 0. 0.07784989 ... 1. 0.38181818 0.12727273]\n",
- " [0.07784989 0. 0.07784989 ... 0.38181818 1. 0.12727273]\n",
- " [0.07784989 0.16514456 0.07784989 ... 0.12727273 0.12727273 1. ]]\n"
- ]
- },
- {
- "data": {
|