You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_spkernel.ipynb 126 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "code",
  5. "execution_count": 1,
  6. "metadata": {
  7. "scrolled": false
  8. },
  9. "outputs": [
  10. {
  11. "name": "stdout",
  12. "output_type": "stream",
  13. "text": [
  14. "\n",
  15. "ENZYMES\n",
  16. "\n",
  17. "--- This is a classification problem ---\n",
  18. "\n",
  19. "\n",
  20. "I. Loading dataset from file...\n",
  21. "\n",
  22. "2. Calculating gram matrices. This could take a while...\n",
  23. "\n",
  24. " None edge weight specified. Set all weight to 1.\n",
  25. "\n",
  26. "getting sp graphs: 100%|██████████| 600/600 [00:01<00:00, 387.62it/s]\n",
  27. "calculating kernels: 0%| | 116/180300.0 [00:36<13:08:20, 3.81it/s]"
  28. ]
  29. },
  30. {
  31. "ename": "KeyboardInterrupt",
  32. "evalue": "",
  33. "output_type": "error",
  34. "traceback": [
  35. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  36. "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
  37. "\u001b[0;32m<ipython-input-1-90cefd800f5f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[0mdatafile_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'dataset_y'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'dataset_y'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mds\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 60\u001b[0m \u001b[0mextra_params\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'extra_params'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'extra_params'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mds\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 61\u001b[0;31m ds_name=ds['name'])\n\u001b[0m\u001b[1;32m 62\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  38. "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/utils/model_selection_precomputed.py\u001b[0m in \u001b[0;36mmodel_selection_for_precomputed_kernel\u001b[0;34m(datafile, estimator, param_grid_precomputed, param_grid, model_type, NUM_TRIALS, datafile_y, extra_params, ds_name)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[0mnb_gm_ignore\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m \u001b[0;31m# the number of gram matrices those should not be considered, as they may contain elements that are not numbers (NaN)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 102\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams_out\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam_list_precomputed\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 103\u001b[0;31m \u001b[0mrtn_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mestimator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mparams_out\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 104\u001b[0m \u001b[0mKmatrix\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrtn_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[0mcurrent_run_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrtn_data\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  39. "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/kernels/spKernel.py\u001b[0m in \u001b[0;36mspkernel\u001b[0;34m(node_label, edge_weight, node_kernels, *args)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mGn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 94\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0me1\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mGn\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0medges\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 95\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0me2\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mGn\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0medges\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 96\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0me1\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'cost'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0me2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'cost'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 97\u001b[0m \u001b[0mkn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnode_kernels\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'mix'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  40. "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
  41. ]
  42. }
  43. ],
  44. "source": [
  45. "%load_ext line_profiler\n",
  46. "%matplotlib inline\n",
  47. "import functools\n",
  48. "from libs import *\n",
  49. "from pygraph.kernels.spKernel import spkernel\n",
  50. "from pygraph.utils.kernels import deltakernel, kernelsum\n",
  51. "from sklearn.metrics.pairwise import rbf_kernel\n",
  52. "\n",
  53. "dslist = [ \n",
  54. "# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', 'task': 'regression'}, # node symb\n",
  55. "# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb\n",
  56. "# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds',}, # unlabeled\n",
  57. "# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, # node/edge symb\n",
  58. "# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds',}, # node/edge symb\n",
  59. "# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',\n",
  60. "# 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb\n",
  61. "# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', \n",
  62. "# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt',}, # contains single node graph, node symb\n",
  63. "# {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb\n",
  64. "# {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb\n",
  65. " {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, # node symb/nsymb\n",
  66. "# {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb\n",
  67. "# {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb\n",
  68. "# {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb\n",
  69. "# {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb\n",
  70. "# {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb\n",
  71. "\n",
  72. "# {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb\n",
  73. "# {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb\n",
  74. "# {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',\n",
  75. "# 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}}, # node symb\n",
  76. "# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb\n",
  77. "# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',\n",
  78. "# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb\n",
  79. "# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',\n",
  80. "# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb\n",
  81. "# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',\n",
  82. "# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb\n",
  83. " \n",
  84. "# # not working below\n",
  85. "# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},\n",
  86. "# {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},\n",
  87. "# {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},\n",
  88. "# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},\n",
  89. "]\n",
  90. "estimator = spkernel\n",
  91. "mixkernel = functools.partial(kernelsum, deltakernel, rbf_kernel)\n",
  92. "param_grid_precomputed = {'node_kernels': [{'symb': deltakernel, 'nsymb': rbf_kernel, 'mix': mixkernel}]}\n",
  93. "param_grid = [{'C': np.logspace(-10, 10, num = 41, base = 10)}, \n",
  94. " {'alpha': np.logspace(-10, 10, num = 41, base = 10)}]\n",
  95. "\n",
  96. "for ds in dslist:\n",
  97. " print()\n",
  98. " print(ds['name'])\n",
  99. " model_selection_for_precomputed_kernel(\n",
  100. " ds['dataset'], estimator, param_grid_precomputed, \n",
  101. " (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \n",
  102. " (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30,\n",
  103. " datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),\n",
  104. " extra_params=(ds['extra_params'] if 'extra_params' in ds else None),\n",
  105. " ds_name=ds['name'])\n",
  106. " print()"
  107. ]
  108. },
  109. {
  110. "cell_type": "code",
  111. "execution_count": 1,
  112. "metadata": {},
  113. "outputs": [
  114. {
  115. "name": "stdout",
  116. "output_type": "stream",
  117. "text": [
  118. "\n",
  119. "--- This is a regression problem ---\n",
  120. "\n",
  121. "1. Loading dataset from file...\n",
  122. "\n",
  123. "2. Calculating gram matrices. This could take a while...\n",
  124. "--- shortest path kernel matrix of size 183 built in 13.54222846031189 seconds ---\n",
  125. "\n",
  126. "gram matrix with parameters {} is: \n",
  127. "[[1. 0.23570226 1. ... 0.07784989 0.07784989 0.07784989]\n",
  128. " [0.23570226 1. 0.23570226 ... 0. 0. 0.16514456]\n",
  129. " [1. 0.23570226 1. ... 0.07784989 0.07784989 0.07784989]\n",
  130. " ...\n",
  131. " [0.07784989 0. 0.07784989 ... 1. 0.38181818 0.12727273]\n",
  132. " [0.07784989 0. 0.07784989 ... 0.38181818 1. 0.12727273]\n",
  133. " [0.07784989 0.16514456 0.07784989 ... 0.12727273 0.12727273 1. ]]\n"
  134. ]
  135. },
  136. {
  137. "data": {

A Python package for graph kernels, graph edit distances and graph pre-image problem.