You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

py-graph_test.ipynb 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "code",
  5. "execution_count": 3,
  6. "metadata": {
  7. "autoscroll": false,
  8. "collapsed": false,
  9. "ein.tags": "worksheet-0",
  10. "slideshow": {
  11. "slide_type": "-"
  12. }
  13. },
  14. "outputs": [],
  15. "source": [
  16. "import numpy as np\n",
  17. "\n",
  18. "import paths\n",
  19. "\n",
  20. "from ged.GED import ged\n",
  21. "from utils.graphfiles import loadDataset\n",
  22. "from ged.costfunctions import RiesenCostFunction, ConstantCostFunction\n",
  23. "from ged.bipartiteGED import computeBipartiteCostMatrix, getOptimalMapping"
  24. ]
  25. },
  26. {
  27. "cell_type": "code",
  28. "execution_count": 4,
  29. "metadata": {
  30. "autoscroll": false,
  31. "collapsed": false,
  32. "ein.tags": "worksheet-0",
  33. "slideshow": {
  34. "slide_type": "-"
  35. }
  36. },
  37. "outputs": [],
  38. "source": [
  39. "import networkx as nx\n",
  40. "import numpy as np\n",
  41. "import matplotlib.pyplot as plt\n",
  42. "\n",
  43. "# We load a ds dataset\n",
  44. "dataset, y = loadDataset(\"/home/bgauzere/work/Datasets/Acyclic/dataset_bps.ds\")"
  45. ]
  46. },
  47. {
  48. "cell_type": "code",
  49. "execution_count": null,
  50. "metadata": {
  51. "autoscroll": false,
  52. "collapsed": false,
  53. "ein.tags": "worksheet-0",
  54. "slideshow": {
  55. "slide_type": "-"
  56. }
  57. },
  58. "outputs": [
  59. {
  60. "name": "stderr",
  61. "output_type": "stream",
  62. "text": [
  63. "\r",
  64. " 0%| | 0/183 [00:00<?, ?it/s]"
  65. ]
  66. },
  67. {
  68. "name": "stderr",
  69. "output_type": "stream",
  70. "text": [
  71. "\r",
  72. " 1%| | 1/183 [00:00<02:47, 1.09it/s]"
  73. ]
  74. },
  75. {
  76. "name": "stderr",
  77. "output_type": "stream",
  78. "text": [
  79. "\r",
  80. " 1%| | 2/183 [00:02<03:05, 1.03s/it]"
  81. ]
  82. },
  83. {
  84. "name": "stderr",
  85. "output_type": "stream",
  86. "text": [
  87. "\r",
  88. " 2%|▏ | 3/183 [00:02<02:57, 1.02it/s]"
  89. ]
  90. },
  91. {
  92. "name": "stderr",
  93. "output_type": "stream",
  94. "text": [
  95. "\r",
  96. " 2%|▏ | 4/183 [00:04<03:06, 1.04s/it]"
  97. ]
  98. },
  99. {
  100. "name": "stderr",
  101. "output_type": "stream",
  102. "text": [
  103. "\r",
  104. " 3%|▎ | 5/183 [00:05<03:10, 1.07s/it]"
  105. ]
  106. },
  107. {
  108. "name": "stderr",
  109. "output_type": "stream",
  110. "text": [
  111. "\r",
  112. " 3%|▎ | 6/183 [00:06<03:19, 1.12s/it]"
  113. ]
  114. },
  115. {
  116. "name": "stderr",
  117. "output_type": "stream",
  118. "text": [
  119. "\r",
  120. " 4%|▍ | 7/183 [00:08<03:24, 1.16s/it]"
  121. ]
  122. },
  123. {
  124. "name": "stderr",
  125. "output_type": "stream",
  126. "text": [
  127. "\r",
  128. " 4%|▍ | 8/183 [00:09<03:23, 1.16s/it]"
  129. ]
  130. },
  131. {
  132. "name": "stderr",
  133. "output_type": "stream",
  134. "text": [
  135. "\r",
  136. " 5%|▍ | 9/183 [00:10<03:25, 1.18s/it]"
  137. ]
  138. },
  139. {
  140. "name": "stderr",
  141. "output_type": "stream",
  142. "text": [
  143. "\r",
  144. " 5%|▌ | 10/183 [00:12<03:27, 1.20s/it]"
  145. ]
  146. },
  147. {
  148. "name": "stderr",
  149. "output_type": "stream",
  150. "text": [
  151. "\r",
  152. " 6%|▌ | 11/183 [00:13<03:29, 1.22s/it]"
  153. ]
  154. },
  155. {
  156. "name": "stderr",
  157. "output_type": "stream",
  158. "text": [
  159. "\r",
  160. " 7%|▋ | 12/183 [00:14<03:29, 1.23s/it]"
  161. ]
  162. },
  163. {
  164. "name": "stderr",
  165. "output_type": "stream",
  166. "text": [
  167. "\r",
  168. " 7%|▋ | 13/183 [00:16<03:31, 1.24s/it]"
  169. ]
  170. },
  171. {
  172. "name": "stderr",
  173. "output_type": "stream",
  174. "text": [
  175. "\r",
  176. " 8%|▊ | 14/183 [00:17<03:34, 1.27s/it]"
  177. ]
  178. },
  179. {
  180. "name": "stderr",
  181. "output_type": "stream",
  182. "text": [
  183. "\r",
  184. " 8%|▊ | 15/183 [00:19<03:38, 1.30s/it]"
  185. ]
  186. },
  187. {
  188. "name": "stderr",
  189. "output_type": "stream",
  190. "text": [
  191. "\r",
  192. " 9%|▊ | 16/183 [00:21<03:45, 1.35s/it]"
  193. ]
  194. },
  195. {
  196. "name": "stderr",
  197. "output_type": "stream",
  198. "text": [
  199. "\r",
  200. " 9%|▉ | 17/183 [00:23<03:52, 1.40s/it]"
  201. ]
  202. },
  203. {
  204. "name": "stderr",
  205. "output_type": "stream",
  206. "text": [
  207. "\r",
  208. " 10%|▉ | 18/183 [00:25<03:50, 1.40s/it]"
  209. ]
  210. },
  211. {
  212. "name": "stderr",
  213. "output_type": "stream",
  214. "text": [
  215. "\r",
  216. " 10%|█ | 19/183 [00:26<03:49, 1.40s/it]"
  217. ]
  218. },
  219. {
  220. "name": "stderr",
  221. "output_type": "stream",
  222. "text": [
  223. "\r",
  224. " 11%|█ | 20/183 [00:28<03:48, 1.40s/it]"
  225. ]
  226. },
  227. {
  228. "name": "stderr",
  229. "output_type": "stream",
  230. "text": [
  231. "\r",
  232. " 11%|█▏ | 21/183 [00:29<03:48, 1.41s/it]"
  233. ]
  234. },
  235. {
  236. "name": "stderr",
  237. "output_type": "stream",
  238. "text": [
  239. "\r",
  240. " 12%|█▏ | 22/183 [00:31<03:49, 1.42s/it]"
  241. ]
  242. },
  243. {
  244. "name": "stderr",
  245. "output_type": "stream",
  246. "text": [
  247. "\r",
  248. " 13%|█▎ | 23/183 [00:32<03:49, 1.43s/it]"
  249. ]
  250. },
  251. {
  252. "name": "stderr",
  253. "output_type": "stream",
  254. "text": [
  255. "\r",
  256. " 13%|█▎ | 24/183 [00:34<03:48, 1.44s/it]"
  257. ]
  258. },
  259. {
  260. "name": "stderr",
  261. "output_type": "stream",
  262. "text": [
  263. "\r",
  264. " 14%|█▎ | 25/183 [00:36<03:48, 1.44s/it]"
  265. ]
  266. },
  267. {
  268. "name": "stderr",
  269. "output_type": "stream",
  270. "text": [
  271. "\r",
  272. " 14%|█▍ | 26/183 [00:37<03:47, 1.45s/it]"
  273. ]
  274. },
  275. {
  276. "name": "stderr",
  277. "output_type": "stream",
  278. "text": [
  279. "\r",
  280. " 15%|█▍ | 27/183 [00:39<03:47, 1.46s/it]"
  281. ]
  282. },
  283. {
  284. "name": "stderr",
  285. "output_type": "stream",
  286. "text": [
  287. "\r",
  288. " 15%|█▌ | 28/183 [00:41<03:47, 1.47s/it]"
  289. ]
  290. },
  291. {
  292. "name": "stderr",
  293. "output_type": "stream",
  294. "text": [
  295. "\r",
  296. " 16%|█▌ | 29/183 [00:42<03:47, 1.48s/it]"
  297. ]
  298. },
  299. {
  300. "name": "stderr",
  301. "output_type": "stream",
  302. "text": [
  303. "\r",
  304. " 16%|█▋ | 30/183 [00:44<03:47, 1.49s/it]"
  305. ]
  306. },
  307. {
  308. "name": "stderr",
  309. "output_type": "stream",
  310. "text": [
  311. "\r",
  312. " 17%|█▋ | 31/183 [00:46<03:47, 1.50s/it]"
  313. ]
  314. },
  315. {
  316. "name": "stderr",
  317. "output_type": "stream",
  318. "text": [
  319. "\r",
  320. " 17%|█▋ | 32/183 [00:48<03:48, 1.51s/it]"
  321. ]
  322. },
  323. {
  324. "name": "stderr",
  325. "output_type": "stream",
  326. "text": [
  327. "\r",
  328. " 18%|█▊ | 33/183 [00:50<03:47, 1.52s/it]"
  329. ]
  330. },
  331. {
  332. "name": "stderr",
  333. "output_type": "stream",
  334. "text": [
  335. "\r",
  336. " 19%|█▊ | 34/183 [00:51<03:47, 1.53s/it]"
  337. ]
  338. },
  339. {
  340. "name": "stderr",
  341. "output_type": "stream",
  342. "text": [
  343. "\r",
  344. " 19%|█▉ | 35/183 [00:53<03:47, 1.54s/it]"
  345. ]
  346. },
  347. {
  348. "name": "stderr",
  349. "output_type": "stream",
  350. "text": [
  351. "\r",
  352. " 20%|█▉ | 36/183 [00:55<03:47, 1.55s/it]"
  353. ]
  354. },
  355. {
  356. "name": "stderr",
  357. "output_type": "stream",
  358. "text": [
  359. "\r",
  360. " 20%|██ | 37/183 [00:57<03:45, 1.55s/it]"
  361. ]
  362. },
  363. {
  364. "name": "stderr",
  365. "output_type": "stream",
  366. "text": [
  367. "\r",
  368. " 21%|██ | 38/183 [00:58<03:44, 1.55s/it]"
  369. ]
  370. },
  371. {
  372. "name": "stderr",
  373. "output_type": "stream",
  374. "text": [
  375. "\r",
  376. " 21%|██▏ | 39/183 [01:00<03:43, 1.55s/it]"
  377. ]
  378. },
  379. {
  380. "name": "stderr",
  381. "output_type": "stream",
  382. "text": [
  383. "\r",
  384. " 22%|██▏ | 40/183 [01:02<03:43, 1.56s/it]"
  385. ]
  386. },
  387. {
  388. "name": "stderr",
  389. "output_type": "stream",
  390. "text": [
  391. "\r",
  392. " 22%|██▏ | 41/183 [01:04<03:42, 1.57s/it]"
  393. ]
  394. },
  395. {
  396. "name": "stderr",
  397. "output_type": "stream",
  398. "text": [
  399. "\r",
  400. " 23%|██▎ | 42/183 [01:06<03:41, 1.57s/it]"
  401. ]
  402. },
  403. {
  404. "name": "stderr",
  405. "output_type": "stream",
  406. "text": [
  407. "\r",
  408. " 23%|██▎ | 43/183 [01:07<03:41, 1.58s/it]"
  409. ]
  410. },
  411. {
  412. "name": "stderr",
  413. "output_type": "stream",
  414. "text": [
  415. "\r",
  416. " 24%|██▍ | 44/183 [01:09<03:40, 1.58s/it]"
  417. ]
  418. },
  419. {
  420. "name": "stderr",
  421. "output_type": "stream",
  422. "text": [
  423. "\r",
  424. " 25%|██▍ | 45/183 [01:11<03:39, 1.59s/it]"
  425. ]
  426. },
  427. {
  428. "name": "stderr",
  429. "output_type": "stream",
  430. "text": [
  431. "\r",
  432. " 25%|██▌ | 46/183 [01:13<03:37, 1.59s/it]"
  433. ]
  434. },
  435. {
  436. "name": "stderr",
  437. "output_type": "stream",
  438. "text": [
  439. "\r",
  440. " 26%|██▌ | 47/183 [01:15<03:37, 1.60s/it]"
  441. ]
  442. },
  443. {
  444. "name": "stderr",
  445. "output_type": "stream",
  446. "text": [
  447. "\r",
  448. " 26%|██▌ | 48/183 [01:17<03:36, 1.60s/it]"
  449. ]
  450. }
  451. ],
  452. "source": [
  453. "#Compute graph edit distances\n",
  454. "\n",
  455. "from tqdm import tqdm\n",
  456. "from c_ext.lsape_binders import lsap_solverHG\n",
  457. "import time\n",
  458. "\n",
  459. "cf = ConstantCostFunction(3,1,3,1)\n",
  460. "N=len(dataset)\n",
  461. "\n",
  462. "methods=['Riesen + LSAP', 'Neigh + LSAP', 'Riesen + LSAPE', 'Neigh + LSAPE']\n",
  463. "ged_distances = [ np.zeros((N,N)), np.zeros((N,N)), np.zeros((N,N)), np.zeros((N,N))]\n",
  464. "\n",
  465. "times = list()\n",
  466. "start = time.clock()\n",
  467. "for i in tqdm(range(0,N)):\n",
  468. " for j in range(0,N):\n",
  469. " ged_distances[0][i,j] = ged(dataset[i],dataset[j],cf=cf, method='Riesen')[0]\n",
  470. "times.append(time.clock() - start)\n",
  471. "\n",
  472. "\n",
  473. "start = time.clock()\n",
  474. "for i in tqdm(range(0,N)):\n",
  475. " for j in range(0,N):\n",
  476. " ged_distances[1][i,j] = ged(dataset[i],dataset[j],cf=cf, method='Neighboorhood')[0]\n",
  477. "\n",
  478. "times.append(time.clock() - start)\n",
  479. "\n",
  480. "start = time.clock()\n",
  481. "for i in tqdm(range(0,N)):\n",
  482. " for j in range(0,N):\n",
  483. " ged_distances[2][i,j] = ged(dataset[i],dataset[j],cf=cf, method='Riesen',solver=lsap_solverHG)[0]\n",
  484. "times.append(time.clock() - start)\n",
  485. "\n",
  486. "start = time.clock()\n",
  487. "for i in tqdm(range(0,N)):\n",
  488. " for j in range(0,N):\n",
  489. " ged_distances[3][i,j] = ged(dataset[i],dataset[j],cf=cf, method='Neighboorhood',solver=lsap_solverHG)[0]\n",
  490. "times.append(time.clock() - start)"
  491. ]
  492. },
  493. {
  494. "cell_type": "code",
  495. "execution_count": 5,
  496. "metadata": {
  497. "autoscroll": false,
  498. "collapsed": false,
  499. "ein.tags": "worksheet-0",
  500. "slideshow": {
  501. "slide_type": "-"
  502. }
  503. },
  504. "outputs": [
  505. {
  506. "name": "stdout",
  507. "output_type": "stream",
  508. "text": [
  509. " method \t mean \t mean \t dev \t time\n",
  510. " Riesen + LSAP \t 0.0 \t 0.0 \t -0.994535519125683 \t -14.283137746722804\n",
  511. " Neigh + LSAP \t 0.0 \t 0.0 \t -0.994535519125683 \t -14.283137746722804\n",
  512. " Riesen + LSAPE \t 19.770670966586042 \t 19.122338678372003 \t 0.4757055896177035 \t 4.839200931649199\n",
  513. " Neigh + LSAPE \t 0.0 \t 0.0 \t -0.994535519125683 \t -14.283137746722804\n"
  514. ]
  515. }
  516. ],
  517. "source": [
  518. "print(\" method \\t mean \\t mean \\t time\")\n",
  519. "data = list()\n",
  520. "\n",
  521. "for i in range(0,len(ged_distances)):\n",
  522. " ged_ = np.minimum(ged_distances[i],ged_distances[i].transpose())\n",
  523. " print(\" {} \\t {} \\t {} \\t {} \".format(methods[i], np.mean(ged_distances[i]),np.mean(ged_), times[i])\n"
  524. ]
  525. }
  526. ],
  527. "metadata": {
  528. "kernelspec": {
  529. "display_name": "Python 3",
  530. "name": "python3"
  531. },
  532. "language_info": {
  533. "codemirror_mode": {
  534. "name": "ipython",
  535. "version": 3
  536. },
  537. "file_extension": ".py",
  538. "mimetype": "text/x-python",
  539. "name": "python",
  540. "nbconvert_exporter": "python",
  541. "pygments_lexer": "ipython3",
  542. "version": "3.6.2"
  543. },
  544. "name": "py-graph_test.ipynb"
  545. },
  546. "nbformat": 4,
  547. "nbformat_minor": 2
  548. }

A Python package for graph kernels, graph edit distances and graph pre-image problem.