|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548 |
- {
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "autoscroll": false,
- "collapsed": false,
- "ein.tags": "worksheet-0",
- "slideshow": {
- "slide_type": "-"
- }
- },
- "outputs": [],
- "source": [
- "import numpy as np\n",
- "\n",
- "import paths\n",
- "\n",
- "from ged.GED import ged\n",
- "from utils.graphfiles import loadDataset\n",
- "from ged.costfunctions import RiesenCostFunction, ConstantCostFunction\n",
- "from ged.bipartiteGED import computeBipartiteCostMatrix, getOptimalMapping"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {
- "autoscroll": false,
- "collapsed": false,
- "ein.tags": "worksheet-0",
- "slideshow": {
- "slide_type": "-"
- }
- },
- "outputs": [],
- "source": [
- "import networkx as nx\n",
- "import numpy as np\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "# We load a ds dataset\n",
- "dataset, y = loadDataset(\"/home/bgauzere/work/Datasets/Acyclic/dataset_bps.ds\")"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {
- "autoscroll": false,
- "collapsed": false,
- "ein.tags": "worksheet-0",
- "slideshow": {
- "slide_type": "-"
- }
- },
- "outputs": [
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 0%| | 0/183 [00:00<?, ?it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 1%| | 1/183 [00:00<02:47, 1.09it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 1%| | 2/183 [00:02<03:05, 1.03s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 2%|▏ | 3/183 [00:02<02:57, 1.02it/s]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 2%|▏ | 4/183 [00:04<03:06, 1.04s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 3%|▎ | 5/183 [00:05<03:10, 1.07s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 3%|▎ | 6/183 [00:06<03:19, 1.12s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 4%|▍ | 7/183 [00:08<03:24, 1.16s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 4%|▍ | 8/183 [00:09<03:23, 1.16s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 5%|▍ | 9/183 [00:10<03:25, 1.18s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 5%|▌ | 10/183 [00:12<03:27, 1.20s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 6%|▌ | 11/183 [00:13<03:29, 1.22s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 7%|▋ | 12/183 [00:14<03:29, 1.23s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 7%|▋ | 13/183 [00:16<03:31, 1.24s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 8%|▊ | 14/183 [00:17<03:34, 1.27s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 8%|▊ | 15/183 [00:19<03:38, 1.30s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 9%|▊ | 16/183 [00:21<03:45, 1.35s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 9%|▉ | 17/183 [00:23<03:52, 1.40s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 10%|▉ | 18/183 [00:25<03:50, 1.40s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 10%|█ | 19/183 [00:26<03:49, 1.40s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 11%|█ | 20/183 [00:28<03:48, 1.40s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 11%|█▏ | 21/183 [00:29<03:48, 1.41s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 12%|█▏ | 22/183 [00:31<03:49, 1.42s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 13%|█▎ | 23/183 [00:32<03:49, 1.43s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 13%|█▎ | 24/183 [00:34<03:48, 1.44s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 14%|█▎ | 25/183 [00:36<03:48, 1.44s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 14%|█▍ | 26/183 [00:37<03:47, 1.45s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 15%|█▍ | 27/183 [00:39<03:47, 1.46s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 15%|█▌ | 28/183 [00:41<03:47, 1.47s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 16%|█▌ | 29/183 [00:42<03:47, 1.48s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 16%|█▋ | 30/183 [00:44<03:47, 1.49s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 17%|█▋ | 31/183 [00:46<03:47, 1.50s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 17%|█▋ | 32/183 [00:48<03:48, 1.51s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 18%|█▊ | 33/183 [00:50<03:47, 1.52s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 19%|█▊ | 34/183 [00:51<03:47, 1.53s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 19%|█▉ | 35/183 [00:53<03:47, 1.54s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 20%|█▉ | 36/183 [00:55<03:47, 1.55s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 20%|██ | 37/183 [00:57<03:45, 1.55s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 21%|██ | 38/183 [00:58<03:44, 1.55s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 21%|██▏ | 39/183 [01:00<03:43, 1.55s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 22%|██▏ | 40/183 [01:02<03:43, 1.56s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 22%|██▏ | 41/183 [01:04<03:42, 1.57s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 23%|██▎ | 42/183 [01:06<03:41, 1.57s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 23%|██▎ | 43/183 [01:07<03:41, 1.58s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 24%|██▍ | 44/183 [01:09<03:40, 1.58s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 25%|██▍ | 45/183 [01:11<03:39, 1.59s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 25%|██▌ | 46/183 [01:13<03:37, 1.59s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 26%|██▌ | 47/183 [01:15<03:37, 1.60s/it]"
- ]
- },
- {
- "name": "stderr",
- "output_type": "stream",
- "text": [
- "\r",
- " 26%|██▌ | 48/183 [01:17<03:36, 1.60s/it]"
- ]
- }
- ],
- "source": [
- "#Compute graph edit distances\n",
- "\n",
- "from tqdm import tqdm\n",
- "from c_ext.lsape_binders import lsap_solverHG\n",
- "import time\n",
- "\n",
- "cf = ConstantCostFunction(3,1,3,1)\n",
- "N=len(dataset)\n",
- "\n",
- "methods=['Riesen + LSAP', 'Neigh + LSAP', 'Riesen + LSAPE', 'Neigh + LSAPE']\n",
- "ged_distances = [ np.zeros((N,N)), np.zeros((N,N)), np.zeros((N,N)), np.zeros((N,N))]\n",
- "\n",
- "times = list()\n",
- "start = time.clock()\n",
- "for i in tqdm(range(0,N)):\n",
- " for j in range(0,N):\n",
- " ged_distances[0][i,j] = ged(dataset[i],dataset[j],cf=cf, method='Riesen')[0]\n",
- "times.append(time.clock() - start)\n",
- "\n",
- "\n",
- "start = time.clock()\n",
- "for i in tqdm(range(0,N)):\n",
- " for j in range(0,N):\n",
- " ged_distances[1][i,j] = ged(dataset[i],dataset[j],cf=cf, method='Neighboorhood')[0]\n",
- "\n",
- "times.append(time.clock() - start)\n",
- "\n",
- "start = time.clock()\n",
- "for i in tqdm(range(0,N)):\n",
- " for j in range(0,N):\n",
- " ged_distances[2][i,j] = ged(dataset[i],dataset[j],cf=cf, method='Riesen',solver=lsap_solverHG)[0]\n",
- "times.append(time.clock() - start)\n",
- "\n",
- "start = time.clock()\n",
- "for i in tqdm(range(0,N)):\n",
- " for j in range(0,N):\n",
- " ged_distances[3][i,j] = ged(dataset[i],dataset[j],cf=cf, method='Neighboorhood',solver=lsap_solverHG)[0]\n",
- "times.append(time.clock() - start)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "autoscroll": false,
- "collapsed": false,
- "ein.tags": "worksheet-0",
- "slideshow": {
- "slide_type": "-"
- }
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- " method \t mean \t mean \t dev \t time\n",
- " Riesen + LSAP \t 0.0 \t 0.0 \t -0.994535519125683 \t -14.283137746722804\n",
- " Neigh + LSAP \t 0.0 \t 0.0 \t -0.994535519125683 \t -14.283137746722804\n",
- " Riesen + LSAPE \t 19.770670966586042 \t 19.122338678372003 \t 0.4757055896177035 \t 4.839200931649199\n",
- " Neigh + LSAPE \t 0.0 \t 0.0 \t -0.994535519125683 \t -14.283137746722804\n"
- ]
- }
- ],
- "source": [
- "print(\" method \\t mean \\t mean \\t time\")\n",
- "data = list()\n",
- "\n",
- "for i in range(0,len(ged_distances)):\n",
- " ged_ = np.minimum(ged_distances[i],ged_distances[i].transpose())\n",
- " print(\" {} \\t {} \\t {} \\t {} \".format(methods[i], np.mean(ged_distances[i]),np.mean(ged_), times[i])\n"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.2"
- },
- "name": "py-graph_test.ipynb"
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|