You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

util.py 16 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. """
  4. Created on Tue Mar 31 17:06:22 2020
  5. @author: ljia
  6. """
  7. import numpy as np
  8. from itertools import combinations
  9. import multiprocessing
  10. from multiprocessing import Pool
  11. from functools import partial
  12. import sys
  13. from tqdm import tqdm
  14. import networkx as nx
  15. from gklearn.ged.env import GEDEnv
  16. def compute_ged(g1, g2, options):
  17. from gklearn.gedlib import librariesImport, gedlibpy
  18. ged_env = gedlibpy.GEDEnv()
  19. ged_env.set_edit_cost(options['edit_cost'], edit_cost_constant=options['edit_cost_constants'])
  20. ged_env.add_nx_graph(g1, '')
  21. ged_env.add_nx_graph(g2, '')
  22. listID = ged_env.get_all_graph_ids()
  23. ged_env.init(init_type=options['init_option'])
  24. ged_env.set_method(options['method'], ged_options_to_string(options))
  25. ged_env.init_method()
  26. g = listID[0]
  27. h = listID[1]
  28. ged_env.run_method(g, h)
  29. pi_forward = ged_env.get_forward_map(g, h)
  30. pi_backward = ged_env.get_backward_map(g, h)
  31. upper = ged_env.get_upper_bound(g, h)
  32. dis = upper
  33. # make the map label correct (label remove map as np.inf)
  34. nodes1 = [n for n in g1.nodes()]
  35. nodes2 = [n for n in g2.nodes()]
  36. nb1 = nx.number_of_nodes(g1)
  37. nb2 = nx.number_of_nodes(g2)
  38. pi_forward = [nodes2[pi] if pi < nb2 else np.inf for pi in pi_forward]
  39. pi_backward = [nodes1[pi] if pi < nb1 else np.inf for pi in pi_backward]
  40. # print(pi_forward)
  41. return dis, pi_forward, pi_backward
  42. def compute_geds_cml(graphs, options={}, sort=True, parallel=False, verbose=True):
  43. # initialize ged env.
  44. ged_env = GEDEnv()
  45. ged_env.set_edit_cost(options['edit_cost'], edit_cost_constants=options['edit_cost_constants'])
  46. for g in graphs:
  47. ged_env.add_nx_graph(g, '')
  48. listID = ged_env.get_all_graph_ids()
  49. ged_env.set_label_costs(options['node_label_costs'] if 'node_label_costs' in options else None)
  50. ged_env.init(init_type=options['init_option'])
  51. if parallel:
  52. options['threads'] = 1
  53. ged_env.set_method(options['method'], options)
  54. ged_env.init_method()
  55. # compute ged.
  56. neo_options = {'edit_cost': options['edit_cost'],
  57. 'node_labels': options['node_labels'], 'edge_labels': options['edge_labels'],
  58. 'node_attrs': options['node_attrs'], 'edge_attrs': options['edge_attrs']}
  59. ged_mat = np.zeros((len(graphs), len(graphs)))
  60. if parallel:
  61. len_itr = int(len(graphs) * (len(graphs) - 1) / 2)
  62. ged_vec = [0 for i in range(len_itr)]
  63. n_edit_operations = [0 for i in range(len_itr)]
  64. itr = combinations(range(0, len(graphs)), 2)
  65. n_jobs = multiprocessing.cpu_count()
  66. if len_itr < 100 * n_jobs:
  67. chunksize = int(len_itr / n_jobs) + 1
  68. else:
  69. chunksize = 100
  70. def init_worker(graphs_toshare, ged_env_toshare, listID_toshare):
  71. global G_graphs, G_ged_env, G_listID
  72. G_graphs = graphs_toshare
  73. G_ged_env = ged_env_toshare
  74. G_listID = listID_toshare
  75. do_partial = partial(_wrapper_compute_ged_parallel, neo_options, sort)
  76. pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(graphs, ged_env, listID))
  77. if verbose:
  78. iterator = tqdm(pool.imap_unordered(do_partial, itr, chunksize),
  79. desc='computing GEDs', file=sys.stdout)
  80. else:
  81. iterator = pool.imap_unordered(do_partial, itr, chunksize)
  82. # iterator = pool.imap_unordered(do_partial, itr, chunksize)
  83. for i, j, dis, n_eo_tmp in iterator:
  84. idx_itr = int(len(graphs) * i + j - (i + 1) * (i + 2) / 2)
  85. ged_vec[idx_itr] = dis
  86. ged_mat[i][j] = dis
  87. ged_mat[j][i] = dis
  88. n_edit_operations[idx_itr] = n_eo_tmp
  89. # print('\n-------------------------------------------')
  90. # print(i, j, idx_itr, dis)
  91. pool.close()
  92. pool.join()
  93. else:
  94. ged_vec = []
  95. n_edit_operations = []
  96. if verbose:
  97. iterator = tqdm(range(len(graphs)), desc='computing GEDs', file=sys.stdout)
  98. else:
  99. iterator = range(len(graphs))
  100. for i in iterator:
  101. # for i in range(len(graphs)):
  102. for j in range(i + 1, len(graphs)):
  103. if nx.number_of_nodes(graphs[i]) <= nx.number_of_nodes(graphs[j]) or not sort:
  104. dis, pi_forward, pi_backward = _compute_ged(ged_env, listID[i], listID[j], graphs[i], graphs[j])
  105. else:
  106. dis, pi_backward, pi_forward = _compute_ged(ged_env, listID[j], listID[i], graphs[j], graphs[i])
  107. ged_vec.append(dis)
  108. ged_mat[i][j] = dis
  109. ged_mat[j][i] = dis
  110. n_eo_tmp = get_nb_edit_operations(graphs[i], graphs[j], pi_forward, pi_backward, **neo_options)
  111. n_edit_operations.append(n_eo_tmp)
  112. return ged_vec, ged_mat, n_edit_operations
  113. def compute_geds(graphs, options={}, sort=True, parallel=False, verbose=True):
  114. from gklearn.gedlib import librariesImport, gedlibpy
  115. # initialize ged env.
  116. ged_env = gedlibpy.GEDEnv()
  117. ged_env.set_edit_cost(options['edit_cost'], edit_cost_constant=options['edit_cost_constants'])
  118. for g in graphs:
  119. ged_env.add_nx_graph(g, '')
  120. listID = ged_env.get_all_graph_ids()
  121. ged_env.init()
  122. if parallel:
  123. options['threads'] = 1
  124. ged_env.set_method(options['method'], ged_options_to_string(options))
  125. ged_env.init_method()
  126. # compute ged.
  127. neo_options = {'edit_cost': options['edit_cost'],
  128. 'node_labels': options['node_labels'], 'edge_labels': options['edge_labels'],
  129. 'node_attrs': options['node_attrs'], 'edge_attrs': options['edge_attrs']}
  130. ged_mat = np.zeros((len(graphs), len(graphs)))
  131. if parallel:
  132. len_itr = int(len(graphs) * (len(graphs) - 1) / 2)
  133. ged_vec = [0 for i in range(len_itr)]
  134. n_edit_operations = [0 for i in range(len_itr)]
  135. itr = combinations(range(0, len(graphs)), 2)
  136. n_jobs = multiprocessing.cpu_count()
  137. if len_itr < 100 * n_jobs:
  138. chunksize = int(len_itr / n_jobs) + 1
  139. else:
  140. chunksize = 100
  141. def init_worker(graphs_toshare, ged_env_toshare, listID_toshare):
  142. global G_graphs, G_ged_env, G_listID
  143. G_graphs = graphs_toshare
  144. G_ged_env = ged_env_toshare
  145. G_listID = listID_toshare
  146. do_partial = partial(_wrapper_compute_ged_parallel, neo_options, sort)
  147. pool = Pool(processes=n_jobs, initializer=init_worker, initargs=(graphs, ged_env, listID))
  148. if verbose:
  149. iterator = tqdm(pool.imap_unordered(do_partial, itr, chunksize),
  150. desc='computing GEDs', file=sys.stdout)
  151. else:
  152. iterator = pool.imap_unordered(do_partial, itr, chunksize)
  153. # iterator = pool.imap_unordered(do_partial, itr, chunksize)
  154. for i, j, dis, n_eo_tmp in iterator:
  155. idx_itr = int(len(graphs) * i + j - (i + 1) * (i + 2) / 2)
  156. ged_vec[idx_itr] = dis
  157. ged_mat[i][j] = dis
  158. ged_mat[j][i] = dis
  159. n_edit_operations[idx_itr] = n_eo_tmp
  160. # print('\n-------------------------------------------')
  161. # print(i, j, idx_itr, dis)
  162. pool.close()
  163. pool.join()
  164. else:
  165. ged_vec = []
  166. n_edit_operations = []
  167. if verbose:
  168. iterator = tqdm(range(len(graphs)), desc='computing GEDs', file=sys.stdout)
  169. else:
  170. iterator = range(len(graphs))
  171. for i in iterator:
  172. # for i in range(len(graphs)):
  173. for j in range(i + 1, len(graphs)):
  174. if nx.number_of_nodes(graphs[i]) <= nx.number_of_nodes(graphs[j]) or not sort:
  175. dis, pi_forward, pi_backward = _compute_ged(ged_env, listID[i], listID[j], graphs[i], graphs[j])
  176. else:
  177. dis, pi_backward, pi_forward = _compute_ged(ged_env, listID[j], listID[i], graphs[j], graphs[i])
  178. ged_vec.append(dis)
  179. ged_mat[i][j] = dis
  180. ged_mat[j][i] = dis
  181. n_eo_tmp = get_nb_edit_operations(graphs[i], graphs[j], pi_forward, pi_backward, **neo_options)
  182. n_edit_operations.append(n_eo_tmp)
  183. return ged_vec, ged_mat, n_edit_operations
  184. def _wrapper_compute_ged_parallel(options, sort, itr):
  185. i = itr[0]
  186. j = itr[1]
  187. dis, n_eo_tmp = _compute_ged_parallel(G_ged_env, G_listID[i], G_listID[j], G_graphs[i], G_graphs[j], options, sort)
  188. return i, j, dis, n_eo_tmp
  189. def _compute_ged_parallel(env, gid1, gid2, g1, g2, options, sort):
  190. if nx.number_of_nodes(g1) <= nx.number_of_nodes(g2) or not sort:
  191. dis, pi_forward, pi_backward = _compute_ged(env, gid1, gid2, g1, g2)
  192. else:
  193. dis, pi_backward, pi_forward = _compute_ged(env, gid2, gid1, g2, g1)
  194. n_eo_tmp = get_nb_edit_operations(g1, g2, pi_forward, pi_backward, **options) # [0,0,0,0,0,0]
  195. return dis, n_eo_tmp
  196. def _compute_ged(env, gid1, gid2, g1, g2):
  197. env.run_method(gid1, gid2)
  198. pi_forward = env.get_forward_map(gid1, gid2)
  199. pi_backward = env.get_backward_map(gid1, gid2)
  200. upper = env.get_upper_bound(gid1, gid2)
  201. dis = upper
  202. # make the map label correct (label remove map as np.inf)
  203. nodes1 = [n for n in g1.nodes()]
  204. nodes2 = [n for n in g2.nodes()]
  205. nb1 = nx.number_of_nodes(g1)
  206. nb2 = nx.number_of_nodes(g2)
  207. pi_forward = [nodes2[pi] if pi < nb2 else np.inf for pi in pi_forward]
  208. pi_backward = [nodes1[pi] if pi < nb1 else np.inf for pi in pi_backward]
  209. return dis, pi_forward, pi_backward
  210. def get_nb_edit_operations(g1, g2, forward_map, backward_map, edit_cost=None, **kwargs):
  211. if edit_cost == 'LETTER' or edit_cost == 'LETTER2':
  212. return get_nb_edit_operations_letter(g1, g2, forward_map, backward_map)
  213. elif edit_cost == 'NON_SYMBOLIC':
  214. node_attrs = kwargs.get('node_attrs', [])
  215. edge_attrs = kwargs.get('edge_attrs', [])
  216. return get_nb_edit_operations_nonsymbolic(g1, g2, forward_map, backward_map,
  217. node_attrs=node_attrs, edge_attrs=edge_attrs)
  218. elif edit_cost == 'CONSTANT':
  219. node_labels = kwargs.get('node_labels', [])
  220. edge_labels = kwargs.get('edge_labels', [])
  221. return get_nb_edit_operations_symbolic(g1, g2, forward_map, backward_map,
  222. node_labels=node_labels, edge_labels=edge_labels)
  223. else:
  224. return get_nb_edit_operations_symbolic(g1, g2, forward_map, backward_map)
  225. def get_nb_edit_operations_symbolic(g1, g2, forward_map, backward_map,
  226. node_labels=[], edge_labels=[]):
  227. """Compute the number of each edit operations for symbolic-labeled graphs.
  228. """
  229. n_vi = 0
  230. n_vr = 0
  231. n_vs = 0
  232. n_ei = 0
  233. n_er = 0
  234. n_es = 0
  235. nodes1 = [n for n in g1.nodes()]
  236. for i, map_i in enumerate(forward_map):
  237. if map_i == np.inf:
  238. n_vr += 1
  239. else:
  240. for nl in node_labels:
  241. label1 = g1.nodes[nodes1[i]][nl]
  242. label2 = g2.nodes[map_i][nl]
  243. if label1 != label2:
  244. n_vs += 1
  245. break
  246. for map_i in backward_map:
  247. if map_i == np.inf:
  248. n_vi += 1
  249. # idx_nodes1 = range(0, len(node1))
  250. edges1 = [e for e in g1.edges()]
  251. nb_edges2_cnted = 0
  252. for n1, n2 in edges1:
  253. idx1 = nodes1.index(n1)
  254. idx2 = nodes1.index(n2)
  255. # one of the nodes is removed, thus the edge is removed.
  256. if forward_map[idx1] == np.inf or forward_map[idx2] == np.inf:
  257. n_er += 1
  258. # corresponding edge is in g2.
  259. elif (forward_map[idx1], forward_map[idx2]) in g2.edges():
  260. nb_edges2_cnted += 1
  261. # edge labels are different.
  262. for el in edge_labels:
  263. label1 = g2.edges[((forward_map[idx1], forward_map[idx2]))][el]
  264. label2 = g1.edges[(n1, n2)][el]
  265. if label1 != label2:
  266. n_es += 1
  267. break
  268. elif (forward_map[idx2], forward_map[idx1]) in g2.edges():
  269. nb_edges2_cnted += 1
  270. # edge labels are different.
  271. for el in edge_labels:
  272. label1 = g2.edges[((forward_map[idx2], forward_map[idx1]))][el]
  273. label2 = g1.edges[(n1, n2)][el]
  274. if label1 != label2:
  275. n_es += 1
  276. break
  277. # corresponding nodes are in g2, however the edge is removed.
  278. else:
  279. n_er += 1
  280. n_ei = nx.number_of_edges(g2) - nb_edges2_cnted
  281. return n_vi, n_vr, n_vs, n_ei, n_er, n_es
  282. def get_nb_edit_operations_letter(g1, g2, forward_map, backward_map):
  283. """Compute the number of each edit operations.
  284. """
  285. n_vi = 0
  286. n_vr = 0
  287. n_vs = 0
  288. sod_vs = 0
  289. n_ei = 0
  290. n_er = 0
  291. nodes1 = [n for n in g1.nodes()]
  292. for i, map_i in enumerate(forward_map):
  293. if map_i == np.inf:
  294. n_vr += 1
  295. else:
  296. n_vs += 1
  297. diff_x = float(g1.nodes[nodes1[i]]['x']) - float(g2.nodes[map_i]['x'])
  298. diff_y = float(g1.nodes[nodes1[i]]['y']) - float(g2.nodes[map_i]['y'])
  299. sod_vs += np.sqrt(np.square(diff_x) + np.square(diff_y))
  300. for map_i in backward_map:
  301. if map_i == np.inf:
  302. n_vi += 1
  303. # idx_nodes1 = range(0, len(node1))
  304. edges1 = [e for e in g1.edges()]
  305. nb_edges2_cnted = 0
  306. for n1, n2 in edges1:
  307. idx1 = nodes1.index(n1)
  308. idx2 = nodes1.index(n2)
  309. # one of the nodes is removed, thus the edge is removed.
  310. if forward_map[idx1] == np.inf or forward_map[idx2] == np.inf:
  311. n_er += 1
  312. # corresponding edge is in g2. Edge label is not considered.
  313. elif (forward_map[idx1], forward_map[idx2]) in g2.edges() or \
  314. (forward_map[idx2], forward_map[idx1]) in g2.edges():
  315. nb_edges2_cnted += 1
  316. # corresponding nodes are in g2, however the edge is removed.
  317. else:
  318. n_er += 1
  319. n_ei = nx.number_of_edges(g2) - nb_edges2_cnted
  320. return n_vi, n_vr, n_vs, sod_vs, n_ei, n_er
  321. def get_nb_edit_operations_nonsymbolic(g1, g2, forward_map, backward_map,
  322. node_attrs=[], edge_attrs=[]):
  323. """Compute the number of each edit operations.
  324. """
  325. n_vi = 0
  326. n_vr = 0
  327. n_vs = 0
  328. sod_vs = 0
  329. n_ei = 0
  330. n_er = 0
  331. n_es = 0
  332. sod_es = 0
  333. nodes1 = [n for n in g1.nodes()]
  334. for i, map_i in enumerate(forward_map):
  335. if map_i == np.inf:
  336. n_vr += 1
  337. else:
  338. n_vs += 1
  339. sum_squares = 0
  340. for a_name in node_attrs:
  341. diff = float(g1.nodes[nodes1[i]][a_name]) - float(g2.nodes[map_i][a_name])
  342. sum_squares += np.square(diff)
  343. sod_vs += np.sqrt(sum_squares)
  344. for map_i in backward_map:
  345. if map_i == np.inf:
  346. n_vi += 1
  347. # idx_nodes1 = range(0, len(node1))
  348. edges1 = [e for e in g1.edges()]
  349. for n1, n2 in edges1:
  350. idx1 = nodes1.index(n1)
  351. idx2 = nodes1.index(n2)
  352. n1_g2 = forward_map[idx1]
  353. n2_g2 = forward_map[idx2]
  354. # one of the nodes is removed, thus the edge is removed.
  355. if n1_g2 == np.inf or n2_g2 == np.inf:
  356. n_er += 1
  357. # corresponding edge is in g2.
  358. elif (n1_g2, n2_g2) in g2.edges():
  359. n_es += 1
  360. sum_squares = 0
  361. for a_name in edge_attrs:
  362. diff = float(g1.edges[n1, n2][a_name]) - float(g2.edges[n1_g2, n2_g2][a_name])
  363. sum_squares += np.square(diff)
  364. sod_es += np.sqrt(sum_squares)
  365. elif (n2_g2, n1_g2) in g2.edges():
  366. n_es += 1
  367. sum_squares = 0
  368. for a_name in edge_attrs:
  369. diff = float(g1.edges[n2, n1][a_name]) - float(g2.edges[n2_g2, n1_g2][a_name])
  370. sum_squares += np.square(diff)
  371. sod_es += np.sqrt(sum_squares)
  372. # corresponding nodes are in g2, however the edge is removed.
  373. else:
  374. n_er += 1
  375. n_ei = nx.number_of_edges(g2) - n_es
  376. return n_vi, n_vr, sod_vs, n_ei, n_er, sod_es
  377. def ged_options_to_string(options):
  378. opt_str = ' '
  379. for key, val in options.items():
  380. if key == 'initialization_method':
  381. opt_str += '--initialization-method ' + str(val) + ' '
  382. elif key == 'initialization_options':
  383. opt_str += '--initialization-options ' + str(val) + ' '
  384. elif key == 'lower_bound_method':
  385. opt_str += '--lower-bound-method ' + str(val) + ' '
  386. elif key == 'random_substitution_ratio':
  387. opt_str += '--random-substitution-ratio ' + str(val) + ' '
  388. elif key == 'initial_solutions':
  389. opt_str += '--initial-solutions ' + str(val) + ' '
  390. elif key == 'ratio_runs_from_initial_solutions':
  391. opt_str += '--ratio-runs-from-initial-solutions ' + str(val) + ' '
  392. elif key == 'threads':
  393. opt_str += '--threads ' + str(val) + ' '
  394. elif key == 'num_randpost_loops':
  395. opt_str += '--num-randpost-loops ' + str(val) + ' '
  396. elif key == 'max_randpost_retrials':
  397. opt_str += '--maxrandpost-retrials ' + str(val) + ' '
  398. elif key == 'randpost_penalty':
  399. opt_str += '--randpost-penalty ' + str(val) + ' '
  400. elif key == 'randpost_decay':
  401. opt_str += '--randpost-decay ' + str(val) + ' '
  402. elif key == 'log':
  403. opt_str += '--log ' + str(val) + ' '
  404. elif key == 'randomness':
  405. opt_str += '--randomness ' + str(val) + ' '
  406. # if not isinstance(val, list):
  407. # opt_str += '--' + key.replace('_', '-') + ' '
  408. # if val == False:
  409. # val_str = 'FALSE'
  410. # else:
  411. # val_str = str(val)
  412. # opt_str += val_str + ' '
  413. return opt_str

A Python package for graph kernels, graph edit distances and graph pre-image problem.