You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_pathkernel.ipynb 168 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "code",
  5. "execution_count": 1,
  6. "metadata": {
  7. "scrolled": false
  8. },
  9. "outputs": [
  10. {
  11. "name": "stdout",
  12. "output_type": "stream",
  13. "text": [
  14. "\n",
  15. "Mutagenicity\n",
  16. "\n",
  17. "--- This is a classification problem ---\n",
  18. "\n",
  19. "1. Loading dataset from file...\n",
  20. "\n",
  21. "2. Calculating gram matrices. This could take a while...\n",
  22. "\n",
  23. "getting shortest paths: 100%|██████████| 4337/4337 [00:44<00:00, 97.63it/s]\n",
  24. "calculating kernels: 0%| | 2789/9406953.0 [01:36<77:03:17, 33.90it/s] "
  25. ]
  26. },
  27. {
  28. "ename": "KeyboardInterrupt",
  29. "evalue": "",
  30. "output_type": "error",
  31. "traceback": [
  32. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  33. "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
  34. "\u001b[0;32m<ipython-input-1-773aadaa113a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 56\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'task'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'task'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mds\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m'classification'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNUM_TRIALS\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m30\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0mdatafile_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'dataset_y'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'dataset_y'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mds\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 58\u001b[0;31m extra_params=(ds['extra_params'] if 'extra_params' in ds else None))\n\u001b[0m\u001b[1;32m 59\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  35. "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/utils/model_selection_precomputed.py\u001b[0m in \u001b[0;36mmodel_selection_for_precomputed_kernel\u001b[0;34m(datafile, estimator, param_grid_precomputed, param_grid, model_type, NUM_TRIALS, datafile_y, extra_params)\u001b[0m\n\u001b[1;32m 99\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'gram matrix with parameters'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams_out\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'is: '\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 100\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 101\u001b[0;31m \u001b[0mKmatrix\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcurrent_run_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mestimator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mparams_out\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 102\u001b[0m \u001b[0mKmatrix_diag\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mKmatrix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdiagonal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 103\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
  36. "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/kernels/pathKernel.py\u001b[0m in \u001b[0;36mpathkernel\u001b[0;34m(node_label, edge_label, *args)\u001b[0m\n\u001b[1;32m 70\u001b[0m Kmatrix[i][j] = _pathkernel_do_l(Gn[i], Gn[j], splist[i],\n\u001b[1;32m 71\u001b[0m \u001b[0msplist\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnode_label\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 72\u001b[0;31m edge_label)\n\u001b[0m\u001b[1;32m 73\u001b[0m \u001b[0mKmatrix\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mKmatrix\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m \u001b[0mpbar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  37. "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/kernels/pathKernel.py\u001b[0m in \u001b[0;36m_pathkernel_do_l\u001b[0;34m(G1, G2, sp1, sp2, node_label, edge_label)\u001b[0m\n\u001b[1;32m 130\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mpath1\u001b[0m \u001b[0;32min\u001b[0m \u001b[0msp1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 131\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mpath2\u001b[0m \u001b[0;32min\u001b[0m \u001b[0msp2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 132\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 133\u001b[0m kernel_path = (G1.node[path1[0]][node_label] == G2.node[path2[\n\u001b[1;32m 134\u001b[0m 0]][node_label])\n",
  38. "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
  39. ]
  40. }
  41. ],
  42. "source": [
  43. "%load_ext line_profiler\n",
  44. "%matplotlib inline\n",
  45. "import numpy as np\n",
  46. "import sys\n",
  47. "sys.path.insert(0, \"../\")\n",
  48. "from pygraph.utils.model_selection_precomputed import model_selection_for_precomputed_kernel\n",
  49. "from pygraph.kernels.pathKernel import pathkernel\n",
  50. "\n",
  51. "dslist = [ \n",
  52. "# {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', 'task': 'regression'}, # node_labeled\n",
  53. "# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge_labeled\n",
  54. "# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds',}, # unlabeled\n",
  55. " {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, # fully_labeled\n",
  56. " {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',\n",
  57. " 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}},\n",
  58. " {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', \n",
  59. " 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt',},\n",
  60. " {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'},\n",
  61. " {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, \n",
  62. " {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},\n",
  63. " {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'},\n",
  64. " {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'},\n",
  65. " {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'},\n",
  66. " {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'},\n",
  67. " {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'},\n",
  68. " {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'},\n",
  69. " {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'},\n",
  70. " {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',\n",
  71. " 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}},\n",
  72. " {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'},\n",
  73. " {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',\n",
  74. " 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}},\n",
  75. " {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',\n",
  76. " 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}},\n",
  77. " {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',\n",
  78. " 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',},\n",
  79. " \n",
  80. "\n",
  81. "# # not working below\n",
  82. "# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},\n",
  83. "# {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},\n",
  84. "# {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},\n",
  85. "# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},\n",
  86. "]\n",
  87. "estimator = pathkernel\n",
  88. "param_grid_precomputed = {}\n",
  89. "param_grid = [{'C': np.logspace(-10, 10, num = 41, base = 10)}, \n",
  90. " {'alpha': np.logspace(-10, 10, num = 41, base = 10)}]\n",
  91. "\n",
  92. "for ds in dslist:\n",
  93. " print()\n",
  94. " print(ds['name'])\n",
  95. " model_selection_for_precomputed_kernel(\n",
  96. " ds['dataset'], estimator, param_grid_precomputed, \n",
  97. " (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \n",
  98. " (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30,\n",
  99. " datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),\n",
  100. " extra_params=(ds['extra_params'] if 'extra_params' in ds else None))\n",
  101. " print()"
  102. ]
  103. },
  104. {
  105. "cell_type": "code",
  106. "execution_count": 1,
  107. "metadata": {},
  108. "outputs": [
  109. {
  110. "name": "stdout",
  111. "output_type": "stream",
  112. "text": [
  113. "\n",
  114. "--- This is a regression problem ---\n",
  115. "\n",
  116. "1. Loading dataset from file...\n",
  117. "\n",
  118. "2. Calculating gram matrices. This could take a while...\n",
  119. "\n",
  120. " --- mean average path kernel matrix of size 183 built in 21.938350677490234 seconds ---\n",
  121. "\n",
  122. "gram matrix with parameters {} is: \n",
  123. "[[1. 0.56568542 0. ... 0. 0. 0. ]\n",
  124. " [0.56568542 1. 0. ... 0. 0. 0. ]\n",
  125. " [0. 0. 1. ... 0.14113936 0.15109947 0.1490712 ]\n",
  126. " ...\n",
  127. " [0. 0. 0.14113936 ... 1. 0.71655637 0.66906607]\n",
  128. " [0. 0. 0.15109947 ... 0.71655637 1. 0.73430128]\n",
  129. " [0. 0. 0.1490712 ... 0.66906607 0.73430128 1. ]]\n"
  130. ]
  131. },
  132. {
  133. "data": {

A Python package for graph kernels, graph edit distances and graph pre-image problem.