You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_marginalizedkernel.ipynb 479 kB

8 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "code",
  5. "execution_count": 1,
  6. "metadata": {},
  7. "outputs": [
  8. {
  9. "name": "stdout",
  10. "output_type": "stream",
  11. "text": [
  12. "\n",
  13. "Acyclic\n",
  14. "\n",
  15. "--- This is a regression problem ---\n",
  16. "\n",
  17. "1. Loading dataset from file...\n",
  18. "\n",
  19. "2. Calculating gram matrices. This could take a while...\n",
  20. "\n",
  21. "gram matrix with parameters {'p_quit': 0.10000000000000001, 'itr': 20} is: \n",
  22. "removing tottering: 100%|██████████| 183/183 [00:00<00:00, 1678.94it/s]\n",
  23. "calculating kernels: 8%|▊ | 1318/16836.0 [02:48<28:58, 8.93it/s] "
  24. ]
  25. },
  26. {
  27. "ename": "KeyboardInterrupt",
  28. "evalue": "",
  29. "output_type": "error",
  30. "traceback": [
  31. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  32. "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
  33. "\u001b[0;32m<ipython-input-1-c8ad7685a8b8>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'task'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'task'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mds\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m'classification'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNUM_TRIALS\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m30\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[0mdatafile_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'dataset_y'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'dataset_y'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mds\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 60\u001b[0;31m extra_params=(ds['extra_params'] if 'extra_params' in ds else None))\n\u001b[0m\u001b[1;32m 61\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  34. "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/utils/model_selection_precomputed.py\u001b[0m in \u001b[0;36mmodel_selection_for_precomputed_kernel\u001b[0;34m(datafile, estimator, param_grid_precomputed, param_grid, model_type, NUM_TRIALS, datafile_y, extra_params)\u001b[0m\n\u001b[1;32m 99\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'gram matrix with parameters'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams_out\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'is: '\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 100\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 101\u001b[0;31m \u001b[0mKmatrix\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcurrent_run_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mestimator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mparams_out\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 102\u001b[0m \u001b[0mKmatrix_diag\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mKmatrix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdiagonal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 103\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
  35. "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/kernels/marginalizedKernel.py\u001b[0m in \u001b[0;36mmarginalizedkernel\u001b[0;34m(node_label, edge_label, p_quit, itr, remove_totters, *args)\u001b[0m\n\u001b[1;32m 83\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mGn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 84\u001b[0m Kmatrix[i][j] = _marginalizedkernel_do(Gn[i], Gn[j], node_label,\n\u001b[0;32m---> 85\u001b[0;31m edge_label, p_quit, itr)\n\u001b[0m\u001b[1;32m 86\u001b[0m \u001b[0mKmatrix\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mKmatrix\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 87\u001b[0m \u001b[0mpbar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  36. "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/kernels/marginalizedKernel.py\u001b[0m in \u001b[0;36m_marginalizedkernel_do\u001b[0;34m(G1, G2, node_label, edge_label, p_quit, itr)\u001b[0m\n\u001b[1;32m 147\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mneighbor2\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mneighbor_n2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0mt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mp_trans_n1\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mp_trans_n2\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 149\u001b[0;31m \u001b[0mdeltakernel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mG1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnode\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mneighbor1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnode_label\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mG2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnode\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mneighbor2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnode_label\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 150\u001b[0m \u001b[0mdeltakernel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mneighbor_n1\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mneighbor1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0medge_label\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mneighbor_n2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mneighbor2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0medge_label\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 151\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
  37. "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/networkx/classes/graph.py\u001b[0m in \u001b[0;36mnodes\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 717\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 718\u001b[0m \"\"\"\n\u001b[0;32m--> 719\u001b[0;31m \u001b[0mnodes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNodeView\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 720\u001b[0m \u001b[0;31m# Lazy View creation: overload the (class) property on the instance\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 721\u001b[0m \u001b[0;31m# Then future G.nodes use the existing View\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  38. "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/networkx/classes/reportviews.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, graph)\u001b[0m\n\u001b[1;32m 165\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_nodes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstate\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'_nodes'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 166\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 167\u001b[0;31m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgraph\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 168\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_nodes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgraph\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_node\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 169\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
  39. "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
  40. ]
  41. }
  42. ],
  43. "source": [
  44. "%load_ext line_profiler\n",
  45. "%matplotlib inline\n",
  46. "import numpy as np\n",
  47. "import sys\n",
  48. "sys.path.insert(0, \"../\")\n",
  49. "from pygraph.utils.model_selection_precomputed import model_selection_for_precomputed_kernel\n",
  50. "from pygraph.kernels.marginalizedKernel import marginalizedkernel\n",
  51. "\n",
  52. "dslist = [ \n",
  53. " {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', 'task': 'regression'}, # node_labeled\n",
  54. "# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge_labeled\n",
  55. "# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds',}, # unlabeled\n",
  56. "# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, # fully_labeled\n",
  57. "# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds',},\n",
  58. "\n",
  59. "# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',\n",
  60. "# 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}},\n",
  61. "# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', \n",
  62. "# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt',},\n",
  63. "# {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'},\n",
  64. "# {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, \n",
  65. " {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},\n",
  66. "# {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'},\n",
  67. "# {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'},\n",
  68. "# {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'},\n",
  69. "# {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'},\n",
  70. "# {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'},\n",
  71. "\n",
  72. "# {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'},\n",
  73. "# {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'},\n",
  74. "# {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',\n",
  75. "# 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}},\n",
  76. "# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'},\n",
  77. "# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',\n",
  78. "# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}},\n",
  79. "# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',\n",
  80. "# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}},\n",
  81. "# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',\n",
  82. "# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',},\n",
  83. " \n",
  84. "# # not working below\n",
  85. "# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},\n",
  86. "# {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},\n",
  87. "# {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},\n",
  88. "# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},\n",
  89. "]\n",
  90. "estimator = marginalizedkernel\n",
  91. "param_grid_precomputed = {'p_quit': np.linspace(0.1, 0.9, 9), 'itr': [20]}\n",
  92. "param_grid = [{'C': np.logspace(-10, 10, num = 41, base = 10)}, \n",
  93. " {'alpha': np.logspace(-10, 10, num = 41, base = 10)}]\n",
  94. "\n",
  95. "for ds in dslist:\n",
  96. " print()\n",
  97. " print(ds['name'])\n",
  98. " model_selection_for_precomputed_kernel(\n",
  99. " ds['dataset'], estimator, param_grid_precomputed, \n",
  100. " (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \n",
  101. " (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30,\n",
  102. " datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),\n",
  103. " extra_params=(ds['extra_params'] if 'extra_params' in ds else None))\n",
  104. " print()"
  105. ]
  106. },
  107. {
  108. "cell_type": "code",
  109. "execution_count": 1,
  110. "metadata": {},
  111. "outputs": [
  112. {
  113. "name": "stdout",
  114. "output_type": "stream",
  115. "text": [
  116. "\n",
  117. "--- This is a regression problem ---\n",
  118. "\n",
  119. "1. Loading dataset from file...\n",
  120. "\n",
  121. "2. Calculating gram matrices. This could take a while...\n",
  122. "\n",
  123. "gram matrix with parameters {'p_quit': 0.10000000000000001} is: \n",
  124. "calculate kernels: 100%|██████████| 16836/16836.0 [1:46:28<00:00, 1.48it/s]\n",
  125. " --- marginalized kernel matrix of size 183 built in 6388.502187728882 seconds ---\n",
  126. "[[ 1. 0.64549125 0.1238602 ..., 0.18744115 0.18784508\n",
  127. " 0.18052003]\n",
  128. " [ 0.64549125 1. 0.13569668 ..., 0.20535363 0.20579615\n",
  129. " 0.19777109]\n",
  130. " [ 0.1238602 0.13569668 1. ..., 0.27603195 0.27457716\n",
  131. " 0.29886586]\n",
  132. " ..., \n",
  133. " [ 0.18744115 0.20535363 0.27603195 ..., 1. 0.99990821\n",
  134. " 0.99626713]\n",
  135. " [ 0.18784508 0.20579615 0.27457716 ..., 0.99990821 1. 0.99550561]\n",
  136. " [ 0.18052003 0.19777109 0.29886586 ..., 0.99626713 0.99550561 1. ]]\n"
  137. ]
  138. },
  139. {
  140. "data": {

A Python package for graph kernels, graph edit distances and graph pre-image problem.