|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- {
- "cells": [
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "Acyclic\n",
- "\n",
- "--- This is a regression problem ---\n",
- "\n",
- "1. Loading dataset from file...\n",
- "\n",
- "2. Calculating gram matrices. This could take a while...\n",
- "\n",
- "gram matrix with parameters {'p_quit': 0.10000000000000001, 'itr': 20} is: \n",
- "removing tottering: 100%|██████████| 183/183 [00:00<00:00, 1678.94it/s]\n",
- "calculating kernels: 8%|▊ | 1318/16836.0 [02:48<28:58, 8.93it/s] "
- ]
- },
- {
- "ename": "KeyboardInterrupt",
- "evalue": "",
- "output_type": "error",
- "traceback": [
- "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
- "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
- "\u001b[0;32m<ipython-input-1-c8ad7685a8b8>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'task'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'task'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mds\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;34m'classification'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNUM_TRIALS\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m30\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 59\u001b[0m \u001b[0mdatafile_y\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'dataset_y'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'dataset_y'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mds\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 60\u001b[0;31m extra_params=(ds['extra_params'] if 'extra_params' in ds else None))\n\u001b[0m\u001b[1;32m 61\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/utils/model_selection_precomputed.py\u001b[0m in \u001b[0;36mmodel_selection_for_precomputed_kernel\u001b[0;34m(datafile, estimator, param_grid_precomputed, param_grid, model_type, NUM_TRIALS, datafile_y, extra_params)\u001b[0m\n\u001b[1;32m 99\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'gram matrix with parameters'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams_out\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'is: '\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 100\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 101\u001b[0;31m \u001b[0mKmatrix\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcurrent_run_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mestimator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mparams_out\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 102\u001b[0m \u001b[0mKmatrix_diag\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mKmatrix\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdiagonal\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 103\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/kernels/marginalizedKernel.py\u001b[0m in \u001b[0;36mmarginalizedkernel\u001b[0;34m(node_label, edge_label, p_quit, itr, remove_totters, *args)\u001b[0m\n\u001b[1;32m 83\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mGn\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 84\u001b[0m Kmatrix[i][j] = _marginalizedkernel_do(Gn[i], Gn[j], node_label,\n\u001b[0;32m---> 85\u001b[0;31m edge_label, p_quit, itr)\n\u001b[0m\u001b[1;32m 86\u001b[0m \u001b[0mKmatrix\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mKmatrix\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 87\u001b[0m \u001b[0mpbar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/media/ljia/DATA/research-repo/codes/Linlin/py-graph/pygraph/kernels/marginalizedKernel.py\u001b[0m in \u001b[0;36m_marginalizedkernel_do\u001b[0;34m(G1, G2, node_label, edge_label, p_quit, itr)\u001b[0m\n\u001b[1;32m 147\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mneighbor2\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mneighbor_n2\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0mt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mp_trans_n1\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mp_trans_n2\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 149\u001b[0;31m \u001b[0mdeltakernel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mG1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnode\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mneighbor1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnode_label\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mG2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnode\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mneighbor2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnode_label\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 150\u001b[0m \u001b[0mdeltakernel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mneighbor_n1\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mneighbor1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0medge_label\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mneighbor_n2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mneighbor2\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0medge_label\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 151\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/networkx/classes/graph.py\u001b[0m in \u001b[0;36mnodes\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 717\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 718\u001b[0m \"\"\"\n\u001b[0;32m--> 719\u001b[0;31m \u001b[0mnodes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNodeView\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 720\u001b[0m \u001b[0;31m# Lazy View creation: overload the (class) property on the instance\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 721\u001b[0m \u001b[0;31m# Then future G.nodes use the existing View\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/networkx/classes/reportviews.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, graph)\u001b[0m\n\u001b[1;32m 165\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_nodes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstate\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'_nodes'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 166\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 167\u001b[0;31m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgraph\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 168\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_nodes\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgraph\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_node\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 169\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
- "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
- ]
- }
- ],
- "source": [
- "%load_ext line_profiler\n",
- "%matplotlib inline\n",
- "import numpy as np\n",
- "import sys\n",
- "sys.path.insert(0, \"../\")\n",
- "from pygraph.utils.model_selection_precomputed import model_selection_for_precomputed_kernel\n",
- "from pygraph.kernels.marginalizedKernel import marginalizedkernel\n",
- "\n",
- "dslist = [ \n",
- " {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', 'task': 'regression'}, # node_labeled\n",
- "# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge_labeled\n",
- "# {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds',}, # unlabeled\n",
- "# {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, # fully_labeled\n",
- "# {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds',},\n",
- "\n",
- "# {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',\n",
- "# 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}},\n",
- "# {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', \n",
- "# 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt',},\n",
- "# {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'},\n",
- "# {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, \n",
- " {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'},\n",
- "# {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'},\n",
- "# {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'},\n",
- "# {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'},\n",
- "# {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'},\n",
- "# {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'},\n",
- "\n",
- "# {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'},\n",
- "# {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'},\n",
- "# {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',\n",
- "# 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}},\n",
- "# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'},\n",
- "# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',\n",
- "# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}},\n",
- "# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',\n",
- "# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}},\n",
- "# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',\n",
- "# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',},\n",
- " \n",
- "# # not working below\n",
- "# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},\n",
- "# {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},\n",
- "# {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},\n",
- "# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},\n",
- "]\n",
- "estimator = marginalizedkernel\n",
- "param_grid_precomputed = {'p_quit': np.linspace(0.1, 0.9, 9), 'itr': [20]}\n",
- "param_grid = [{'C': np.logspace(-10, 10, num = 41, base = 10)}, \n",
- " {'alpha': np.logspace(-10, 10, num = 41, base = 10)}]\n",
- "\n",
- "for ds in dslist:\n",
- " print()\n",
- " print(ds['name'])\n",
- " model_selection_for_precomputed_kernel(\n",
- " ds['dataset'], estimator, param_grid_precomputed, \n",
- " (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \n",
- " (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30,\n",
- " datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),\n",
- " extra_params=(ds['extra_params'] if 'extra_params' in ds else None))\n",
- " print()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\n",
- "--- This is a regression problem ---\n",
- "\n",
- "1. Loading dataset from file...\n",
- "\n",
- "2. Calculating gram matrices. This could take a while...\n",
- "\n",
- "gram matrix with parameters {'p_quit': 0.10000000000000001} is: \n",
- "calculate kernels: 100%|██████████| 16836/16836.0 [1:46:28<00:00, 1.48it/s]\n",
- " --- marginalized kernel matrix of size 183 built in 6388.502187728882 seconds ---\n",
- "[[ 1. 0.64549125 0.1238602 ..., 0.18744115 0.18784508\n",
- " 0.18052003]\n",
- " [ 0.64549125 1. 0.13569668 ..., 0.20535363 0.20579615\n",
- " 0.19777109]\n",
- " [ 0.1238602 0.13569668 1. ..., 0.27603195 0.27457716\n",
- " 0.29886586]\n",
- " ..., \n",
- " [ 0.18744115 0.20535363 0.27603195 ..., 1. 0.99990821\n",
- " 0.99626713]\n",
- " [ 0.18784508 0.20579615 0.27457716 ..., 0.99990821 1. 0.99550561]\n",
- " [ 0.18052003 0.19777109 0.29886586 ..., 0.99626713 0.99550561 1. ]]\n"
- ]
- },
- {
- "data": {
|