You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_spkernel.ipynb 529 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. {
  2. "cells": [
  3. {
  4. "cell_type": "code",
  5. "execution_count": 1,
  6. "metadata": {},
  7. "outputs": [
  8. {
  9. "name": "stderr",
  10. "output_type": "stream",
  11. "text": [
  12. "[Parallel(n_jobs=8)]: Using backend LokyBackend with 8 concurrent workers.\n",
  13. "[Parallel(n_jobs=8)]: Done 2 out of 9 | elapsed: 2.8min remaining: 9.9min\n",
  14. "[Parallel(n_jobs=8)]: Done 3 out of 9 | elapsed: 3.2min remaining: 6.4min\n",
  15. "[Parallel(n_jobs=8)]: Done 4 out of 9 | elapsed: 4.0min remaining: 5.0min\n",
  16. "[Parallel(n_jobs=8)]: Done 5 out of 9 | elapsed: 7.9min remaining: 6.3min\n",
  17. "[Parallel(n_jobs=8)]: Done 6 out of 9 | elapsed: 147.0min remaining: 73.5min\n",
  18. "[Parallel(n_jobs=8)]: Done 7 out of 9 | elapsed: 397.8min remaining: 113.7min\n",
  19. "[Parallel(n_jobs=8)]: Done 9 out of 9 | elapsed: 1098.6min remaining: 0.0s\n"
  20. ]
  21. },
  22. {
  23. "ename": "KeyboardInterrupt",
  24. "evalue": "",
  25. "output_type": "error",
  26. "traceback": [
  27. "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
  28. "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)",
  29. "\u001b[0;32m<ipython-input-1-ba0f5fe728f1>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 81\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 82\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 83\u001b[0;31m \u001b[0mParallel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn_jobs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnum_cores\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdelayed\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcompute_ds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mds\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mds\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdslist\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
  30. "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/joblib/parallel.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, iterable)\u001b[0m\n\u001b[1;32m 960\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 961\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieval_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 962\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretrieve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 963\u001b[0m \u001b[0;31m# Make sure that we get a last message telling us we are done\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0melapsed_time\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_start_time\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  31. "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/joblib/parallel.py\u001b[0m in \u001b[0;36mretrieve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 863\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 864\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_backend\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'supports_timeout'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 865\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 866\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 867\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mjob\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  32. "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/joblib/_parallel_backends.py\u001b[0m in \u001b[0;36mwrap_future_result\u001b[0;34m(future, timeout)\u001b[0m\n\u001b[1;32m 513\u001b[0m AsyncResults.get from multiprocessing.\"\"\"\n\u001b[1;32m 514\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 515\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfuture\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 516\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mLokyTimeoutError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 517\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTimeoutError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  33. "\u001b[0;32m/usr/local/lib/python3.5/dist-packages/joblib/externals/loky/_base.py\u001b[0m in \u001b[0;36mresult\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 424\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__get_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 425\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 426\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_condition\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 427\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 428\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_state\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mCANCELLED\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mCANCELLED_AND_NOTIFIED\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  34. "\u001b[0;32m/usr/lib/python3.5/threading.py\u001b[0m in \u001b[0;36mwait\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 291\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# restore state no matter what (e.g., KeyboardInterrupt)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 292\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mtimeout\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 293\u001b[0;31m \u001b[0mwaiter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0macquire\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 294\u001b[0m \u001b[0mgotit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 295\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
  35. "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
  36. ]
  37. }
  38. ],
  39. "source": [
  40. "# # test parallel computing\n",
  41. "# import psutil\n",
  42. "# # logical=True counts threads, but we are interested in cores\n",
  43. "# psutil.()# .cpu_count(logical=False)\n",
  44. "%load_ext line_profiler\n",
  45. "%matplotlib inline\n",
  46. "import functools\n",
  47. "from libs import *\n",
  48. "from sklearn.metrics.pairwise import rbf_kernel\n",
  49. "from joblib import Parallel, delayed\n",
  50. "import multiprocessing\n",
  51. "\n",
  52. "from pygraph.kernels.spKernel import spkernel\n",
  53. "from pygraph.utils.kernels import deltakernel, kernelsum\n",
  54. "\n",
  55. "num_cores = multiprocessing.cpu_count()\n",
  56. "\n",
  57. "dslist = [ \n",
  58. " {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', 'task': 'regression'}, # node symb\n",
  59. "# {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb\n",
  60. " {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds',}, # unlabeled\n",
  61. " {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds',}, # node/edge symb\n",
  62. " {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat',\n",
  63. " 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb\n",
  64. " {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', \n",
  65. " 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt',}, # contains single node graph, node symb\n",
  66. "# {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb\n",
  67. "# {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb\n",
  68. " {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, # node/edge symb\n",
  69. " {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, # node symb/nsymb\n",
  70. "# {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'},\n",
  71. " {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'},\n",
  72. "# {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb\n",
  73. "# {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb\n",
  74. "# {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb\n",
  75. "# {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb\n",
  76. "# {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb\n",
  77. "\n",
  78. "# {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb\n",
  79. "# {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb\n",
  80. " {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat',\n",
  81. " 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}}, # node symb\n",
  82. "# {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb\n",
  83. "# {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat',\n",
  84. "# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb\n",
  85. "# {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat',\n",
  86. "# 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb\n",
  87. "# {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf',\n",
  88. "# 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb\n",
  89. " \n",
  90. "# # not working below\n",
  91. "# {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',},\n",
  92. "# {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',},\n",
  93. "# {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',},\n",
  94. "# {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',},\n",
  95. "]\n",
  96. "estimator = spkernel\n",
  97. "mixkernel = functools.partial(kernelsum, deltakernel, rbf_kernel)\n",
  98. "param_grid_precomputed = {'node_kernels': [{'symb': deltakernel, 'nsymb': rbf_kernel, 'mix': mixkernel}]}\n",
  99. "param_grid = [{'C': np.logspace(-10, 10, num = 41, base = 10)}, \n",
  100. " {'alpha': np.logspace(-10, 10, num = 41, base = 10)}]\n",
  101. " \n",
  102. "def compute_ds(ds):\n",
  103. " print()\n",
  104. " print(ds['name'])\n",
  105. " model_selection_for_precomputed_kernel(\n",
  106. " ds['dataset'], estimator, param_grid_precomputed, \n",
  107. " (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \n",
  108. " (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30,\n",
  109. " datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None),\n",
  110. " extra_params=(ds['extra_params'] if 'extra_params' in ds else None),\n",
  111. " ds_name=ds['name'])\n",
  112. " \n",
  113. "# %lprun -f spkernel \\\n",
  114. "# model_selection_for_precomputed_kernel( \\\n",
  115. "# ds['dataset'], estimator, param_grid_precomputed, \\\n",
  116. "# (param_grid[1] if ('task' in ds and ds['task'] == 'regression') else param_grid[0]), \\\n",
  117. "# (ds['task'] if 'task' in ds else 'classification'), NUM_TRIALS=30, \\\n",
  118. "# datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), \\\n",
  119. "# extra_params=(ds['extra_params'] if 'extra_params' in ds else None))\n",
  120. " print()\n",
  121. " \n",
  122. "Parallel(n_jobs=num_cores, verbose=10)(delayed(compute_ds)(ds) for ds in dslist)"
  123. ]
  124. },
  125. {
  126. "cell_type": "code",
  127. "execution_count": null,
  128. "metadata": {
  129. "scrolled": false
  130. },
  131. "outputs": [
  132. {
  133. "name": "stdout",
  134. "output_type": "stream",
  135. "text": [
  136. "\n",
  137. "Acyclic\n",
  138. "\n",
  139. "--- This is a regression problem ---\n",
  140. "\n",
  141. "\n",
  142. "I. Loading dataset from file...\n",
  143. "\n",
  144. "2. Calculating gram matrices. This could take a while...\n",
  145. "\n",
  146. " None edge weight specified. Set all weight to 1.\n",
  147. "\n",
  148. "\n",
  149. " --- shortest path kernel matrix of size 183 built in 3.4878082275390625 seconds ---\n",
  150. "\n",
  151. "the gram matrix with parameters {'n_jobs': 8, 'node_kernels': {'mix': functools.partial(<function kernelsum at 0x7f8e59cb7048>, <function deltakernel at 0x7f8e59ddf048>, <function rbf_kernel at 0x7f8e5d3560d0>), 'symb': <function deltakernel at 0x7f8e59ddf048>, 'nsymb': <function rbf_kernel at 0x7f8e5d3560d0>}} is: \n",
  152. "[[1. 0.47140452 0.33333333 ... 0.30151134 0.30512858 0.27852425]\n",
  153. " [0.47140452 1. 0. ... 0.14213381 0.11986583 0.17232809]\n",
  154. " [0.33333333 0. 1. ... 0.36851387 0.37293493 0.34815531]\n",
  155. " ...\n",
  156. " [0.30151134 0.14213381 0.36851387 ... 1. 0.96429344 0.95175317]\n",
  157. " [0.30512858 0.11986583 0.37293493 ... 0.96429344 1. 0.96671243]\n",
  158. " [0.27852425 0.17232809 0.34815531 ... 0.95175317 0.96671243 1. ]]\n"
  159. ]
  160. },
  161. {
  162. "data": {

A Python package for graph kernels, graph edit distances and graph pre-image problem.