You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

file_managers.py 32 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901
  1. """ Utilities function to manage graph files
  2. """
  3. from os.path import dirname, splitext
  4. class DataLoader():
  5. def __init__(self, filename, filename_targets=None, gformat=None, **kwargs):
  6. """Read graph data from filename and load them as NetworkX graphs.
  7. Parameters
  8. ----------
  9. filename : string
  10. The name of the file from where the dataset is read.
  11. filename_targets : string
  12. The name of file of the targets corresponding to graphs.
  13. Notes
  14. -----
  15. This function supports following graph dataset formats:
  16. 'ds': load data from .ds file. See comments of function loadFromDS for a example.
  17. 'cxl': load data from Graph eXchange Language file (.cxl file). See
  18. `here <http://www.gupro.de/GXL/Introduction/background.html>`__ for detail.
  19. 'sdf': load data from structured data file (.sdf file). See
  20. `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__
  21. for details.
  22. 'mat': Load graph data from a MATLAB (up to version 7.1) .mat file. See
  23. README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__
  24. for details.
  25. 'txt': Load graph data from the TUDataset. See
  26. `here <https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets>`__
  27. for details. Note here filename is the name of either .txt file in
  28. the dataset directory.
  29. """
  30. if isinstance(filename, str):
  31. extension = splitext(filename)[1][1:]
  32. else: # filename is a list of files.
  33. extension = splitext(filename[0])[1][1:]
  34. if extension == "ds":
  35. self._graphs, self._targets, self._label_names = self.load_from_ds(filename, filename_targets)
  36. elif extension == "cxl":
  37. dir_dataset = kwargs.get('dirname_dataset', None)
  38. self._graphs, self._targets, self._label_names = self.load_from_xml(filename, dir_dataset)
  39. elif extension == 'xml':
  40. dir_dataset = kwargs.get('dirname_dataset', None)
  41. self._graphs, self._targets, self._label_names = self.load_from_xml(filename, dir_dataset)
  42. elif extension == "mat":
  43. order = kwargs.get('order')
  44. self._graphs, self._targets, self._label_names = self.load_mat(filename, order)
  45. elif extension == 'txt':
  46. if gformat is None:
  47. self._graphs, self._targets, self._label_names = self.load_tud(filename)
  48. elif gformat == 'cml':
  49. self._graphs, self._targets, self._label_names = self.load_from_ds(filename, filename_targets)
  50. else:
  51. raise ValueError('The input file with the extension ".', extension, '" is not supported. The supported extensions includes: ".ds", ".cxl", ".xml", ".mat", ".txt".')
  52. def load_from_ds(self, filename, filename_targets):
  53. """Load data from .ds file.
  54. Possible graph formats include:
  55. '.ct': see function load_ct for detail.
  56. '.gxl': see dunction load_gxl for detail.
  57. Note these graph formats are checked automatically by the extensions of
  58. graph files.
  59. """
  60. if isinstance(filename, str):
  61. dirname_dataset = dirname(filename)
  62. with open(filename) as f:
  63. content = f.read().splitlines()
  64. else: # filename is a list of files.
  65. dirname_dataset = dirname(filename[0])
  66. content = []
  67. for fn in filename:
  68. with open(fn) as f:
  69. content += f.read().splitlines()
  70. # to remove duplicate file names.
  71. data = []
  72. y = []
  73. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  74. content = [line for line in content if not line.endswith('.ds')] # Alkane
  75. content = [line for line in content if not line.startswith('#')] # Acyclic
  76. extension = splitext(content[0].split(' ')[0])[1][1:]
  77. if extension == 'ct':
  78. load_file_fun = self.load_ct
  79. elif extension == 'gxl' or extension == 'sdf': # @todo: .sdf not tested yet.
  80. load_file_fun = self.load_gxl
  81. elif extension == 'cml': # dataset "Chiral"
  82. load_file_fun = self.load_cml
  83. if filename_targets is None or filename_targets == '':
  84. for i in range(0, len(content)):
  85. tmp = content[i].split(' ')
  86. # remove the '#'s in file names
  87. g, l_names = load_file_fun(dirname_dataset + '/' + tmp[0].replace('#', '', 1))
  88. data.append(g)
  89. self._append_label_names(label_names, l_names) # @todo: this is so redundant.
  90. y.append(float(tmp[1]))
  91. else: # targets in a seperate file
  92. for i in range(0, len(content)):
  93. tmp = content[i]
  94. # remove the '#'s in file names
  95. g, l_names = load_file_fun(dirname_dataset + '/' + tmp.replace('#', '', 1))
  96. data.append(g)
  97. self._append_label_names(label_names, l_names)
  98. with open(filename_targets) as fnt:
  99. content_y = fnt.read().splitlines()
  100. # assume entries in filename and filename_targets have the same order.
  101. for item in content_y:
  102. tmp = item.split(' ')
  103. # assume the 3rd entry in a line is y (for Alkane dataset)
  104. y.append(float(tmp[2]))
  105. return data, y, label_names
  106. def load_from_xml(self, filename, dir_dataset=None):
  107. import xml.etree.ElementTree as ET
  108. if dir_dataset is not None:
  109. dir_dataset = dir_dataset
  110. else:
  111. dir_dataset = dirname(filename)
  112. tree = ET.parse(filename)
  113. root = tree.getroot()
  114. data = []
  115. y = []
  116. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  117. for graph in root.iter('graph'):
  118. mol_filename = graph.attrib['file']
  119. mol_class = graph.attrib['class']
  120. g, l_names = self.load_gxl(dir_dataset + '/' + mol_filename)
  121. data.append(g)
  122. self._append_label_names(label_names, l_names)
  123. y.append(mol_class)
  124. return data, y, label_names
  125. def load_mat(self, filename, order): # @todo: need to be updated (auto order) or deprecated.
  126. """Load graph data from a MATLAB (up to version 7.1) .mat file.
  127. Notes
  128. ------
  129. A MAT file contains a struct array containing graphs, and a column vector lx containing a class label for each graph.
  130. Check README in `downloadable file <http://mlcb.is.tuebingen.mpg.de/Mitarbeiter/Nino/WL/>`__ for detailed structure.
  131. """
  132. from scipy.io import loadmat
  133. import numpy as np
  134. import networkx as nx
  135. data = []
  136. content = loadmat(filename)
  137. for key, value in content.items():
  138. if key[0] == 'l': # class label
  139. y = np.transpose(value)[0].tolist()
  140. elif key[0] != '_':
  141. # if adjacency matrix is not compressed / edge label exists
  142. if order[1] == 0:
  143. for i, item in enumerate(value[0]):
  144. g = nx.Graph(name=i) # set name of the graph
  145. nl = np.transpose(item[order[3]][0][0][0]) # node label
  146. for index, label in enumerate(nl[0]):
  147. g.add_node(index, label_1=str(label))
  148. el = item[order[4]][0][0][0] # edge label
  149. for edge in el:
  150. g.add_edge(edge[0] - 1, edge[1] - 1, label_1=str(edge[2]))
  151. data.append(g)
  152. else:
  153. for i, item in enumerate(value[0]):
  154. g = nx.Graph(name=i) # set name of the graph
  155. nl = np.transpose(item[order[3]][0][0][0]) # node label
  156. for index, label in enumerate(nl[0]):
  157. g.add_node(index, label_1=str(label))
  158. sam = item[order[0]] # sparse adjacency matrix
  159. index_no0 = sam.nonzero()
  160. for col, row in zip(index_no0[0], index_no0[1]):
  161. g.add_edge(col, row)
  162. data.append(g)
  163. label_names = {'node_labels': ['label_1'], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  164. if order[1] == 0:
  165. label_names['edge_labels'].append('label_1')
  166. return data, y, label_names
  167. def load_tud(self, filename):
  168. """Load graph data from TUD dataset files.
  169. Notes
  170. ------
  171. The graph data is loaded from separate files.
  172. Check README in `downloadable file <http://tiny.cc/PK_MLJ_data>`__, 2018 for detailed structure.
  173. """
  174. import networkx as nx
  175. from os import listdir
  176. from os.path import dirname, basename
  177. def get_infos_from_readme(frm): # @todo: add README (cuniform), maybe node/edge label maps.
  178. """Get information from DS_label_readme.txt file.
  179. """
  180. def get_label_names_from_line(line):
  181. """Get names of labels/attributes from a line.
  182. """
  183. str_names = line.split('[')[1].split(']')[0]
  184. names = str_names.split(',')
  185. names = [attr.strip() for attr in names]
  186. return names
  187. def get_class_label_map(label_map_strings):
  188. label_map = {}
  189. for string in label_map_strings:
  190. integer, label = string.split('\t')
  191. label_map[int(integer.strip())] = label.strip()
  192. return label_map
  193. label_names = {'node_labels': [], 'node_attrs': [],
  194. 'edge_labels': [], 'edge_attrs': []}
  195. class_label_map = None
  196. class_label_map_strings = []
  197. with open(frm) as rm:
  198. content_rm = rm.read().splitlines()
  199. i = 0
  200. while i < len(content_rm):
  201. line = content_rm[i].strip()
  202. # get node/edge labels and attributes.
  203. if line.startswith('Node labels:'):
  204. label_names['node_labels'] = get_label_names_from_line(line)
  205. elif line.startswith('Node attributes:'):
  206. label_names['node_attrs'] = get_label_names_from_line(line)
  207. elif line.startswith('Edge labels:'):
  208. label_names['edge_labels'] = get_label_names_from_line(line)
  209. elif line.startswith('Edge attributes:'):
  210. label_names['edge_attrs'] = get_label_names_from_line(line)
  211. # get class label map.
  212. elif line.startswith('Class labels were converted to integer values using this map:'):
  213. i += 2
  214. line = content_rm[i].strip()
  215. while line != '' and i < len(content_rm):
  216. class_label_map_strings.append(line)
  217. i += 1
  218. line = content_rm[i].strip()
  219. class_label_map = get_class_label_map(class_label_map_strings)
  220. i += 1
  221. return label_names, class_label_map
  222. # get dataset name.
  223. dirname_dataset = dirname(filename)
  224. filename = basename(filename)
  225. fn_split = filename.split('_A')
  226. ds_name = fn_split[0].strip()
  227. # load data file names
  228. for name in listdir(dirname_dataset):
  229. if ds_name + '_A' in name:
  230. fam = dirname_dataset + '/' + name
  231. elif ds_name + '_graph_indicator' in name:
  232. fgi = dirname_dataset + '/' + name
  233. elif ds_name + '_graph_labels' in name:
  234. fgl = dirname_dataset + '/' + name
  235. elif ds_name + '_node_labels' in name:
  236. fnl = dirname_dataset + '/' + name
  237. elif ds_name + '_edge_labels' in name:
  238. fel = dirname_dataset + '/' + name
  239. elif ds_name + '_edge_attributes' in name:
  240. fea = dirname_dataset + '/' + name
  241. elif ds_name + '_node_attributes' in name:
  242. fna = dirname_dataset + '/' + name
  243. elif ds_name + '_graph_attributes' in name:
  244. fga = dirname_dataset + '/' + name
  245. elif ds_name + '_label_readme' in name:
  246. frm = dirname_dataset + '/' + name
  247. # this is supposed to be the node attrs, make sure to put this as the last 'elif'
  248. elif ds_name + '_attributes' in name:
  249. fna = dirname_dataset + '/' + name
  250. # get labels and attributes names.
  251. if 'frm' in locals():
  252. label_names, class_label_map = get_infos_from_readme(frm)
  253. else:
  254. label_names = {'node_labels': [], 'node_attrs': [],
  255. 'edge_labels': [], 'edge_attrs': []}
  256. class_label_map = None
  257. with open(fgi) as gi:
  258. content_gi = gi.read().splitlines() # graph indicator
  259. with open(fam) as am:
  260. content_am = am.read().splitlines() # adjacency matrix
  261. # load targets.
  262. if 'fgl' in locals():
  263. with open(fgl) as gl:
  264. content_targets = gl.read().splitlines() # targets (classification)
  265. targets = [float(i) for i in content_targets]
  266. elif 'fga' in locals():
  267. with open(fga) as ga:
  268. content_targets = ga.read().splitlines() # targets (regression)
  269. targets = [int(i) for i in content_targets]
  270. else:
  271. raise Exception('Can not find targets file. Please make sure there is a "', ds_name, '_graph_labels.txt" or "', ds_name, '_graph_attributes.txt"', 'file in your dataset folder.')
  272. if class_label_map is not None:
  273. targets = [class_label_map[t] for t in targets]
  274. # create graphs and add nodes
  275. data = [nx.Graph(name=str(i)) for i in range(0, len(content_targets))]
  276. if 'fnl' in locals():
  277. with open(fnl) as nl:
  278. content_nl = nl.read().splitlines() # node labels
  279. for idx, line in enumerate(content_gi):
  280. # transfer to int first in case of unexpected blanks
  281. data[int(line) - 1].add_node(idx)
  282. labels = [l.strip() for l in content_nl[idx].split(',')]
  283. if label_names['node_labels'] == []: # @todo: need fix bug.
  284. for i, label in enumerate(labels):
  285. l_name = 'label_' + str(i)
  286. data[int(line) - 1].nodes[idx][l_name] = label
  287. label_names['node_labels'].append(l_name)
  288. else:
  289. for i, l_name in enumerate(label_names['node_labels']):
  290. data[int(line) - 1].nodes[idx][l_name] = labels[i]
  291. else:
  292. for i, line in enumerate(content_gi):
  293. data[int(line) - 1].add_node(i)
  294. # add edges
  295. for line in content_am:
  296. tmp = line.split(',')
  297. n1 = int(tmp[0]) - 1
  298. n2 = int(tmp[1]) - 1
  299. # ignore edge weight here.
  300. g = int(content_gi[n1]) - 1
  301. data[g].add_edge(n1, n2)
  302. # add edge labels
  303. if 'fel' in locals():
  304. with open(fel) as el:
  305. content_el = el.read().splitlines()
  306. for idx, line in enumerate(content_el):
  307. labels = [l.strip() for l in line.split(',')]
  308. n = [int(i) - 1 for i in content_am[idx].split(',')]
  309. g = int(content_gi[n[0]]) - 1
  310. if label_names['edge_labels'] == []:
  311. for i, label in enumerate(labels):
  312. l_name = 'label_' + str(i)
  313. data[g].edges[n[0], n[1]][l_name] = label
  314. label_names['edge_labels'].append(l_name)
  315. else:
  316. for i, l_name in enumerate(label_names['edge_labels']):
  317. data[g].edges[n[0], n[1]][l_name] = labels[i]
  318. # add node attributes
  319. if 'fna' in locals():
  320. with open(fna) as na:
  321. content_na = na.read().splitlines()
  322. for idx, line in enumerate(content_na):
  323. attrs = [a.strip() for a in line.split(',')]
  324. g = int(content_gi[idx]) - 1
  325. if label_names['node_attrs'] == []:
  326. for i, attr in enumerate(attrs):
  327. a_name = 'attr_' + str(i)
  328. data[g].nodes[idx][a_name] = attr
  329. label_names['node_attrs'].append(a_name)
  330. else:
  331. for i, a_name in enumerate(label_names['node_attrs']):
  332. data[g].nodes[idx][a_name] = attrs[i]
  333. # add edge attributes
  334. if 'fea' in locals():
  335. with open(fea) as ea:
  336. content_ea = ea.read().splitlines()
  337. for idx, line in enumerate(content_ea):
  338. attrs = [a.strip() for a in line.split(',')]
  339. n = [int(i) - 1 for i in content_am[idx].split(',')]
  340. g = int(content_gi[n[0]]) - 1
  341. if label_names['edge_attrs'] == []:
  342. for i, attr in enumerate(attrs):
  343. a_name = 'attr_' + str(i)
  344. data[g].edges[n[0], n[1]][a_name] = attr
  345. label_names['edge_attrs'].append(a_name)
  346. else:
  347. for i, a_name in enumerate(label_names['edge_attrs']):
  348. data[g].edges[n[0], n[1]][a_name] = attrs[i]
  349. return data, targets, label_names
  350. def load_ct(self, filename): # @todo: this function is only tested on CTFile V2000; header not considered; only simple cases (atoms and bonds are considered.)
  351. """load data from a Chemical Table (.ct) file.
  352. Notes
  353. ------
  354. a typical example of data in .ct is like this:
  355. 3 2 <- number of nodes and edges
  356. 0.0000 0.0000 0.0000 C <- each line describes a node (x,y,z + label)
  357. 0.0000 0.0000 0.0000 C
  358. 0.0000 0.0000 0.0000 O
  359. 1 3 1 1 <- each line describes an edge : to, from, bond type, bond stereo
  360. 2 3 1 1
  361. Check `CTFile Formats file <https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&ved=2ahUKEwivhaSdjsTlAhVhx4UKHczHA8gQFjAJegQIARAC&url=https%3A%2F%2Fwww.daylight.com%2Fmeetings%2Fmug05%2FKappler%2Fctfile.pdf&usg=AOvVaw1cDNrrmMClkFPqodlF2inS>`__
  362. for detailed format discription.
  363. """
  364. import networkx as nx
  365. from os.path import basename
  366. g = nx.Graph()
  367. with open(filename) as f:
  368. content = f.read().splitlines()
  369. g = nx.Graph(name=str(content[0]), filename=basename(filename)) # set name of the graph
  370. # read the counts line.
  371. tmp = content[1].split(' ')
  372. tmp = [x for x in tmp if x != '']
  373. nb_atoms = int(tmp[0].strip()) # number of atoms
  374. nb_bonds = int(tmp[1].strip()) # number of bonds
  375. count_line_tags = ['number_of_atoms', 'number_of_bonds', 'number_of_atom_lists', '', 'chiral_flag', 'number_of_stext_entries', '', '', '', '', 'number_of_properties', 'CT_version']
  376. i = 0
  377. while i < len(tmp):
  378. if count_line_tags[i] != '': # if not obsoleted
  379. g.graph[count_line_tags[i]] = tmp[i].strip()
  380. i += 1
  381. # read the atom block.
  382. atom_tags = ['x', 'y', 'z', 'atom_symbol', 'mass_difference', 'charge', 'atom_stereo_parity', 'hydrogen_count_plus_1', 'stereo_care_box', 'valence', 'h0_designator', '', '', 'atom_atom_mapping_number', 'inversion_retention_flag', 'exact_change_flag']
  383. for i in range(0, nb_atoms):
  384. tmp = content[i + 2].split(' ')
  385. tmp = [x for x in tmp if x != '']
  386. g.add_node(i)
  387. j = 0
  388. while j < len(tmp):
  389. if atom_tags[j] != '':
  390. g.nodes[i][atom_tags[j]] = tmp[j].strip()
  391. j += 1
  392. # read the bond block.
  393. bond_tags = ['first_atom_number', 'second_atom_number', 'bond_type', 'bond_stereo', '', 'bond_topology', 'reacting_center_status']
  394. for i in range(0, nb_bonds):
  395. tmp = content[i + g.number_of_nodes() + 2].split(' ')
  396. tmp = [x for x in tmp if x != '']
  397. n1, n2 = int(tmp[0].strip()) - 1, int(tmp[1].strip()) - 1
  398. g.add_edge(n1, n2)
  399. j = 2
  400. while j < len(tmp):
  401. if bond_tags[j] != '':
  402. g.edges[(n1, n2)][bond_tags[j]] = tmp[j].strip()
  403. j += 1
  404. # get label names.
  405. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  406. atom_symbolic = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, None, None, 1, 1, 1]
  407. for nd in g.nodes():
  408. for key in g.nodes[nd]:
  409. if atom_symbolic[atom_tags.index(key)] == 1:
  410. label_names['node_labels'].append(key)
  411. else:
  412. label_names['node_attrs'].append(key)
  413. break
  414. bond_symbolic = [None, None, 1, 1, None, 1, 1]
  415. for ed in g.edges():
  416. for key in g.edges[ed]:
  417. if bond_symbolic[bond_tags.index(key)] == 1:
  418. label_names['edge_labels'].append(key)
  419. else:
  420. label_names['edge_attrs'].append(key)
  421. break
  422. return g, label_names
  423. def load_gxl(self, filename): # @todo: directed graphs.
  424. from os.path import basename
  425. import networkx as nx
  426. import xml.etree.ElementTree as ET
  427. tree = ET.parse(filename)
  428. root = tree.getroot()
  429. index = 0
  430. g = nx.Graph(filename=basename(filename), name=root[0].attrib['id'])
  431. dic = {} # used to retrieve incident nodes of edges
  432. for node in root.iter('node'):
  433. dic[node.attrib['id']] = index
  434. labels = {}
  435. for attr in node.iter('attr'):
  436. labels[attr.attrib['name']] = attr[0].text
  437. g.add_node(index, **labels)
  438. index += 1
  439. for edge in root.iter('edge'):
  440. labels = {}
  441. for attr in edge.iter('attr'):
  442. labels[attr.attrib['name']] = attr[0].text
  443. g.add_edge(dic[edge.attrib['from']], dic[edge.attrib['to']], **labels)
  444. # get label names.
  445. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  446. for node in root.iter('node'):
  447. for attr in node.iter('attr'):
  448. if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
  449. label_names['node_labels'].append(attr.attrib['name'])
  450. else:
  451. label_names['node_attrs'].append(attr.attrib['name'])
  452. break
  453. for edge in root.iter('edge'):
  454. for attr in edge.iter('attr'):
  455. if attr[0].tag == 'int': # @todo: this maybe wrong, and slow.
  456. label_names['edge_labels'].append(attr.attrib['name'])
  457. else:
  458. label_names['edge_attrs'].append(attr.attrib['name'])
  459. break
  460. return g, label_names
  461. def load_cml(self, filename): # @todo: directed graphs.
  462. from os.path import basename
  463. import networkx as nx
  464. import xml.etree.ElementTree as ET
  465. tree = ET.parse(filename)
  466. root = tree.getroot()
  467. index = 0
  468. g = nx.Graph(filename=basename(filename), name=root.attrib['id'])
  469. dic = {} # used to retrieve incident nodes of edges
  470. xmlns = '{http://www.xml-cml.org/schema}' # @todo: why this has to be added?
  471. for atom in root.iter(xmlns + 'atom'):
  472. dic[atom.attrib['id']] = index
  473. labels = {}
  474. for key, val in atom.attrib.items():
  475. if key != 'id':
  476. labels[key] = val
  477. g.add_node(index, **labels)
  478. index += 1
  479. for bond in root.iter(xmlns + 'bond'):
  480. labels = {}
  481. for key, val in bond.attrib.items():
  482. if key != 'atomRefs2':
  483. labels[key] = val
  484. n1, n2 = bond.attrib['atomRefs2'].strip().split(' ')
  485. g.add_edge(dic[n1], dic[n2], **labels)
  486. # get label names.
  487. label_names = {'node_labels': [], 'edge_labels': [], 'node_attrs': [], 'edge_attrs': []}
  488. for key, val in g.nodes[0].items():
  489. try:
  490. float(val)
  491. except:
  492. label_names['node_labels'].append(key)
  493. else:
  494. if val.isdigit():
  495. label_names['node_labels'].append(key)
  496. else:
  497. label_names['node_attrs'].append(key)
  498. for _, _, attrs in g.edges(data=True):
  499. for key, val in attrs.items():
  500. try:
  501. float(val)
  502. except:
  503. label_names['edge_labels'].append(key)
  504. else:
  505. if val.isdigit():
  506. label_names['edge_labels'].append(key)
  507. else:
  508. label_names['edge_attrs'].append(key)
  509. break
  510. return g, label_names
  511. def _append_label_names(self, label_names, new_names):
  512. for key, val in label_names.items():
  513. label_names[key] += [name for name in new_names[key] if name not in val]
  514. @property
  515. def data(self):
  516. return self._graphs, self._targets, self._label_names
  517. @property
  518. def graphs(self):
  519. return self._graphs
  520. @property
  521. def targets(self):
  522. return self._targets
  523. @property
  524. def label_names(self):
  525. return self._label_names
  526. class DataSaver():
  527. def __init__(self, graphs, targets=None, filename='gfile', gformat='gxl', group=None, **kwargs):
  528. """Save list of graphs.
  529. """
  530. import os
  531. dirname_ds = os.path.dirname(filename)
  532. if dirname_ds != '':
  533. dirname_ds += '/'
  534. os.makedirs(dirname_ds, exist_ok=True)
  535. if 'graph_dir' in kwargs:
  536. graph_dir = kwargs['graph_dir'] + '/'
  537. os.makedirs(graph_dir, exist_ok=True)
  538. del kwargs['graph_dir']
  539. else:
  540. graph_dir = dirname_ds
  541. if group == 'xml' and gformat == 'gxl':
  542. with open(filename + '.xml', 'w') as fgroup:
  543. fgroup.write("<?xml version=\"1.0\"?>")
  544. fgroup.write("\n<!DOCTYPE GraphCollection SYSTEM \"http://www.inf.unibz.it/~blumenthal/dtd/GraphCollection.dtd\">")
  545. fgroup.write("\n<GraphCollection>")
  546. for idx, g in enumerate(graphs):
  547. fname_tmp = "graph" + str(idx) + ".gxl"
  548. self.save_gxl(g, graph_dir + fname_tmp, **kwargs)
  549. fgroup.write("\n\t<graph file=\"" + fname_tmp + "\" class=\"" + str(targets[idx]) + "\"/>")
  550. fgroup.write("\n</GraphCollection>")
  551. fgroup.close()
  552. def save_gxl(self, graph, filename, method='default', node_labels=[], edge_labels=[], node_attrs=[], edge_attrs=[]):
  553. if method == 'default':
  554. gxl_file = open(filename, 'w')
  555. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  556. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  557. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  558. if 'name' in graph.graph:
  559. name = str(graph.graph['name'])
  560. else:
  561. name = 'dummy'
  562. gxl_file.write("<graph id=\"" + name + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  563. for v, attrs in graph.nodes(data=True):
  564. gxl_file.write("<node id=\"_" + str(v) + "\">")
  565. for l_name in node_labels:
  566. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  567. str(attrs[l_name]) + "</int></attr>")
  568. for a_name in node_attrs:
  569. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  570. str(attrs[a_name]) + "</float></attr>")
  571. gxl_file.write("</node>\n")
  572. for v1, v2, attrs in graph.edges(data=True):
  573. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  574. for l_name in edge_labels:
  575. gxl_file.write("<attr name=\"" + l_name + "\"><int>" +
  576. str(attrs[l_name]) + "</int></attr>")
  577. for a_name in edge_attrs:
  578. gxl_file.write("<attr name=\"" + a_name + "\"><float>" +
  579. str(attrs[a_name]) + "</float></attr>")
  580. gxl_file.write("</edge>\n")
  581. gxl_file.write("</graph>\n")
  582. gxl_file.write("</gxl>")
  583. gxl_file.close()
  584. elif method == 'benoit':
  585. import xml.etree.ElementTree as ET
  586. root_node = ET.Element('gxl')
  587. attr = dict()
  588. attr['id'] = str(graph.graph['name'])
  589. attr['edgeids'] = 'true'
  590. attr['edgemode'] = 'undirected'
  591. graph_node = ET.SubElement(root_node, 'graph', attrib=attr)
  592. for v in graph:
  593. current_node = ET.SubElement(graph_node, 'node', attrib={'id': str(v)})
  594. for attr in graph.nodes[v].keys():
  595. cur_attr = ET.SubElement(
  596. current_node, 'attr', attrib={'name': attr})
  597. cur_value = ET.SubElement(cur_attr,
  598. graph.nodes[v][attr].__class__.__name__)
  599. cur_value.text = graph.nodes[v][attr]
  600. for v1 in graph:
  601. for v2 in graph[v1]:
  602. if (v1 < v2): # Non oriented graphs
  603. cur_edge = ET.SubElement(
  604. graph_node,
  605. 'edge',
  606. attrib={
  607. 'from': str(v1),
  608. 'to': str(v2)
  609. })
  610. for attr in graph[v1][v2].keys():
  611. cur_attr = ET.SubElement(
  612. cur_edge, 'attr', attrib={'name': attr})
  613. cur_value = ET.SubElement(
  614. cur_attr, graph[v1][v2][attr].__class__.__name__)
  615. cur_value.text = str(graph[v1][v2][attr])
  616. tree = ET.ElementTree(root_node)
  617. tree.write(filename)
  618. elif method == 'gedlib':
  619. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  620. # pass
  621. gxl_file = open(filename, 'w')
  622. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  623. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  624. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  625. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"true\" edgemode=\"undirected\">\n")
  626. for v, attrs in graph.nodes(data=True):
  627. gxl_file.write("<node id=\"_" + str(v) + "\">")
  628. gxl_file.write("<attr name=\"" + "chem" + "\"><int>" + str(attrs['chem']) + "</int></attr>")
  629. gxl_file.write("</node>\n")
  630. for v1, v2, attrs in graph.edges(data=True):
  631. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">")
  632. gxl_file.write("<attr name=\"valence\"><int>" + str(attrs['valence']) + "</int></attr>")
  633. # gxl_file.write("<attr name=\"valence\"><int>" + "1" + "</int></attr>")
  634. gxl_file.write("</edge>\n")
  635. gxl_file.write("</graph>\n")
  636. gxl_file.write("</gxl>")
  637. gxl_file.close()
  638. elif method == 'gedlib-letter':
  639. # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22
  640. # and https://github.com/dbblumenthal/gedlib/blob/master/data/datasets/Letter/HIGH/AP1_0000.gxl
  641. gxl_file = open(filename, 'w')
  642. gxl_file.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
  643. gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n")
  644. gxl_file.write("<gxl xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n")
  645. gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">\n")
  646. for v, attrs in graph.nodes(data=True):
  647. gxl_file.write("<node id=\"_" + str(v) + "\">")
  648. gxl_file.write("<attr name=\"x\"><float>" + str(attrs['attributes'][0]) + "</float></attr>")
  649. gxl_file.write("<attr name=\"y\"><float>" + str(attrs['attributes'][1]) + "</float></attr>")
  650. gxl_file.write("</node>\n")
  651. for v1, v2, attrs in graph.edges(data=True):
  652. gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\"/>\n")
  653. gxl_file.write("</graph>\n")
  654. gxl_file.write("</gxl>")
  655. gxl_file.close()
  656. # def loadSDF(filename):
  657. # """load data from structured data file (.sdf file).
  658. # Notes
  659. # ------
  660. # A SDF file contains a group of molecules, represented in the similar way as in MOL format.
  661. # Check `here <http://www.nonlinear.com/progenesis/sdf-studio/v0.9/faq/sdf-file-format-guidance.aspx>`__ for detailed structure.
  662. # """
  663. # import networkx as nx
  664. # from os.path import basename
  665. # from tqdm import tqdm
  666. # import sys
  667. # data = []
  668. # with open(filename) as f:
  669. # content = f.read().splitlines()
  670. # index = 0
  671. # pbar = tqdm(total=len(content) + 1, desc='load SDF', file=sys.stdout)
  672. # while index < len(content):
  673. # index_old = index
  674. # g = nx.Graph(name=content[index].strip()) # set name of the graph
  675. # tmp = content[index + 3]
  676. # nb_nodes = int(tmp[:3]) # number of the nodes
  677. # nb_edges = int(tmp[3:6]) # number of the edges
  678. # for i in range(0, nb_nodes):
  679. # tmp = content[i + index + 4]
  680. # g.add_node(i, atom=tmp[31:34].strip())
  681. # for i in range(0, nb_edges):
  682. # tmp = content[i + index + g.number_of_nodes() + 4]
  683. # tmp = [tmp[i:i + 3] for i in range(0, len(tmp), 3)]
  684. # g.add_edge(
  685. # int(tmp[0]) - 1, int(tmp[1]) - 1, bond_type=tmp[2].strip())
  686. # data.append(g)
  687. # index += 4 + g.number_of_nodes() + g.number_of_edges()
  688. # while content[index].strip() != '$$$$': # seperator
  689. # index += 1
  690. # index += 1
  691. # pbar.update(index - index_old)
  692. # pbar.update(1)
  693. # pbar.close()
  694. # return data
  695. # def load_from_cxl(filename):
  696. # import xml.etree.ElementTree as ET
  697. #
  698. # dirname_dataset = dirname(filename)
  699. # tree = ET.parse(filename)
  700. # root = tree.getroot()
  701. # data = []
  702. # y = []
  703. # for graph in root.iter('graph'):
  704. # mol_filename = graph.attrib['file']
  705. # mol_class = graph.attrib['class']
  706. # data.append(load_gxl(dirname_dataset + '/' + mol_filename))
  707. # y.append(mol_class)
  708. if __name__ == '__main__':
  709. # ### Load dataset from .ds file.
  710. # # .ct files.
  711. # ds = {'name': 'Alkane', 'dataset': '../../datasets/Alkane/dataset.ds',
  712. # 'dataset_y': '../../datasets/Alkane/dataset_boiling_point_names.txt'}
  713. # Gn, y = loadDataset(ds['dataset'], filename_y=ds['dataset_y'])
  714. # ds_file = '../../datasets/Acyclic/dataset_bps.ds' # node symb
  715. # Gn, targets, label_names = load_dataset(ds_file)
  716. # ds_file = '../../datasets/MAO/dataset.ds' # node/edge symb
  717. # Gn, targets, label_names = load_dataset(ds_file)
  718. ## ds = {'name': 'PAH', 'dataset': '../../datasets/PAH/dataset.ds'} # unlabeled
  719. ## Gn, y = loadDataset(ds['dataset'])
  720. # print(Gn[1].graph)
  721. # print(Gn[1].nodes(data=True))
  722. # print(Gn[1].edges(data=True))
  723. # print(targets[1])
  724. # # .gxl file.
  725. # ds_file = '../../datasets/monoterpenoides/dataset_10+.ds' # node/edge symb
  726. # Gn, y, label_names = load_dataset(ds_file)
  727. # print(Gn[1].graph)
  728. # print(Gn[1].nodes(data=True))
  729. # print(Gn[1].edges(data=True))
  730. # print(y[1])
  731. # .mat file.
  732. ds_file = '../../datasets/MUTAG_mat/MUTAG.mat'
  733. order = [0, 0, 3, 1, 2]
  734. gloader = DataLoader(ds_file, order=order)
  735. Gn, targets, label_names = gloader.data
  736. print(Gn[1].graph)
  737. print(Gn[1].nodes(data=True))
  738. print(Gn[1].edges(data=True))
  739. print(targets[1])
  740. # ### Convert graph from one format to another.
  741. # # .gxl file.
  742. # import networkx as nx
  743. # ds = {'name': 'monoterpenoides',
  744. # 'dataset': '../../datasets/monoterpenoides/dataset_10+.ds'} # node/edge symb
  745. # Gn, y = loadDataset(ds['dataset'])
  746. # y = [int(i) for i in y]
  747. # print(Gn[1].nodes(data=True))
  748. # print(Gn[1].edges(data=True))
  749. # print(y[1])
  750. # # Convert a graph to the proper NetworkX format that can be recognized by library gedlib.
  751. # Gn_new = []
  752. # for G in Gn:
  753. # G_new = nx.Graph()
  754. # for nd, attrs in G.nodes(data=True):
  755. # G_new.add_node(str(nd), chem=attrs['atom'])
  756. # for nd1, nd2, attrs in G.edges(data=True):
  757. # G_new.add_edge(str(nd1), str(nd2), valence=attrs['bond_type'])
  758. ## G_new.add_edge(str(nd1), str(nd2))
  759. # Gn_new.append(G_new)
  760. # print(Gn_new[1].nodes(data=True))
  761. # print(Gn_new[1].edges(data=True))
  762. # print(Gn_new[1])
  763. # filename = '/media/ljia/DATA/research-repo/codes/others/gedlib/tests_linlin/generated_datsets/monoterpenoides/gxl/monoterpenoides'
  764. # xparams = {'method': 'gedlib'}
  765. # saveDataset(Gn, y, gformat='gxl', group='xml', filename=filename, xparams=xparams)
  766. # save dataset.
  767. # ds = {'name': 'MUTAG', 'dataset': '../../datasets/MUTAG/MUTAG.mat',
  768. # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb
  769. # Gn, y = loadDataset(ds['dataset'], extra_params=ds['extra_params'])
  770. # saveDataset(Gn, y, group='xml', filename='temp/temp')
  771. # test - new way to add labels and attributes.
  772. # dataset = '../../datasets/SYNTHETICnew/SYNTHETICnew_A.txt'
  773. # filename = '../../datasets/Fingerprint/Fingerprint_A.txt'
  774. # dataset = '../../datasets/Letter-med/Letter-med_A.txt'
  775. # dataset = '../../datasets/AIDS/AIDS_A.txt'
  776. # dataset = '../../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'
  777. # Gn, targets, label_names = load_dataset(filename)
  778. pass

A Python package for graph kernels, graph edit distances and graph pre-image problem.