* Implement GPG API * Better handle error * Apply review recommendation + simplify database operations * Remove useless commentstags/v1.2.0-rc1
@@ -245,6 +245,54 @@ func (err ErrKeyNameAlreadyUsed) Error() string { | |||
return fmt.Sprintf("public key already exists [owner_id: %d, name: %s]", err.OwnerID, err.Name) | |||
} | |||
// ErrGPGKeyNotExist represents a "GPGKeyNotExist" kind of error. | |||
type ErrGPGKeyNotExist struct { | |||
ID int64 | |||
} | |||
// IsErrGPGKeyNotExist checks if an error is a ErrGPGKeyNotExist. | |||
func IsErrGPGKeyNotExist(err error) bool { | |||
_, ok := err.(ErrGPGKeyNotExist) | |||
return ok | |||
} | |||
func (err ErrGPGKeyNotExist) Error() string { | |||
return fmt.Sprintf("public gpg key does not exist [id: %d]", err.ID) | |||
} | |||
// ErrGPGKeyIDAlreadyUsed represents a "GPGKeyIDAlreadyUsed" kind of error. | |||
type ErrGPGKeyIDAlreadyUsed struct { | |||
KeyID string | |||
} | |||
// IsErrGPGKeyIDAlreadyUsed checks if an error is a ErrKeyNameAlreadyUsed. | |||
func IsErrGPGKeyIDAlreadyUsed(err error) bool { | |||
_, ok := err.(ErrGPGKeyIDAlreadyUsed) | |||
return ok | |||
} | |||
func (err ErrGPGKeyIDAlreadyUsed) Error() string { | |||
return fmt.Sprintf("public key already exists [key_id: %s]", err.KeyID) | |||
} | |||
// ErrGPGKeyAccessDenied represents a "GPGKeyAccessDenied" kind of Error. | |||
type ErrGPGKeyAccessDenied struct { | |||
UserID int64 | |||
KeyID int64 | |||
} | |||
// IsErrGPGKeyAccessDenied checks if an error is a ErrGPGKeyAccessDenied. | |||
func IsErrGPGKeyAccessDenied(err error) bool { | |||
_, ok := err.(ErrGPGKeyAccessDenied) | |||
return ok | |||
} | |||
// Error pretty-prints an error of type ErrGPGKeyAccessDenied. | |||
func (err ErrGPGKeyAccessDenied) Error() string { | |||
return fmt.Sprintf("user does not have access to the key [user_id: %d, key_id: %d]", | |||
err.UserID, err.KeyID) | |||
} | |||
// ErrKeyAccessDenied represents a "KeyAccessDenied" kind of error. | |||
type ErrKeyAccessDenied struct { | |||
UserID int64 | |||
@@ -0,0 +1,276 @@ | |||
// Copyright 2017 The Gitea Authors. All rights reserved. | |||
// Use of this source code is governed by a MIT-style | |||
// license that can be found in the LICENSE file. | |||
package models | |||
import ( | |||
"bytes" | |||
"encoding/base64" | |||
"fmt" | |||
"strings" | |||
"time" | |||
"github.com/go-xorm/xorm" | |||
"golang.org/x/crypto/openpgp" | |||
"golang.org/x/crypto/openpgp/packet" | |||
) | |||
// GPGKey represents a GPG key. | |||
type GPGKey struct { | |||
ID int64 `xorm:"pk autoincr"` | |||
OwnerID int64 `xorm:"INDEX NOT NULL"` | |||
KeyID string `xorm:"INDEX TEXT NOT NULL"` | |||
PrimaryKeyID string `xorm:"TEXT"` | |||
Content string `xorm:"TEXT NOT NULL"` | |||
Created time.Time `xorm:"-"` | |||
CreatedUnix int64 | |||
Expired time.Time `xorm:"-"` | |||
ExpiredUnix int64 | |||
Added time.Time `xorm:"-"` | |||
AddedUnix int64 | |||
SubsKey []*GPGKey `xorm:"-"` | |||
Emails []*EmailAddress | |||
CanSign bool | |||
CanEncryptComms bool | |||
CanEncryptStorage bool | |||
CanCertify bool | |||
} | |||
// BeforeInsert will be invoked by XORM before inserting a record | |||
func (key *GPGKey) BeforeInsert() { | |||
key.AddedUnix = time.Now().Unix() | |||
key.ExpiredUnix = key.Expired.Unix() | |||
key.CreatedUnix = key.Created.Unix() | |||
} | |||
// AfterSet is invoked from XORM after setting the value of a field of this object. | |||
func (key *GPGKey) AfterSet(colName string, _ xorm.Cell) { | |||
switch colName { | |||
case "key_id": | |||
x.Where("primary_key_id=?", key.KeyID).Find(&key.SubsKey) | |||
case "added_unix": | |||
key.Added = time.Unix(key.AddedUnix, 0).Local() | |||
case "expired_unix": | |||
key.Expired = time.Unix(key.ExpiredUnix, 0).Local() | |||
case "created_unix": | |||
key.Created = time.Unix(key.CreatedUnix, 0).Local() | |||
} | |||
} | |||
// ListGPGKeys returns a list of public keys belongs to given user. | |||
func ListGPGKeys(uid int64) ([]*GPGKey, error) { | |||
keys := make([]*GPGKey, 0, 5) | |||
return keys, x.Where("owner_id=? AND primary_key_id=''", uid).Find(&keys) | |||
} | |||
// GetGPGKeyByID returns public key by given ID. | |||
func GetGPGKeyByID(keyID int64) (*GPGKey, error) { | |||
key := new(GPGKey) | |||
has, err := x.Id(keyID).Get(key) | |||
if err != nil { | |||
return nil, err | |||
} else if !has { | |||
return nil, ErrGPGKeyNotExist{keyID} | |||
} | |||
return key, nil | |||
} | |||
// checkArmoredGPGKeyString checks if the given key string is a valid GPG armored key. | |||
// The function returns the actual public key on success | |||
func checkArmoredGPGKeyString(content string) (*openpgp.Entity, error) { | |||
list, err := openpgp.ReadArmoredKeyRing(strings.NewReader(content)) | |||
if err != nil { | |||
return nil, err | |||
} | |||
return list[0], nil | |||
} | |||
//addGPGKey add key and subkeys to database | |||
func addGPGKey(e Engine, key *GPGKey) (err error) { | |||
// Save GPG primary key. | |||
if _, err = e.Insert(key); err != nil { | |||
return err | |||
} | |||
// Save GPG subs key. | |||
for _, subkey := range key.SubsKey { | |||
if err := addGPGKey(e, subkey); err != nil { | |||
return err | |||
} | |||
} | |||
return nil | |||
} | |||
// AddGPGKey adds new public key to database. | |||
func AddGPGKey(ownerID int64, content string) (*GPGKey, error) { | |||
ekey, err := checkArmoredGPGKeyString(content) | |||
if err != nil { | |||
return nil, err | |||
} | |||
// Key ID cannot be duplicated. | |||
has, err := x.Where("key_id=?", ekey.PrimaryKey.KeyIdString()). | |||
Get(new(GPGKey)) | |||
if err != nil { | |||
return nil, err | |||
} else if has { | |||
return nil, ErrGPGKeyIDAlreadyUsed{ekey.PrimaryKey.KeyIdString()} | |||
} | |||
//Get DB session | |||
sess := x.NewSession() | |||
defer sessionRelease(sess) | |||
if err = sess.Begin(); err != nil { | |||
return nil, err | |||
} | |||
key, err := parseGPGKey(ownerID, ekey) | |||
if err != nil { | |||
return nil, err | |||
} | |||
if err = addGPGKey(sess, key); err != nil { | |||
return nil, err | |||
} | |||
return key, sess.Commit() | |||
} | |||
//base64EncPubKey encode public kay content to base 64 | |||
func base64EncPubKey(pubkey *packet.PublicKey) (string, error) { | |||
var w bytes.Buffer | |||
err := pubkey.Serialize(&w) | |||
if err != nil { | |||
return "", err | |||
} | |||
return base64.StdEncoding.EncodeToString(w.Bytes()), nil | |||
} | |||
//parseSubGPGKey parse a sub Key | |||
func parseSubGPGKey(ownerID int64, primaryID string, pubkey *packet.PublicKey, expiry time.Time) (*GPGKey, error) { | |||
content, err := base64EncPubKey(pubkey) | |||
if err != nil { | |||
return nil, err | |||
} | |||
return &GPGKey{ | |||
OwnerID: ownerID, | |||
KeyID: pubkey.KeyIdString(), | |||
PrimaryKeyID: primaryID, | |||
Content: content, | |||
Created: pubkey.CreationTime, | |||
Expired: expiry, | |||
CanSign: pubkey.CanSign(), | |||
CanEncryptComms: pubkey.PubKeyAlgo.CanEncrypt(), | |||
CanEncryptStorage: pubkey.PubKeyAlgo.CanEncrypt(), | |||
CanCertify: pubkey.PubKeyAlgo.CanSign(), | |||
}, nil | |||
} | |||
//parseGPGKey parse a PrimaryKey entity (primary key + subs keys + self-signature) | |||
func parseGPGKey(ownerID int64, e *openpgp.Entity) (*GPGKey, error) { | |||
pubkey := e.PrimaryKey | |||
//Extract self-sign for expire date based on : https://github.com/golang/crypto/blob/master/openpgp/keys.go#L165 | |||
var selfSig *packet.Signature | |||
for _, ident := range e.Identities { | |||
if selfSig == nil { | |||
selfSig = ident.SelfSignature | |||
} else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId { | |||
selfSig = ident.SelfSignature | |||
break | |||
} | |||
} | |||
expiry := time.Time{} | |||
if selfSig.KeyLifetimeSecs != nil { | |||
expiry = selfSig.CreationTime.Add(time.Duration(*selfSig.KeyLifetimeSecs) * time.Second) | |||
} | |||
//Parse Subkeys | |||
subkeys := make([]*GPGKey, len(e.Subkeys)) | |||
for i, k := range e.Subkeys { | |||
subs, err := parseSubGPGKey(ownerID, pubkey.KeyIdString(), k.PublicKey, expiry) | |||
if err != nil { | |||
return nil, err | |||
} | |||
subkeys[i] = subs | |||
} | |||
//Check emails | |||
userEmails, err := GetEmailAddresses(ownerID) | |||
if err != nil { | |||
return nil, err | |||
} | |||
emails := make([]*EmailAddress, len(e.Identities)) | |||
n := 0 | |||
for _, ident := range e.Identities { | |||
for _, e := range userEmails { | |||
if e.Email == ident.UserId.Email && e.IsActivated { | |||
emails[n] = e | |||
break | |||
} | |||
} | |||
if emails[n] == nil { | |||
return nil, fmt.Errorf("Failed to found email or is not confirmed : %s", ident.UserId.Email) | |||
} | |||
n++ | |||
} | |||
content, err := base64EncPubKey(pubkey) | |||
if err != nil { | |||
return nil, err | |||
} | |||
return &GPGKey{ | |||
OwnerID: ownerID, | |||
KeyID: pubkey.KeyIdString(), | |||
PrimaryKeyID: "", | |||
Content: content, | |||
Created: pubkey.CreationTime, | |||
Expired: expiry, | |||
Emails: emails, | |||
SubsKey: subkeys, | |||
CanSign: pubkey.CanSign(), | |||
CanEncryptComms: pubkey.PubKeyAlgo.CanEncrypt(), | |||
CanEncryptStorage: pubkey.PubKeyAlgo.CanEncrypt(), | |||
CanCertify: pubkey.PubKeyAlgo.CanSign(), | |||
}, nil | |||
} | |||
// deleteGPGKey does the actual key deletion | |||
func deleteGPGKey(e *xorm.Session, keyID string) (int64, error) { | |||
if keyID == "" { | |||
return 0, fmt.Errorf("empty KeyId forbidden") //Should never happen but just to be sure | |||
} | |||
return e.Where("key_id=?", keyID).Or("primary_key_id=?", keyID).Delete(new(GPGKey)) | |||
} | |||
// DeleteGPGKey deletes GPG key information in database. | |||
func DeleteGPGKey(doer *User, id int64) (err error) { | |||
key, err := GetGPGKeyByID(id) | |||
if err != nil { | |||
if IsErrGPGKeyNotExist(err) { | |||
return nil | |||
} | |||
return fmt.Errorf("GetPublicKeyByID: %v", err) | |||
} | |||
// Check if user has access to delete this key. | |||
if !doer.IsAdmin && doer.ID != key.OwnerID { | |||
return ErrGPGKeyAccessDenied{doer.ID, key.ID} | |||
} | |||
sess := x.NewSession() | |||
defer sessionRelease(sess) | |||
if err = sess.Begin(); err != nil { | |||
return err | |||
} | |||
if _, err = deleteGPGKey(sess, key.KeyID); err != nil { | |||
return err | |||
} | |||
if err = sess.Commit(); err != nil { | |||
return err | |||
} | |||
return nil | |||
} |
@@ -0,0 +1,48 @@ | |||
// Copyright 2017 The Gitea Authors. All rights reserved. | |||
// Use of this source code is governed by a MIT-style | |||
// license that can be found in the LICENSE file. | |||
package models | |||
import ( | |||
"testing" | |||
"github.com/stretchr/testify/assert" | |||
) | |||
func TestCheckArmoredGPGKeyString(t *testing.T) { | |||
testGPGArmor := `-----BEGIN PGP PUBLIC KEY BLOCK----- | |||
mQENBFh91QoBCADciaDd7aqegYkn4ZIG7J0p1CRwpqMGjxFroJEMg6M1ZiuEVTRv | |||
z49P4kcr1+98NvFmcNc+x5uJgvPCwr/N8ZW5nqBUs2yrklbFF4MeQomyZJJegP8m | |||
/dsRT3BwIT8YMUtJuCj0iqD9vuKYfjrztcMgC1sYwcE9E9OlA0pWBvUdU2i0TIB1 | |||
vOq6slWGvHHa5l5gPfm09idlVxfH5+I+L1uIMx5ovbiVVU5x2f1AR1T18f0t2TVN | |||
0agFTyuoYE1ATmvJHmMcsfgM1Gpd9hIlr9vlupT2kKTPoNzVzsJsOU6Ku/Lf/bac | |||
mF+TfSbRCtmG7dkYZ4metLj7zG/WkW8IvJARABEBAAG0HUFudG9pbmUgR0lSQVJE | |||
IDxzYXBrQHNhcGsuZnI+iQFUBBMBCAA+FiEEEIOwJg/1vpF1itJ4roJVuKDYKOQF | |||
Alh91QoCGwMFCQPCZwAFCwkIBwIGFQgJCgsCBBYCAwECHgECF4AACgkQroJVuKDY | |||
KORreggAlIkC2QjHP5tb7b0+LksB2JMXdY+UzZBcJxtNmvA7gNQaGvWRrhrbePpa | |||
MKDP+3A4BPDBsWFbbB7N56vQ5tROpmWbNKuFOVER4S1bj0JZV0E+xkDLqt9QwQtQ | |||
ojd7oIZJwDUwdud1PvCza2mjgBqqiFE+twbc3i9xjciCGspMniUul1eQYLxRJ0w+ | |||
sbvSOUnujnq5ByMSz9ij00O6aiPfNQS5oB5AALfpjYZDvWAAljLVrtmlQJWZ6dZo | |||
T/YNwsW2dECPuti8+Nmu5FxPGDTXxdbnRaeJTQ3T6q1oUVAv7yTXBx5NXfXkMa5i | |||
iEayQIH8Joq5Ev5ja/lRGQQhArMQ2bkBDQRYfdUKAQgAv7B3coLSrOQbuTZSlgWE | |||
QeT+7DWbmqE1LAQA1pQPcUPXLBUVd60amZJxF9nzUYcY83ylDi0gUNJS+DJGOXpT | |||
pzX2IOuOMGbtUSeKwg5s9O4SUO7f2yCc3RGaegER5zgESxelmOXG+b/hoNt7JbdU | |||
JtxcnLr91Jw2PBO/Xf0ZKJ01CQG2Yzdrrj6jnrHyx94seHy0i6xH1o0OuvfVMLfN | |||
/Vbb/ZHh6ym2wHNqRX62b0VAbchcJXX/MEehXGknKTkO6dDUd+mhRgWMf9ZGRFWx | |||
ag4qALimkf1FXtAyD0vxFYeyoWUQzrOvUsm2BxIN/986R08fhkBQnp5nz07mrU02 | |||
cQARAQABiQE8BBgBCAAmFiEEEIOwJg/1vpF1itJ4roJVuKDYKOQFAlh91QoCGwwF | |||
CQPCZwAACgkQroJVuKDYKOT32wf/UZqMdPn5OhyhffFzjQx7wolrf92WkF2JkxtH | |||
6c3Htjlt/p5RhtKEeErSrNAxB4pqB7dznHaJXiOdWEZtRVXXjlNHjrokGTesqtKk | |||
lHWtK62/MuyLdr+FdCl68F3ewuT2iu/MDv+D4HPqA47zma9xVgZ9ZNwJOpv3fCOo | |||
RfY66UjGEnfgYifgtI5S84/mp2jaSc9UNvlZB6RSf8cfbJUL74kS2lq+xzSlf0yP | |||
Av844q/BfRuVsJsK1NDNG09LC30B0l3LKBqlrRmRTUMHtgchdX2dY+p7GPOoSzlR | |||
MkM/fdpyc2hY7Dl/+qFmN5MG5yGmMpQcX+RNNR222ibNC1D3wg== | |||
=i9b7 | |||
-----END PGP PUBLIC KEY BLOCK-----` | |||
key, err := checkArmoredGPGKeyString(testGPGArmor) | |||
assert.Nil(t, err, "Could not parse a valid GPG armored key", key) | |||
//TODO verify value of key | |||
} |
@@ -111,6 +111,7 @@ func init() { | |||
new(IssueUser), | |||
new(LFSMetaObject), | |||
new(TwoFactor), | |||
new(GPGKey), | |||
new(RepoUnit), | |||
new(RepoRedirect), | |||
new(ExternalLoginUser), | |||
@@ -254,6 +254,7 @@ func RegisterRoutes(m *macaron.Macaron) { | |||
m.Group("/users", func() { | |||
m.Group("/:username", func() { | |||
m.Get("/keys", user.ListPublicKeys) | |||
m.Get("/gpg_keys", user.ListGPGKeys) | |||
m.Get("/followers", user.ListFollowers) | |||
m.Group("/following", func() { | |||
@@ -286,6 +287,13 @@ func RegisterRoutes(m *macaron.Macaron) { | |||
Delete(user.DeletePublicKey) | |||
}) | |||
m.Group("/gpg_keys", func() { | |||
m.Combo("").Get(user.ListMyGPGKeys). | |||
Post(bind(api.CreateGPGKeyOption{}), user.CreateGPGKey) | |||
m.Combo("/:id").Get(user.GetGPGKey). | |||
Delete(user.DeleteGPGKey) | |||
}) | |||
m.Combo("/repos").Get(user.ListMyRepos). | |||
Post(bind(api.CreateRepoOption{}), repo.Create) | |||
@@ -73,6 +73,51 @@ func ToPublicKey(apiLink string, key *models.PublicKey) *api.PublicKey { | |||
} | |||
} | |||
// ToGPGKey converts models.GPGKey to api.GPGKey | |||
func ToGPGKey(key *models.GPGKey) *api.GPGKey { | |||
subkeys := make([]*api.GPGKey, len(key.SubsKey)) | |||
for id, k := range key.SubsKey { | |||
subkeys[id] = &api.GPGKey{ | |||
ID: k.ID, | |||
PrimaryKeyID: k.PrimaryKeyID, | |||
KeyID: k.KeyID, | |||
PublicKey: k.Content, | |||
Created: k.Created, | |||
Expires: k.Expired, | |||
CanSign: k.CanSign, | |||
CanEncryptComms: k.CanEncryptComms, | |||
CanEncryptStorage: k.CanEncryptStorage, | |||
CanCertify: k.CanSign, | |||
} | |||
} | |||
emails := make([]*api.GPGKeyEmail, len(key.Emails)) | |||
for i, e := range key.Emails { | |||
emails[i] = ToGPGKeyEmail(e) | |||
} | |||
return &api.GPGKey{ | |||
ID: key.ID, | |||
PrimaryKeyID: key.PrimaryKeyID, | |||
KeyID: key.KeyID, | |||
PublicKey: key.Content, | |||
Created: key.Created, | |||
Expires: key.Expired, | |||
Emails: emails, | |||
SubsKey: subkeys, | |||
CanSign: key.CanSign, | |||
CanEncryptComms: key.CanEncryptComms, | |||
CanEncryptStorage: key.CanEncryptStorage, | |||
CanCertify: key.CanSign, | |||
} | |||
} | |||
// ToGPGKeyEmail convert models.EmailAddress to api.GPGKeyEmail | |||
func ToGPGKeyEmail(email *models.EmailAddress) *api.GPGKeyEmail { | |||
return &api.GPGKeyEmail{ | |||
Email: email.Email, | |||
Verified: email.IsActivated, | |||
} | |||
} | |||
// ToHook convert models.Webhook to api.Hook | |||
func ToHook(repoLink string, w *models.Webhook) *api.Hook { | |||
config := map[string]string{ | |||
@@ -0,0 +1,102 @@ | |||
// Copyright 2017 The Gitea Authors. All rights reserved. | |||
// Use of this source code is governed by a MIT-style | |||
// license that can be found in the LICENSE file. | |||
package user | |||
import ( | |||
api "code.gitea.io/sdk/gitea" | |||
"code.gitea.io/gitea/models" | |||
"code.gitea.io/gitea/modules/context" | |||
"code.gitea.io/gitea/modules/setting" | |||
"code.gitea.io/gitea/routers/api/v1/convert" | |||
) | |||
func composePublicGPGKeysAPILink() string { | |||
return setting.AppURL + "api/v1/user/gpg_keys/" | |||
} | |||
func listGPGKeys(ctx *context.APIContext, uid int64) { | |||
keys, err := models.ListGPGKeys(uid) | |||
if err != nil { | |||
ctx.Error(500, "ListGPGKeys", err) | |||
return | |||
} | |||
apiKeys := make([]*api.GPGKey, len(keys)) | |||
for i := range keys { | |||
apiKeys[i] = convert.ToGPGKey(keys[i]) | |||
} | |||
ctx.JSON(200, &apiKeys) | |||
} | |||
//ListGPGKeys get the GPG key list of a user | |||
func ListGPGKeys(ctx *context.APIContext) { | |||
user := GetUserByParams(ctx) | |||
if ctx.Written() { | |||
return | |||
} | |||
listGPGKeys(ctx, user.ID) | |||
} | |||
//ListMyGPGKeys get the GPG key list of the logged user | |||
func ListMyGPGKeys(ctx *context.APIContext) { | |||
listGPGKeys(ctx, ctx.User.ID) | |||
} | |||
//GetGPGKey get the GPG key based on a id | |||
func GetGPGKey(ctx *context.APIContext) { | |||
key, err := models.GetGPGKeyByID(ctx.ParamsInt64(":id")) | |||
if err != nil { | |||
if models.IsErrGPGKeyNotExist(err) { | |||
ctx.Status(404) | |||
} else { | |||
ctx.Error(500, "GetGPGKeyByID", err) | |||
} | |||
return | |||
} | |||
ctx.JSON(200, convert.ToGPGKey(key)) | |||
} | |||
// CreateUserGPGKey creates new GPG key to given user by ID. | |||
func CreateUserGPGKey(ctx *context.APIContext, form api.CreateGPGKeyOption, uid int64) { | |||
key, err := models.AddGPGKey(uid, form.ArmoredKey) | |||
if err != nil { | |||
HandleAddGPGKeyError(ctx, err) | |||
return | |||
} | |||
ctx.JSON(201, convert.ToGPGKey(key)) | |||
} | |||
//CreateGPGKey associate a GPG key to the current user | |||
func CreateGPGKey(ctx *context.APIContext, form api.CreateGPGKeyOption) { | |||
CreateUserGPGKey(ctx, form, ctx.User.ID) | |||
} | |||
//DeleteGPGKey remove a GPG key associated to the current user | |||
func DeleteGPGKey(ctx *context.APIContext) { | |||
if err := models.DeleteGPGKey(ctx.User, ctx.ParamsInt64(":id")); err != nil { | |||
if models.IsErrGPGKeyAccessDenied(err) { | |||
ctx.Error(403, "", "You do not have access to this key") | |||
} else { | |||
ctx.Error(500, "DeleteGPGKey", err) | |||
} | |||
return | |||
} | |||
ctx.Status(204) | |||
} | |||
// HandleAddGPGKeyError handle add GPGKey error | |||
func HandleAddGPGKeyError(ctx *context.APIContext, err error) { | |||
switch { | |||
case models.IsErrGPGKeyAccessDenied(err): | |||
ctx.Error(422, "", "You do not have access to this gpg key") | |||
case models.IsErrGPGKeyIDAlreadyUsed(err): | |||
ctx.Error(422, "", "A key with the same keyid is allready in database") | |||
default: | |||
ctx.Error(500, "AddGPGKey", err) | |||
} | |||
} |
@@ -0,0 +1,526 @@ | |||
// Copyright 2010 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
// Package cast5 implements CAST5, as defined in RFC 2144. CAST5 is a common | |||
// OpenPGP cipher. | |||
package cast5 // import "golang.org/x/crypto/cast5" | |||
import "errors" | |||
const BlockSize = 8 | |||
const KeySize = 16 | |||
type Cipher struct { | |||
masking [16]uint32 | |||
rotate [16]uint8 | |||
} | |||
func NewCipher(key []byte) (c *Cipher, err error) { | |||
if len(key) != KeySize { | |||
return nil, errors.New("CAST5: keys must be 16 bytes") | |||
} | |||
c = new(Cipher) | |||
c.keySchedule(key) | |||
return | |||
} | |||
func (c *Cipher) BlockSize() int { | |||
return BlockSize | |||
} | |||
func (c *Cipher) Encrypt(dst, src []byte) { | |||
l := uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3]) | |||
r := uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7]) | |||
l, r = r, l^f1(r, c.masking[0], c.rotate[0]) | |||
l, r = r, l^f2(r, c.masking[1], c.rotate[1]) | |||
l, r = r, l^f3(r, c.masking[2], c.rotate[2]) | |||
l, r = r, l^f1(r, c.masking[3], c.rotate[3]) | |||
l, r = r, l^f2(r, c.masking[4], c.rotate[4]) | |||
l, r = r, l^f3(r, c.masking[5], c.rotate[5]) | |||
l, r = r, l^f1(r, c.masking[6], c.rotate[6]) | |||
l, r = r, l^f2(r, c.masking[7], c.rotate[7]) | |||
l, r = r, l^f3(r, c.masking[8], c.rotate[8]) | |||
l, r = r, l^f1(r, c.masking[9], c.rotate[9]) | |||
l, r = r, l^f2(r, c.masking[10], c.rotate[10]) | |||
l, r = r, l^f3(r, c.masking[11], c.rotate[11]) | |||
l, r = r, l^f1(r, c.masking[12], c.rotate[12]) | |||
l, r = r, l^f2(r, c.masking[13], c.rotate[13]) | |||
l, r = r, l^f3(r, c.masking[14], c.rotate[14]) | |||
l, r = r, l^f1(r, c.masking[15], c.rotate[15]) | |||
dst[0] = uint8(r >> 24) | |||
dst[1] = uint8(r >> 16) | |||
dst[2] = uint8(r >> 8) | |||
dst[3] = uint8(r) | |||
dst[4] = uint8(l >> 24) | |||
dst[5] = uint8(l >> 16) | |||
dst[6] = uint8(l >> 8) | |||
dst[7] = uint8(l) | |||
} | |||
func (c *Cipher) Decrypt(dst, src []byte) { | |||
l := uint32(src[0])<<24 | uint32(src[1])<<16 | uint32(src[2])<<8 | uint32(src[3]) | |||
r := uint32(src[4])<<24 | uint32(src[5])<<16 | uint32(src[6])<<8 | uint32(src[7]) | |||
l, r = r, l^f1(r, c.masking[15], c.rotate[15]) | |||
l, r = r, l^f3(r, c.masking[14], c.rotate[14]) | |||
l, r = r, l^f2(r, c.masking[13], c.rotate[13]) | |||
l, r = r, l^f1(r, c.masking[12], c.rotate[12]) | |||
l, r = r, l^f3(r, c.masking[11], c.rotate[11]) | |||
l, r = r, l^f2(r, c.masking[10], c.rotate[10]) | |||
l, r = r, l^f1(r, c.masking[9], c.rotate[9]) | |||
l, r = r, l^f3(r, c.masking[8], c.rotate[8]) | |||
l, r = r, l^f2(r, c.masking[7], c.rotate[7]) | |||
l, r = r, l^f1(r, c.masking[6], c.rotate[6]) | |||
l, r = r, l^f3(r, c.masking[5], c.rotate[5]) | |||
l, r = r, l^f2(r, c.masking[4], c.rotate[4]) | |||
l, r = r, l^f1(r, c.masking[3], c.rotate[3]) | |||
l, r = r, l^f3(r, c.masking[2], c.rotate[2]) | |||
l, r = r, l^f2(r, c.masking[1], c.rotate[1]) | |||
l, r = r, l^f1(r, c.masking[0], c.rotate[0]) | |||
dst[0] = uint8(r >> 24) | |||
dst[1] = uint8(r >> 16) | |||
dst[2] = uint8(r >> 8) | |||
dst[3] = uint8(r) | |||
dst[4] = uint8(l >> 24) | |||
dst[5] = uint8(l >> 16) | |||
dst[6] = uint8(l >> 8) | |||
dst[7] = uint8(l) | |||
} | |||
type keyScheduleA [4][7]uint8 | |||
type keyScheduleB [4][5]uint8 | |||
// keyScheduleRound contains the magic values for a round of the key schedule. | |||
// The keyScheduleA deals with the lines like: | |||
// z0z1z2z3 = x0x1x2x3 ^ S5[xD] ^ S6[xF] ^ S7[xC] ^ S8[xE] ^ S7[x8] | |||
// Conceptually, both x and z are in the same array, x first. The first | |||
// element describes which word of this array gets written to and the | |||
// second, which word gets read. So, for the line above, it's "4, 0", because | |||
// it's writing to the first word of z, which, being after x, is word 4, and | |||
// reading from the first word of x: word 0. | |||
// | |||
// Next are the indexes into the S-boxes. Now the array is treated as bytes. So | |||
// "xD" is 0xd. The first byte of z is written as "16 + 0", just to be clear | |||
// that it's z that we're indexing. | |||
// | |||
// keyScheduleB deals with lines like: | |||
// K1 = S5[z8] ^ S6[z9] ^ S7[z7] ^ S8[z6] ^ S5[z2] | |||
// "K1" is ignored because key words are always written in order. So the five | |||
// elements are the S-box indexes. They use the same form as in keyScheduleA, | |||
// above. | |||
type keyScheduleRound struct{} | |||
type keySchedule []keyScheduleRound | |||
var schedule = []struct { | |||
a keyScheduleA | |||
b keyScheduleB | |||
}{ | |||
{ | |||
keyScheduleA{ | |||
{4, 0, 0xd, 0xf, 0xc, 0xe, 0x8}, | |||
{5, 2, 16 + 0, 16 + 2, 16 + 1, 16 + 3, 0xa}, | |||
{6, 3, 16 + 7, 16 + 6, 16 + 5, 16 + 4, 9}, | |||
{7, 1, 16 + 0xa, 16 + 9, 16 + 0xb, 16 + 8, 0xb}, | |||
}, | |||
keyScheduleB{ | |||
{16 + 8, 16 + 9, 16 + 7, 16 + 6, 16 + 2}, | |||
{16 + 0xa, 16 + 0xb, 16 + 5, 16 + 4, 16 + 6}, | |||
{16 + 0xc, 16 + 0xd, 16 + 3, 16 + 2, 16 + 9}, | |||
{16 + 0xe, 16 + 0xf, 16 + 1, 16 + 0, 16 + 0xc}, | |||
}, | |||
}, | |||
{ | |||
keyScheduleA{ | |||
{0, 6, 16 + 5, 16 + 7, 16 + 4, 16 + 6, 16 + 0}, | |||
{1, 4, 0, 2, 1, 3, 16 + 2}, | |||
{2, 5, 7, 6, 5, 4, 16 + 1}, | |||
{3, 7, 0xa, 9, 0xb, 8, 16 + 3}, | |||
}, | |||
keyScheduleB{ | |||
{3, 2, 0xc, 0xd, 8}, | |||
{1, 0, 0xe, 0xf, 0xd}, | |||
{7, 6, 8, 9, 3}, | |||
{5, 4, 0xa, 0xb, 7}, | |||
}, | |||
}, | |||
{ | |||
keyScheduleA{ | |||
{4, 0, 0xd, 0xf, 0xc, 0xe, 8}, | |||
{5, 2, 16 + 0, 16 + 2, 16 + 1, 16 + 3, 0xa}, | |||
{6, 3, 16 + 7, 16 + 6, 16 + 5, 16 + 4, 9}, | |||
{7, 1, 16 + 0xa, 16 + 9, 16 + 0xb, 16 + 8, 0xb}, | |||
}, | |||
keyScheduleB{ | |||
{16 + 3, 16 + 2, 16 + 0xc, 16 + 0xd, 16 + 9}, | |||
{16 + 1, 16 + 0, 16 + 0xe, 16 + 0xf, 16 + 0xc}, | |||
{16 + 7, 16 + 6, 16 + 8, 16 + 9, 16 + 2}, | |||
{16 + 5, 16 + 4, 16 + 0xa, 16 + 0xb, 16 + 6}, | |||
}, | |||
}, | |||
{ | |||
keyScheduleA{ | |||
{0, 6, 16 + 5, 16 + 7, 16 + 4, 16 + 6, 16 + 0}, | |||
{1, 4, 0, 2, 1, 3, 16 + 2}, | |||
{2, 5, 7, 6, 5, 4, 16 + 1}, | |||
{3, 7, 0xa, 9, 0xb, 8, 16 + 3}, | |||
}, | |||
keyScheduleB{ | |||
{8, 9, 7, 6, 3}, | |||
{0xa, 0xb, 5, 4, 7}, | |||
{0xc, 0xd, 3, 2, 8}, | |||
{0xe, 0xf, 1, 0, 0xd}, | |||
}, | |||
}, | |||
} | |||
func (c *Cipher) keySchedule(in []byte) { | |||
var t [8]uint32 | |||
var k [32]uint32 | |||
for i := 0; i < 4; i++ { | |||
j := i * 4 | |||
t[i] = uint32(in[j])<<24 | uint32(in[j+1])<<16 | uint32(in[j+2])<<8 | uint32(in[j+3]) | |||
} | |||
x := []byte{6, 7, 4, 5} | |||
ki := 0 | |||
for half := 0; half < 2; half++ { | |||
for _, round := range schedule { | |||
for j := 0; j < 4; j++ { | |||
var a [7]uint8 | |||
copy(a[:], round.a[j][:]) | |||
w := t[a[1]] | |||
w ^= sBox[4][(t[a[2]>>2]>>(24-8*(a[2]&3)))&0xff] | |||
w ^= sBox[5][(t[a[3]>>2]>>(24-8*(a[3]&3)))&0xff] | |||
w ^= sBox[6][(t[a[4]>>2]>>(24-8*(a[4]&3)))&0xff] | |||
w ^= sBox[7][(t[a[5]>>2]>>(24-8*(a[5]&3)))&0xff] | |||
w ^= sBox[x[j]][(t[a[6]>>2]>>(24-8*(a[6]&3)))&0xff] | |||
t[a[0]] = w | |||
} | |||
for j := 0; j < 4; j++ { | |||
var b [5]uint8 | |||
copy(b[:], round.b[j][:]) | |||
w := sBox[4][(t[b[0]>>2]>>(24-8*(b[0]&3)))&0xff] | |||
w ^= sBox[5][(t[b[1]>>2]>>(24-8*(b[1]&3)))&0xff] | |||
w ^= sBox[6][(t[b[2]>>2]>>(24-8*(b[2]&3)))&0xff] | |||
w ^= sBox[7][(t[b[3]>>2]>>(24-8*(b[3]&3)))&0xff] | |||
w ^= sBox[4+j][(t[b[4]>>2]>>(24-8*(b[4]&3)))&0xff] | |||
k[ki] = w | |||
ki++ | |||
} | |||
} | |||
} | |||
for i := 0; i < 16; i++ { | |||
c.masking[i] = k[i] | |||
c.rotate[i] = uint8(k[16+i] & 0x1f) | |||
} | |||
} | |||
// These are the three 'f' functions. See RFC 2144, section 2.2. | |||
func f1(d, m uint32, r uint8) uint32 { | |||
t := m + d | |||
I := (t << r) | (t >> (32 - r)) | |||
return ((sBox[0][I>>24] ^ sBox[1][(I>>16)&0xff]) - sBox[2][(I>>8)&0xff]) + sBox[3][I&0xff] | |||
} | |||
func f2(d, m uint32, r uint8) uint32 { | |||
t := m ^ d | |||
I := (t << r) | (t >> (32 - r)) | |||
return ((sBox[0][I>>24] - sBox[1][(I>>16)&0xff]) + sBox[2][(I>>8)&0xff]) ^ sBox[3][I&0xff] | |||
} | |||
func f3(d, m uint32, r uint8) uint32 { | |||
t := m - d | |||
I := (t << r) | (t >> (32 - r)) | |||
return ((sBox[0][I>>24] + sBox[1][(I>>16)&0xff]) ^ sBox[2][(I>>8)&0xff]) - sBox[3][I&0xff] | |||
} | |||
var sBox = [8][256]uint32{ | |||
{ | |||
0x30fb40d4, 0x9fa0ff0b, 0x6beccd2f, 0x3f258c7a, 0x1e213f2f, 0x9c004dd3, 0x6003e540, 0xcf9fc949, | |||
0xbfd4af27, 0x88bbbdb5, 0xe2034090, 0x98d09675, 0x6e63a0e0, 0x15c361d2, 0xc2e7661d, 0x22d4ff8e, | |||
0x28683b6f, 0xc07fd059, 0xff2379c8, 0x775f50e2, 0x43c340d3, 0xdf2f8656, 0x887ca41a, 0xa2d2bd2d, | |||
0xa1c9e0d6, 0x346c4819, 0x61b76d87, 0x22540f2f, 0x2abe32e1, 0xaa54166b, 0x22568e3a, 0xa2d341d0, | |||
0x66db40c8, 0xa784392f, 0x004dff2f, 0x2db9d2de, 0x97943fac, 0x4a97c1d8, 0x527644b7, 0xb5f437a7, | |||
0xb82cbaef, 0xd751d159, 0x6ff7f0ed, 0x5a097a1f, 0x827b68d0, 0x90ecf52e, 0x22b0c054, 0xbc8e5935, | |||
0x4b6d2f7f, 0x50bb64a2, 0xd2664910, 0xbee5812d, 0xb7332290, 0xe93b159f, 0xb48ee411, 0x4bff345d, | |||
0xfd45c240, 0xad31973f, 0xc4f6d02e, 0x55fc8165, 0xd5b1caad, 0xa1ac2dae, 0xa2d4b76d, 0xc19b0c50, | |||
0x882240f2, 0x0c6e4f38, 0xa4e4bfd7, 0x4f5ba272, 0x564c1d2f, 0xc59c5319, 0xb949e354, 0xb04669fe, | |||
0xb1b6ab8a, 0xc71358dd, 0x6385c545, 0x110f935d, 0x57538ad5, 0x6a390493, 0xe63d37e0, 0x2a54f6b3, | |||
0x3a787d5f, 0x6276a0b5, 0x19a6fcdf, 0x7a42206a, 0x29f9d4d5, 0xf61b1891, 0xbb72275e, 0xaa508167, | |||
0x38901091, 0xc6b505eb, 0x84c7cb8c, 0x2ad75a0f, 0x874a1427, 0xa2d1936b, 0x2ad286af, 0xaa56d291, | |||
0xd7894360, 0x425c750d, 0x93b39e26, 0x187184c9, 0x6c00b32d, 0x73e2bb14, 0xa0bebc3c, 0x54623779, | |||
0x64459eab, 0x3f328b82, 0x7718cf82, 0x59a2cea6, 0x04ee002e, 0x89fe78e6, 0x3fab0950, 0x325ff6c2, | |||
0x81383f05, 0x6963c5c8, 0x76cb5ad6, 0xd49974c9, 0xca180dcf, 0x380782d5, 0xc7fa5cf6, 0x8ac31511, | |||
0x35e79e13, 0x47da91d0, 0xf40f9086, 0xa7e2419e, 0x31366241, 0x051ef495, 0xaa573b04, 0x4a805d8d, | |||
0x548300d0, 0x00322a3c, 0xbf64cddf, 0xba57a68e, 0x75c6372b, 0x50afd341, 0xa7c13275, 0x915a0bf5, | |||
0x6b54bfab, 0x2b0b1426, 0xab4cc9d7, 0x449ccd82, 0xf7fbf265, 0xab85c5f3, 0x1b55db94, 0xaad4e324, | |||
0xcfa4bd3f, 0x2deaa3e2, 0x9e204d02, 0xc8bd25ac, 0xeadf55b3, 0xd5bd9e98, 0xe31231b2, 0x2ad5ad6c, | |||
0x954329de, 0xadbe4528, 0xd8710f69, 0xaa51c90f, 0xaa786bf6, 0x22513f1e, 0xaa51a79b, 0x2ad344cc, | |||
0x7b5a41f0, 0xd37cfbad, 0x1b069505, 0x41ece491, 0xb4c332e6, 0x032268d4, 0xc9600acc, 0xce387e6d, | |||
0xbf6bb16c, 0x6a70fb78, 0x0d03d9c9, 0xd4df39de, 0xe01063da, 0x4736f464, 0x5ad328d8, 0xb347cc96, | |||
0x75bb0fc3, 0x98511bfb, 0x4ffbcc35, 0xb58bcf6a, 0xe11f0abc, 0xbfc5fe4a, 0xa70aec10, 0xac39570a, | |||
0x3f04442f, 0x6188b153, 0xe0397a2e, 0x5727cb79, 0x9ceb418f, 0x1cacd68d, 0x2ad37c96, 0x0175cb9d, | |||
0xc69dff09, 0xc75b65f0, 0xd9db40d8, 0xec0e7779, 0x4744ead4, 0xb11c3274, 0xdd24cb9e, 0x7e1c54bd, | |||
0xf01144f9, 0xd2240eb1, 0x9675b3fd, 0xa3ac3755, 0xd47c27af, 0x51c85f4d, 0x56907596, 0xa5bb15e6, | |||
0x580304f0, 0xca042cf1, 0x011a37ea, 0x8dbfaadb, 0x35ba3e4a, 0x3526ffa0, 0xc37b4d09, 0xbc306ed9, | |||
0x98a52666, 0x5648f725, 0xff5e569d, 0x0ced63d0, 0x7c63b2cf, 0x700b45e1, 0xd5ea50f1, 0x85a92872, | |||
0xaf1fbda7, 0xd4234870, 0xa7870bf3, 0x2d3b4d79, 0x42e04198, 0x0cd0ede7, 0x26470db8, 0xf881814c, | |||
0x474d6ad7, 0x7c0c5e5c, 0xd1231959, 0x381b7298, 0xf5d2f4db, 0xab838653, 0x6e2f1e23, 0x83719c9e, | |||
0xbd91e046, 0x9a56456e, 0xdc39200c, 0x20c8c571, 0x962bda1c, 0xe1e696ff, 0xb141ab08, 0x7cca89b9, | |||
0x1a69e783, 0x02cc4843, 0xa2f7c579, 0x429ef47d, 0x427b169c, 0x5ac9f049, 0xdd8f0f00, 0x5c8165bf, | |||
}, | |||
{ | |||
0x1f201094, 0xef0ba75b, 0x69e3cf7e, 0x393f4380, 0xfe61cf7a, 0xeec5207a, 0x55889c94, 0x72fc0651, | |||
0xada7ef79, 0x4e1d7235, 0xd55a63ce, 0xde0436ba, 0x99c430ef, 0x5f0c0794, 0x18dcdb7d, 0xa1d6eff3, | |||
0xa0b52f7b, 0x59e83605, 0xee15b094, 0xe9ffd909, 0xdc440086, 0xef944459, 0xba83ccb3, 0xe0c3cdfb, | |||
0xd1da4181, 0x3b092ab1, 0xf997f1c1, 0xa5e6cf7b, 0x01420ddb, 0xe4e7ef5b, 0x25a1ff41, 0xe180f806, | |||
0x1fc41080, 0x179bee7a, 0xd37ac6a9, 0xfe5830a4, 0x98de8b7f, 0x77e83f4e, 0x79929269, 0x24fa9f7b, | |||
0xe113c85b, 0xacc40083, 0xd7503525, 0xf7ea615f, 0x62143154, 0x0d554b63, 0x5d681121, 0xc866c359, | |||
0x3d63cf73, 0xcee234c0, 0xd4d87e87, 0x5c672b21, 0x071f6181, 0x39f7627f, 0x361e3084, 0xe4eb573b, | |||
0x602f64a4, 0xd63acd9c, 0x1bbc4635, 0x9e81032d, 0x2701f50c, 0x99847ab4, 0xa0e3df79, 0xba6cf38c, | |||
0x10843094, 0x2537a95e, 0xf46f6ffe, 0xa1ff3b1f, 0x208cfb6a, 0x8f458c74, 0xd9e0a227, 0x4ec73a34, | |||
0xfc884f69, 0x3e4de8df, 0xef0e0088, 0x3559648d, 0x8a45388c, 0x1d804366, 0x721d9bfd, 0xa58684bb, | |||
0xe8256333, 0x844e8212, 0x128d8098, 0xfed33fb4, 0xce280ae1, 0x27e19ba5, 0xd5a6c252, 0xe49754bd, | |||
0xc5d655dd, 0xeb667064, 0x77840b4d, 0xa1b6a801, 0x84db26a9, 0xe0b56714, 0x21f043b7, 0xe5d05860, | |||
0x54f03084, 0x066ff472, 0xa31aa153, 0xdadc4755, 0xb5625dbf, 0x68561be6, 0x83ca6b94, 0x2d6ed23b, | |||
0xeccf01db, 0xa6d3d0ba, 0xb6803d5c, 0xaf77a709, 0x33b4a34c, 0x397bc8d6, 0x5ee22b95, 0x5f0e5304, | |||
0x81ed6f61, 0x20e74364, 0xb45e1378, 0xde18639b, 0x881ca122, 0xb96726d1, 0x8049a7e8, 0x22b7da7b, | |||
0x5e552d25, 0x5272d237, 0x79d2951c, 0xc60d894c, 0x488cb402, 0x1ba4fe5b, 0xa4b09f6b, 0x1ca815cf, | |||
0xa20c3005, 0x8871df63, 0xb9de2fcb, 0x0cc6c9e9, 0x0beeff53, 0xe3214517, 0xb4542835, 0x9f63293c, | |||
0xee41e729, 0x6e1d2d7c, 0x50045286, 0x1e6685f3, 0xf33401c6, 0x30a22c95, 0x31a70850, 0x60930f13, | |||
0x73f98417, 0xa1269859, 0xec645c44, 0x52c877a9, 0xcdff33a6, 0xa02b1741, 0x7cbad9a2, 0x2180036f, | |||
0x50d99c08, 0xcb3f4861, 0xc26bd765, 0x64a3f6ab, 0x80342676, 0x25a75e7b, 0xe4e6d1fc, 0x20c710e6, | |||
0xcdf0b680, 0x17844d3b, 0x31eef84d, 0x7e0824e4, 0x2ccb49eb, 0x846a3bae, 0x8ff77888, 0xee5d60f6, | |||
0x7af75673, 0x2fdd5cdb, 0xa11631c1, 0x30f66f43, 0xb3faec54, 0x157fd7fa, 0xef8579cc, 0xd152de58, | |||
0xdb2ffd5e, 0x8f32ce19, 0x306af97a, 0x02f03ef8, 0x99319ad5, 0xc242fa0f, 0xa7e3ebb0, 0xc68e4906, | |||
0xb8da230c, 0x80823028, 0xdcdef3c8, 0xd35fb171, 0x088a1bc8, 0xbec0c560, 0x61a3c9e8, 0xbca8f54d, | |||
0xc72feffa, 0x22822e99, 0x82c570b4, 0xd8d94e89, 0x8b1c34bc, 0x301e16e6, 0x273be979, 0xb0ffeaa6, | |||
0x61d9b8c6, 0x00b24869, 0xb7ffce3f, 0x08dc283b, 0x43daf65a, 0xf7e19798, 0x7619b72f, 0x8f1c9ba4, | |||
0xdc8637a0, 0x16a7d3b1, 0x9fc393b7, 0xa7136eeb, 0xc6bcc63e, 0x1a513742, 0xef6828bc, 0x520365d6, | |||
0x2d6a77ab, 0x3527ed4b, 0x821fd216, 0x095c6e2e, 0xdb92f2fb, 0x5eea29cb, 0x145892f5, 0x91584f7f, | |||
0x5483697b, 0x2667a8cc, 0x85196048, 0x8c4bacea, 0x833860d4, 0x0d23e0f9, 0x6c387e8a, 0x0ae6d249, | |||
0xb284600c, 0xd835731d, 0xdcb1c647, 0xac4c56ea, 0x3ebd81b3, 0x230eabb0, 0x6438bc87, 0xf0b5b1fa, | |||
0x8f5ea2b3, 0xfc184642, 0x0a036b7a, 0x4fb089bd, 0x649da589, 0xa345415e, 0x5c038323, 0x3e5d3bb9, | |||
0x43d79572, 0x7e6dd07c, 0x06dfdf1e, 0x6c6cc4ef, 0x7160a539, 0x73bfbe70, 0x83877605, 0x4523ecf1, | |||
}, | |||
{ | |||
0x8defc240, 0x25fa5d9f, 0xeb903dbf, 0xe810c907, 0x47607fff, 0x369fe44b, 0x8c1fc644, 0xaececa90, | |||
0xbeb1f9bf, 0xeefbcaea, 0xe8cf1950, 0x51df07ae, 0x920e8806, 0xf0ad0548, 0xe13c8d83, 0x927010d5, | |||
0x11107d9f, 0x07647db9, 0xb2e3e4d4, 0x3d4f285e, 0xb9afa820, 0xfade82e0, 0xa067268b, 0x8272792e, | |||
0x553fb2c0, 0x489ae22b, 0xd4ef9794, 0x125e3fbc, 0x21fffcee, 0x825b1bfd, 0x9255c5ed, 0x1257a240, | |||
0x4e1a8302, 0xbae07fff, 0x528246e7, 0x8e57140e, 0x3373f7bf, 0x8c9f8188, 0xa6fc4ee8, 0xc982b5a5, | |||
0xa8c01db7, 0x579fc264, 0x67094f31, 0xf2bd3f5f, 0x40fff7c1, 0x1fb78dfc, 0x8e6bd2c1, 0x437be59b, | |||
0x99b03dbf, 0xb5dbc64b, 0x638dc0e6, 0x55819d99, 0xa197c81c, 0x4a012d6e, 0xc5884a28, 0xccc36f71, | |||
0xb843c213, 0x6c0743f1, 0x8309893c, 0x0feddd5f, 0x2f7fe850, 0xd7c07f7e, 0x02507fbf, 0x5afb9a04, | |||
0xa747d2d0, 0x1651192e, 0xaf70bf3e, 0x58c31380, 0x5f98302e, 0x727cc3c4, 0x0a0fb402, 0x0f7fef82, | |||
0x8c96fdad, 0x5d2c2aae, 0x8ee99a49, 0x50da88b8, 0x8427f4a0, 0x1eac5790, 0x796fb449, 0x8252dc15, | |||
0xefbd7d9b, 0xa672597d, 0xada840d8, 0x45f54504, 0xfa5d7403, 0xe83ec305, 0x4f91751a, 0x925669c2, | |||
0x23efe941, 0xa903f12e, 0x60270df2, 0x0276e4b6, 0x94fd6574, 0x927985b2, 0x8276dbcb, 0x02778176, | |||
0xf8af918d, 0x4e48f79e, 0x8f616ddf, 0xe29d840e, 0x842f7d83, 0x340ce5c8, 0x96bbb682, 0x93b4b148, | |||
0xef303cab, 0x984faf28, 0x779faf9b, 0x92dc560d, 0x224d1e20, 0x8437aa88, 0x7d29dc96, 0x2756d3dc, | |||
0x8b907cee, 0xb51fd240, 0xe7c07ce3, 0xe566b4a1, 0xc3e9615e, 0x3cf8209d, 0x6094d1e3, 0xcd9ca341, | |||
0x5c76460e, 0x00ea983b, 0xd4d67881, 0xfd47572c, 0xf76cedd9, 0xbda8229c, 0x127dadaa, 0x438a074e, | |||
0x1f97c090, 0x081bdb8a, 0x93a07ebe, 0xb938ca15, 0x97b03cff, 0x3dc2c0f8, 0x8d1ab2ec, 0x64380e51, | |||
0x68cc7bfb, 0xd90f2788, 0x12490181, 0x5de5ffd4, 0xdd7ef86a, 0x76a2e214, 0xb9a40368, 0x925d958f, | |||
0x4b39fffa, 0xba39aee9, 0xa4ffd30b, 0xfaf7933b, 0x6d498623, 0x193cbcfa, 0x27627545, 0x825cf47a, | |||
0x61bd8ba0, 0xd11e42d1, 0xcead04f4, 0x127ea392, 0x10428db7, 0x8272a972, 0x9270c4a8, 0x127de50b, | |||
0x285ba1c8, 0x3c62f44f, 0x35c0eaa5, 0xe805d231, 0x428929fb, 0xb4fcdf82, 0x4fb66a53, 0x0e7dc15b, | |||
0x1f081fab, 0x108618ae, 0xfcfd086d, 0xf9ff2889, 0x694bcc11, 0x236a5cae, 0x12deca4d, 0x2c3f8cc5, | |||
0xd2d02dfe, 0xf8ef5896, 0xe4cf52da, 0x95155b67, 0x494a488c, 0xb9b6a80c, 0x5c8f82bc, 0x89d36b45, | |||
0x3a609437, 0xec00c9a9, 0x44715253, 0x0a874b49, 0xd773bc40, 0x7c34671c, 0x02717ef6, 0x4feb5536, | |||
0xa2d02fff, 0xd2bf60c4, 0xd43f03c0, 0x50b4ef6d, 0x07478cd1, 0x006e1888, 0xa2e53f55, 0xb9e6d4bc, | |||
0xa2048016, 0x97573833, 0xd7207d67, 0xde0f8f3d, 0x72f87b33, 0xabcc4f33, 0x7688c55d, 0x7b00a6b0, | |||
0x947b0001, 0x570075d2, 0xf9bb88f8, 0x8942019e, 0x4264a5ff, 0x856302e0, 0x72dbd92b, 0xee971b69, | |||
0x6ea22fde, 0x5f08ae2b, 0xaf7a616d, 0xe5c98767, 0xcf1febd2, 0x61efc8c2, 0xf1ac2571, 0xcc8239c2, | |||
0x67214cb8, 0xb1e583d1, 0xb7dc3e62, 0x7f10bdce, 0xf90a5c38, 0x0ff0443d, 0x606e6dc6, 0x60543a49, | |||
0x5727c148, 0x2be98a1d, 0x8ab41738, 0x20e1be24, 0xaf96da0f, 0x68458425, 0x99833be5, 0x600d457d, | |||
0x282f9350, 0x8334b362, 0xd91d1120, 0x2b6d8da0, 0x642b1e31, 0x9c305a00, 0x52bce688, 0x1b03588a, | |||
0xf7baefd5, 0x4142ed9c, 0xa4315c11, 0x83323ec5, 0xdfef4636, 0xa133c501, 0xe9d3531c, 0xee353783, | |||
}, | |||
{ | |||
0x9db30420, 0x1fb6e9de, 0xa7be7bef, 0xd273a298, 0x4a4f7bdb, 0x64ad8c57, 0x85510443, 0xfa020ed1, | |||
0x7e287aff, 0xe60fb663, 0x095f35a1, 0x79ebf120, 0xfd059d43, 0x6497b7b1, 0xf3641f63, 0x241e4adf, | |||
0x28147f5f, 0x4fa2b8cd, 0xc9430040, 0x0cc32220, 0xfdd30b30, 0xc0a5374f, 0x1d2d00d9, 0x24147b15, | |||
0xee4d111a, 0x0fca5167, 0x71ff904c, 0x2d195ffe, 0x1a05645f, 0x0c13fefe, 0x081b08ca, 0x05170121, | |||
0x80530100, 0xe83e5efe, 0xac9af4f8, 0x7fe72701, 0xd2b8ee5f, 0x06df4261, 0xbb9e9b8a, 0x7293ea25, | |||
0xce84ffdf, 0xf5718801, 0x3dd64b04, 0xa26f263b, 0x7ed48400, 0x547eebe6, 0x446d4ca0, 0x6cf3d6f5, | |||
0x2649abdf, 0xaea0c7f5, 0x36338cc1, 0x503f7e93, 0xd3772061, 0x11b638e1, 0x72500e03, 0xf80eb2bb, | |||
0xabe0502e, 0xec8d77de, 0x57971e81, 0xe14f6746, 0xc9335400, 0x6920318f, 0x081dbb99, 0xffc304a5, | |||
0x4d351805, 0x7f3d5ce3, 0xa6c866c6, 0x5d5bcca9, 0xdaec6fea, 0x9f926f91, 0x9f46222f, 0x3991467d, | |||
0xa5bf6d8e, 0x1143c44f, 0x43958302, 0xd0214eeb, 0x022083b8, 0x3fb6180c, 0x18f8931e, 0x281658e6, | |||
0x26486e3e, 0x8bd78a70, 0x7477e4c1, 0xb506e07c, 0xf32d0a25, 0x79098b02, 0xe4eabb81, 0x28123b23, | |||
0x69dead38, 0x1574ca16, 0xdf871b62, 0x211c40b7, 0xa51a9ef9, 0x0014377b, 0x041e8ac8, 0x09114003, | |||
0xbd59e4d2, 0xe3d156d5, 0x4fe876d5, 0x2f91a340, 0x557be8de, 0x00eae4a7, 0x0ce5c2ec, 0x4db4bba6, | |||
0xe756bdff, 0xdd3369ac, 0xec17b035, 0x06572327, 0x99afc8b0, 0x56c8c391, 0x6b65811c, 0x5e146119, | |||
0x6e85cb75, 0xbe07c002, 0xc2325577, 0x893ff4ec, 0x5bbfc92d, 0xd0ec3b25, 0xb7801ab7, 0x8d6d3b24, | |||
0x20c763ef, 0xc366a5fc, 0x9c382880, 0x0ace3205, 0xaac9548a, 0xeca1d7c7, 0x041afa32, 0x1d16625a, | |||
0x6701902c, 0x9b757a54, 0x31d477f7, 0x9126b031, 0x36cc6fdb, 0xc70b8b46, 0xd9e66a48, 0x56e55a79, | |||
0x026a4ceb, 0x52437eff, 0x2f8f76b4, 0x0df980a5, 0x8674cde3, 0xedda04eb, 0x17a9be04, 0x2c18f4df, | |||
0xb7747f9d, 0xab2af7b4, 0xefc34d20, 0x2e096b7c, 0x1741a254, 0xe5b6a035, 0x213d42f6, 0x2c1c7c26, | |||
0x61c2f50f, 0x6552daf9, 0xd2c231f8, 0x25130f69, 0xd8167fa2, 0x0418f2c8, 0x001a96a6, 0x0d1526ab, | |||
0x63315c21, 0x5e0a72ec, 0x49bafefd, 0x187908d9, 0x8d0dbd86, 0x311170a7, 0x3e9b640c, 0xcc3e10d7, | |||
0xd5cad3b6, 0x0caec388, 0xf73001e1, 0x6c728aff, 0x71eae2a1, 0x1f9af36e, 0xcfcbd12f, 0xc1de8417, | |||
0xac07be6b, 0xcb44a1d8, 0x8b9b0f56, 0x013988c3, 0xb1c52fca, 0xb4be31cd, 0xd8782806, 0x12a3a4e2, | |||
0x6f7de532, 0x58fd7eb6, 0xd01ee900, 0x24adffc2, 0xf4990fc5, 0x9711aac5, 0x001d7b95, 0x82e5e7d2, | |||
0x109873f6, 0x00613096, 0xc32d9521, 0xada121ff, 0x29908415, 0x7fbb977f, 0xaf9eb3db, 0x29c9ed2a, | |||
0x5ce2a465, 0xa730f32c, 0xd0aa3fe8, 0x8a5cc091, 0xd49e2ce7, 0x0ce454a9, 0xd60acd86, 0x015f1919, | |||
0x77079103, 0xdea03af6, 0x78a8565e, 0xdee356df, 0x21f05cbe, 0x8b75e387, 0xb3c50651, 0xb8a5c3ef, | |||
0xd8eeb6d2, 0xe523be77, 0xc2154529, 0x2f69efdf, 0xafe67afb, 0xf470c4b2, 0xf3e0eb5b, 0xd6cc9876, | |||
0x39e4460c, 0x1fda8538, 0x1987832f, 0xca007367, 0xa99144f8, 0x296b299e, 0x492fc295, 0x9266beab, | |||
0xb5676e69, 0x9bd3ddda, 0xdf7e052f, 0xdb25701c, 0x1b5e51ee, 0xf65324e6, 0x6afce36c, 0x0316cc04, | |||
0x8644213e, 0xb7dc59d0, 0x7965291f, 0xccd6fd43, 0x41823979, 0x932bcdf6, 0xb657c34d, 0x4edfd282, | |||
0x7ae5290c, 0x3cb9536b, 0x851e20fe, 0x9833557e, 0x13ecf0b0, 0xd3ffb372, 0x3f85c5c1, 0x0aef7ed2, | |||
}, | |||
{ | |||
0x7ec90c04, 0x2c6e74b9, 0x9b0e66df, 0xa6337911, 0xb86a7fff, 0x1dd358f5, 0x44dd9d44, 0x1731167f, | |||
0x08fbf1fa, 0xe7f511cc, 0xd2051b00, 0x735aba00, 0x2ab722d8, 0x386381cb, 0xacf6243a, 0x69befd7a, | |||
0xe6a2e77f, 0xf0c720cd, 0xc4494816, 0xccf5c180, 0x38851640, 0x15b0a848, 0xe68b18cb, 0x4caadeff, | |||
0x5f480a01, 0x0412b2aa, 0x259814fc, 0x41d0efe2, 0x4e40b48d, 0x248eb6fb, 0x8dba1cfe, 0x41a99b02, | |||
0x1a550a04, 0xba8f65cb, 0x7251f4e7, 0x95a51725, 0xc106ecd7, 0x97a5980a, 0xc539b9aa, 0x4d79fe6a, | |||
0xf2f3f763, 0x68af8040, 0xed0c9e56, 0x11b4958b, 0xe1eb5a88, 0x8709e6b0, 0xd7e07156, 0x4e29fea7, | |||
0x6366e52d, 0x02d1c000, 0xc4ac8e05, 0x9377f571, 0x0c05372a, 0x578535f2, 0x2261be02, 0xd642a0c9, | |||
0xdf13a280, 0x74b55bd2, 0x682199c0, 0xd421e5ec, 0x53fb3ce8, 0xc8adedb3, 0x28a87fc9, 0x3d959981, | |||
0x5c1ff900, 0xfe38d399, 0x0c4eff0b, 0x062407ea, 0xaa2f4fb1, 0x4fb96976, 0x90c79505, 0xb0a8a774, | |||
0xef55a1ff, 0xe59ca2c2, 0xa6b62d27, 0xe66a4263, 0xdf65001f, 0x0ec50966, 0xdfdd55bc, 0x29de0655, | |||
0x911e739a, 0x17af8975, 0x32c7911c, 0x89f89468, 0x0d01e980, 0x524755f4, 0x03b63cc9, 0x0cc844b2, | |||
0xbcf3f0aa, 0x87ac36e9, 0xe53a7426, 0x01b3d82b, 0x1a9e7449, 0x64ee2d7e, 0xcddbb1da, 0x01c94910, | |||
0xb868bf80, 0x0d26f3fd, 0x9342ede7, 0x04a5c284, 0x636737b6, 0x50f5b616, 0xf24766e3, 0x8eca36c1, | |||
0x136e05db, 0xfef18391, 0xfb887a37, 0xd6e7f7d4, 0xc7fb7dc9, 0x3063fcdf, 0xb6f589de, 0xec2941da, | |||
0x26e46695, 0xb7566419, 0xf654efc5, 0xd08d58b7, 0x48925401, 0xc1bacb7f, 0xe5ff550f, 0xb6083049, | |||
0x5bb5d0e8, 0x87d72e5a, 0xab6a6ee1, 0x223a66ce, 0xc62bf3cd, 0x9e0885f9, 0x68cb3e47, 0x086c010f, | |||
0xa21de820, 0xd18b69de, 0xf3f65777, 0xfa02c3f6, 0x407edac3, 0xcbb3d550, 0x1793084d, 0xb0d70eba, | |||
0x0ab378d5, 0xd951fb0c, 0xded7da56, 0x4124bbe4, 0x94ca0b56, 0x0f5755d1, 0xe0e1e56e, 0x6184b5be, | |||
0x580a249f, 0x94f74bc0, 0xe327888e, 0x9f7b5561, 0xc3dc0280, 0x05687715, 0x646c6bd7, 0x44904db3, | |||
0x66b4f0a3, 0xc0f1648a, 0x697ed5af, 0x49e92ff6, 0x309e374f, 0x2cb6356a, 0x85808573, 0x4991f840, | |||
0x76f0ae02, 0x083be84d, 0x28421c9a, 0x44489406, 0x736e4cb8, 0xc1092910, 0x8bc95fc6, 0x7d869cf4, | |||
0x134f616f, 0x2e77118d, 0xb31b2be1, 0xaa90b472, 0x3ca5d717, 0x7d161bba, 0x9cad9010, 0xaf462ba2, | |||
0x9fe459d2, 0x45d34559, 0xd9f2da13, 0xdbc65487, 0xf3e4f94e, 0x176d486f, 0x097c13ea, 0x631da5c7, | |||
0x445f7382, 0x175683f4, 0xcdc66a97, 0x70be0288, 0xb3cdcf72, 0x6e5dd2f3, 0x20936079, 0x459b80a5, | |||
0xbe60e2db, 0xa9c23101, 0xeba5315c, 0x224e42f2, 0x1c5c1572, 0xf6721b2c, 0x1ad2fff3, 0x8c25404e, | |||
0x324ed72f, 0x4067b7fd, 0x0523138e, 0x5ca3bc78, 0xdc0fd66e, 0x75922283, 0x784d6b17, 0x58ebb16e, | |||
0x44094f85, 0x3f481d87, 0xfcfeae7b, 0x77b5ff76, 0x8c2302bf, 0xaaf47556, 0x5f46b02a, 0x2b092801, | |||
0x3d38f5f7, 0x0ca81f36, 0x52af4a8a, 0x66d5e7c0, 0xdf3b0874, 0x95055110, 0x1b5ad7a8, 0xf61ed5ad, | |||
0x6cf6e479, 0x20758184, 0xd0cefa65, 0x88f7be58, 0x4a046826, 0x0ff6f8f3, 0xa09c7f70, 0x5346aba0, | |||
0x5ce96c28, 0xe176eda3, 0x6bac307f, 0x376829d2, 0x85360fa9, 0x17e3fe2a, 0x24b79767, 0xf5a96b20, | |||
0xd6cd2595, 0x68ff1ebf, 0x7555442c, 0xf19f06be, 0xf9e0659a, 0xeeb9491d, 0x34010718, 0xbb30cab8, | |||
0xe822fe15, 0x88570983, 0x750e6249, 0xda627e55, 0x5e76ffa8, 0xb1534546, 0x6d47de08, 0xefe9e7d4, | |||
}, | |||
{ | |||
0xf6fa8f9d, 0x2cac6ce1, 0x4ca34867, 0xe2337f7c, 0x95db08e7, 0x016843b4, 0xeced5cbc, 0x325553ac, | |||
0xbf9f0960, 0xdfa1e2ed, 0x83f0579d, 0x63ed86b9, 0x1ab6a6b8, 0xde5ebe39, 0xf38ff732, 0x8989b138, | |||
0x33f14961, 0xc01937bd, 0xf506c6da, 0xe4625e7e, 0xa308ea99, 0x4e23e33c, 0x79cbd7cc, 0x48a14367, | |||
0xa3149619, 0xfec94bd5, 0xa114174a, 0xeaa01866, 0xa084db2d, 0x09a8486f, 0xa888614a, 0x2900af98, | |||
0x01665991, 0xe1992863, 0xc8f30c60, 0x2e78ef3c, 0xd0d51932, 0xcf0fec14, 0xf7ca07d2, 0xd0a82072, | |||
0xfd41197e, 0x9305a6b0, 0xe86be3da, 0x74bed3cd, 0x372da53c, 0x4c7f4448, 0xdab5d440, 0x6dba0ec3, | |||
0x083919a7, 0x9fbaeed9, 0x49dbcfb0, 0x4e670c53, 0x5c3d9c01, 0x64bdb941, 0x2c0e636a, 0xba7dd9cd, | |||
0xea6f7388, 0xe70bc762, 0x35f29adb, 0x5c4cdd8d, 0xf0d48d8c, 0xb88153e2, 0x08a19866, 0x1ae2eac8, | |||
0x284caf89, 0xaa928223, 0x9334be53, 0x3b3a21bf, 0x16434be3, 0x9aea3906, 0xefe8c36e, 0xf890cdd9, | |||
0x80226dae, 0xc340a4a3, 0xdf7e9c09, 0xa694a807, 0x5b7c5ecc, 0x221db3a6, 0x9a69a02f, 0x68818a54, | |||
0xceb2296f, 0x53c0843a, 0xfe893655, 0x25bfe68a, 0xb4628abc, 0xcf222ebf, 0x25ac6f48, 0xa9a99387, | |||
0x53bddb65, 0xe76ffbe7, 0xe967fd78, 0x0ba93563, 0x8e342bc1, 0xe8a11be9, 0x4980740d, 0xc8087dfc, | |||
0x8de4bf99, 0xa11101a0, 0x7fd37975, 0xda5a26c0, 0xe81f994f, 0x9528cd89, 0xfd339fed, 0xb87834bf, | |||
0x5f04456d, 0x22258698, 0xc9c4c83b, 0x2dc156be, 0x4f628daa, 0x57f55ec5, 0xe2220abe, 0xd2916ebf, | |||
0x4ec75b95, 0x24f2c3c0, 0x42d15d99, 0xcd0d7fa0, 0x7b6e27ff, 0xa8dc8af0, 0x7345c106, 0xf41e232f, | |||
0x35162386, 0xe6ea8926, 0x3333b094, 0x157ec6f2, 0x372b74af, 0x692573e4, 0xe9a9d848, 0xf3160289, | |||
0x3a62ef1d, 0xa787e238, 0xf3a5f676, 0x74364853, 0x20951063, 0x4576698d, 0xb6fad407, 0x592af950, | |||
0x36f73523, 0x4cfb6e87, 0x7da4cec0, 0x6c152daa, 0xcb0396a8, 0xc50dfe5d, 0xfcd707ab, 0x0921c42f, | |||
0x89dff0bb, 0x5fe2be78, 0x448f4f33, 0x754613c9, 0x2b05d08d, 0x48b9d585, 0xdc049441, 0xc8098f9b, | |||
0x7dede786, 0xc39a3373, 0x42410005, 0x6a091751, 0x0ef3c8a6, 0x890072d6, 0x28207682, 0xa9a9f7be, | |||
0xbf32679d, 0xd45b5b75, 0xb353fd00, 0xcbb0e358, 0x830f220a, 0x1f8fb214, 0xd372cf08, 0xcc3c4a13, | |||
0x8cf63166, 0x061c87be, 0x88c98f88, 0x6062e397, 0x47cf8e7a, 0xb6c85283, 0x3cc2acfb, 0x3fc06976, | |||
0x4e8f0252, 0x64d8314d, 0xda3870e3, 0x1e665459, 0xc10908f0, 0x513021a5, 0x6c5b68b7, 0x822f8aa0, | |||
0x3007cd3e, 0x74719eef, 0xdc872681, 0x073340d4, 0x7e432fd9, 0x0c5ec241, 0x8809286c, 0xf592d891, | |||
0x08a930f6, 0x957ef305, 0xb7fbffbd, 0xc266e96f, 0x6fe4ac98, 0xb173ecc0, 0xbc60b42a, 0x953498da, | |||
0xfba1ae12, 0x2d4bd736, 0x0f25faab, 0xa4f3fceb, 0xe2969123, 0x257f0c3d, 0x9348af49, 0x361400bc, | |||
0xe8816f4a, 0x3814f200, 0xa3f94043, 0x9c7a54c2, 0xbc704f57, 0xda41e7f9, 0xc25ad33a, 0x54f4a084, | |||
0xb17f5505, 0x59357cbe, 0xedbd15c8, 0x7f97c5ab, 0xba5ac7b5, 0xb6f6deaf, 0x3a479c3a, 0x5302da25, | |||
0x653d7e6a, 0x54268d49, 0x51a477ea, 0x5017d55b, 0xd7d25d88, 0x44136c76, 0x0404a8c8, 0xb8e5a121, | |||
0xb81a928a, 0x60ed5869, 0x97c55b96, 0xeaec991b, 0x29935913, 0x01fdb7f1, 0x088e8dfa, 0x9ab6f6f5, | |||
0x3b4cbf9f, 0x4a5de3ab, 0xe6051d35, 0xa0e1d855, 0xd36b4cf1, 0xf544edeb, 0xb0e93524, 0xbebb8fbd, | |||
0xa2d762cf, 0x49c92f54, 0x38b5f331, 0x7128a454, 0x48392905, 0xa65b1db8, 0x851c97bd, 0xd675cf2f, | |||
}, | |||
{ | |||
0x85e04019, 0x332bf567, 0x662dbfff, 0xcfc65693, 0x2a8d7f6f, 0xab9bc912, 0xde6008a1, 0x2028da1f, | |||
0x0227bce7, 0x4d642916, 0x18fac300, 0x50f18b82, 0x2cb2cb11, 0xb232e75c, 0x4b3695f2, 0xb28707de, | |||
0xa05fbcf6, 0xcd4181e9, 0xe150210c, 0xe24ef1bd, 0xb168c381, 0xfde4e789, 0x5c79b0d8, 0x1e8bfd43, | |||
0x4d495001, 0x38be4341, 0x913cee1d, 0x92a79c3f, 0x089766be, 0xbaeeadf4, 0x1286becf, 0xb6eacb19, | |||
0x2660c200, 0x7565bde4, 0x64241f7a, 0x8248dca9, 0xc3b3ad66, 0x28136086, 0x0bd8dfa8, 0x356d1cf2, | |||
0x107789be, 0xb3b2e9ce, 0x0502aa8f, 0x0bc0351e, 0x166bf52a, 0xeb12ff82, 0xe3486911, 0xd34d7516, | |||
0x4e7b3aff, 0x5f43671b, 0x9cf6e037, 0x4981ac83, 0x334266ce, 0x8c9341b7, 0xd0d854c0, 0xcb3a6c88, | |||
0x47bc2829, 0x4725ba37, 0xa66ad22b, 0x7ad61f1e, 0x0c5cbafa, 0x4437f107, 0xb6e79962, 0x42d2d816, | |||
0x0a961288, 0xe1a5c06e, 0x13749e67, 0x72fc081a, 0xb1d139f7, 0xf9583745, 0xcf19df58, 0xbec3f756, | |||
0xc06eba30, 0x07211b24, 0x45c28829, 0xc95e317f, 0xbc8ec511, 0x38bc46e9, 0xc6e6fa14, 0xbae8584a, | |||
0xad4ebc46, 0x468f508b, 0x7829435f, 0xf124183b, 0x821dba9f, 0xaff60ff4, 0xea2c4e6d, 0x16e39264, | |||
0x92544a8b, 0x009b4fc3, 0xaba68ced, 0x9ac96f78, 0x06a5b79a, 0xb2856e6e, 0x1aec3ca9, 0xbe838688, | |||
0x0e0804e9, 0x55f1be56, 0xe7e5363b, 0xb3a1f25d, 0xf7debb85, 0x61fe033c, 0x16746233, 0x3c034c28, | |||
0xda6d0c74, 0x79aac56c, 0x3ce4e1ad, 0x51f0c802, 0x98f8f35a, 0x1626a49f, 0xeed82b29, 0x1d382fe3, | |||
0x0c4fb99a, 0xbb325778, 0x3ec6d97b, 0x6e77a6a9, 0xcb658b5c, 0xd45230c7, 0x2bd1408b, 0x60c03eb7, | |||
0xb9068d78, 0xa33754f4, 0xf430c87d, 0xc8a71302, 0xb96d8c32, 0xebd4e7be, 0xbe8b9d2d, 0x7979fb06, | |||
0xe7225308, 0x8b75cf77, 0x11ef8da4, 0xe083c858, 0x8d6b786f, 0x5a6317a6, 0xfa5cf7a0, 0x5dda0033, | |||
0xf28ebfb0, 0xf5b9c310, 0xa0eac280, 0x08b9767a, 0xa3d9d2b0, 0x79d34217, 0x021a718d, 0x9ac6336a, | |||
0x2711fd60, 0x438050e3, 0x069908a8, 0x3d7fedc4, 0x826d2bef, 0x4eeb8476, 0x488dcf25, 0x36c9d566, | |||
0x28e74e41, 0xc2610aca, 0x3d49a9cf, 0xbae3b9df, 0xb65f8de6, 0x92aeaf64, 0x3ac7d5e6, 0x9ea80509, | |||
0xf22b017d, 0xa4173f70, 0xdd1e16c3, 0x15e0d7f9, 0x50b1b887, 0x2b9f4fd5, 0x625aba82, 0x6a017962, | |||
0x2ec01b9c, 0x15488aa9, 0xd716e740, 0x40055a2c, 0x93d29a22, 0xe32dbf9a, 0x058745b9, 0x3453dc1e, | |||
0xd699296e, 0x496cff6f, 0x1c9f4986, 0xdfe2ed07, 0xb87242d1, 0x19de7eae, 0x053e561a, 0x15ad6f8c, | |||
0x66626c1c, 0x7154c24c, 0xea082b2a, 0x93eb2939, 0x17dcb0f0, 0x58d4f2ae, 0x9ea294fb, 0x52cf564c, | |||
0x9883fe66, 0x2ec40581, 0x763953c3, 0x01d6692e, 0xd3a0c108, 0xa1e7160e, 0xe4f2dfa6, 0x693ed285, | |||
0x74904698, 0x4c2b0edd, 0x4f757656, 0x5d393378, 0xa132234f, 0x3d321c5d, 0xc3f5e194, 0x4b269301, | |||
0xc79f022f, 0x3c997e7e, 0x5e4f9504, 0x3ffafbbd, 0x76f7ad0e, 0x296693f4, 0x3d1fce6f, 0xc61e45be, | |||
0xd3b5ab34, 0xf72bf9b7, 0x1b0434c0, 0x4e72b567, 0x5592a33d, 0xb5229301, 0xcfd2a87f, 0x60aeb767, | |||
0x1814386b, 0x30bcc33d, 0x38a0c07d, 0xfd1606f2, 0xc363519b, 0x589dd390, 0x5479f8e6, 0x1cb8d647, | |||
0x97fd61a9, 0xea7759f4, 0x2d57539d, 0x569a58cf, 0xe84e63ad, 0x462e1b78, 0x6580f87e, 0xf3817914, | |||
0x91da55f4, 0x40a230f3, 0xd1988f35, 0xb6e318d2, 0x3ffa50bc, 0x3d40f021, 0xc3c0bdae, 0x4958c24c, | |||
0x518f36b2, 0x84b1d370, 0x0fedce83, 0x878ddada, 0xf2a279c7, 0x94e01be8, 0x90716f4b, 0x954b8aa3, | |||
}, | |||
{ | |||
0xe216300d, 0xbbddfffc, 0xa7ebdabd, 0x35648095, 0x7789f8b7, 0xe6c1121b, 0x0e241600, 0x052ce8b5, | |||
0x11a9cfb0, 0xe5952f11, 0xece7990a, 0x9386d174, 0x2a42931c, 0x76e38111, 0xb12def3a, 0x37ddddfc, | |||
0xde9adeb1, 0x0a0cc32c, 0xbe197029, 0x84a00940, 0xbb243a0f, 0xb4d137cf, 0xb44e79f0, 0x049eedfd, | |||
0x0b15a15d, 0x480d3168, 0x8bbbde5a, 0x669ded42, 0xc7ece831, 0x3f8f95e7, 0x72df191b, 0x7580330d, | |||
0x94074251, 0x5c7dcdfa, 0xabbe6d63, 0xaa402164, 0xb301d40a, 0x02e7d1ca, 0x53571dae, 0x7a3182a2, | |||
0x12a8ddec, 0xfdaa335d, 0x176f43e8, 0x71fb46d4, 0x38129022, 0xce949ad4, 0xb84769ad, 0x965bd862, | |||
0x82f3d055, 0x66fb9767, 0x15b80b4e, 0x1d5b47a0, 0x4cfde06f, 0xc28ec4b8, 0x57e8726e, 0x647a78fc, | |||
0x99865d44, 0x608bd593, 0x6c200e03, 0x39dc5ff6, 0x5d0b00a3, 0xae63aff2, 0x7e8bd632, 0x70108c0c, | |||
0xbbd35049, 0x2998df04, 0x980cf42a, 0x9b6df491, 0x9e7edd53, 0x06918548, 0x58cb7e07, 0x3b74ef2e, | |||
0x522fffb1, 0xd24708cc, 0x1c7e27cd, 0xa4eb215b, 0x3cf1d2e2, 0x19b47a38, 0x424f7618, 0x35856039, | |||
0x9d17dee7, 0x27eb35e6, 0xc9aff67b, 0x36baf5b8, 0x09c467cd, 0xc18910b1, 0xe11dbf7b, 0x06cd1af8, | |||
0x7170c608, 0x2d5e3354, 0xd4de495a, 0x64c6d006, 0xbcc0c62c, 0x3dd00db3, 0x708f8f34, 0x77d51b42, | |||
0x264f620f, 0x24b8d2bf, 0x15c1b79e, 0x46a52564, 0xf8d7e54e, 0x3e378160, 0x7895cda5, 0x859c15a5, | |||
0xe6459788, 0xc37bc75f, 0xdb07ba0c, 0x0676a3ab, 0x7f229b1e, 0x31842e7b, 0x24259fd7, 0xf8bef472, | |||
0x835ffcb8, 0x6df4c1f2, 0x96f5b195, 0xfd0af0fc, 0xb0fe134c, 0xe2506d3d, 0x4f9b12ea, 0xf215f225, | |||
0xa223736f, 0x9fb4c428, 0x25d04979, 0x34c713f8, 0xc4618187, 0xea7a6e98, 0x7cd16efc, 0x1436876c, | |||
0xf1544107, 0xbedeee14, 0x56e9af27, 0xa04aa441, 0x3cf7c899, 0x92ecbae6, 0xdd67016d, 0x151682eb, | |||
0xa842eedf, 0xfdba60b4, 0xf1907b75, 0x20e3030f, 0x24d8c29e, 0xe139673b, 0xefa63fb8, 0x71873054, | |||
0xb6f2cf3b, 0x9f326442, 0xcb15a4cc, 0xb01a4504, 0xf1e47d8d, 0x844a1be5, 0xbae7dfdc, 0x42cbda70, | |||
0xcd7dae0a, 0x57e85b7a, 0xd53f5af6, 0x20cf4d8c, 0xcea4d428, 0x79d130a4, 0x3486ebfb, 0x33d3cddc, | |||
0x77853b53, 0x37effcb5, 0xc5068778, 0xe580b3e6, 0x4e68b8f4, 0xc5c8b37e, 0x0d809ea2, 0x398feb7c, | |||
0x132a4f94, 0x43b7950e, 0x2fee7d1c, 0x223613bd, 0xdd06caa2, 0x37df932b, 0xc4248289, 0xacf3ebc3, | |||
0x5715f6b7, 0xef3478dd, 0xf267616f, 0xc148cbe4, 0x9052815e, 0x5e410fab, 0xb48a2465, 0x2eda7fa4, | |||
0xe87b40e4, 0xe98ea084, 0x5889e9e1, 0xefd390fc, 0xdd07d35b, 0xdb485694, 0x38d7e5b2, 0x57720101, | |||
0x730edebc, 0x5b643113, 0x94917e4f, 0x503c2fba, 0x646f1282, 0x7523d24a, 0xe0779695, 0xf9c17a8f, | |||
0x7a5b2121, 0xd187b896, 0x29263a4d, 0xba510cdf, 0x81f47c9f, 0xad1163ed, 0xea7b5965, 0x1a00726e, | |||
0x11403092, 0x00da6d77, 0x4a0cdd61, 0xad1f4603, 0x605bdfb0, 0x9eedc364, 0x22ebe6a8, 0xcee7d28a, | |||
0xa0e736a0, 0x5564a6b9, 0x10853209, 0xc7eb8f37, 0x2de705ca, 0x8951570f, 0xdf09822b, 0xbd691a6c, | |||
0xaa12e4f2, 0x87451c0f, 0xe0f6a27a, 0x3ada4819, 0x4cf1764f, 0x0d771c2b, 0x67cdb156, 0x350d8384, | |||
0x5938fa0f, 0x42399ef3, 0x36997b07, 0x0e84093d, 0x4aa93e61, 0x8360d87b, 0x1fa98b0c, 0x1149382c, | |||
0xe97625a5, 0x0614d1b7, 0x0e25244b, 0x0c768347, 0x589e8d82, 0x0d2059d1, 0xa466bb1e, 0xf8da0a82, | |||
0x04f19130, 0xba6e4ec0, 0x99265164, 0x1ee7230d, 0x50b2ad80, 0xeaee6801, 0x8db2a283, 0xea8bf59e, | |||
}, | |||
} |
@@ -0,0 +1,219 @@ | |||
// Copyright 2010 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
// Package armor implements OpenPGP ASCII Armor, see RFC 4880. OpenPGP Armor is | |||
// very similar to PEM except that it has an additional CRC checksum. | |||
package armor // import "golang.org/x/crypto/openpgp/armor" | |||
import ( | |||
"bufio" | |||
"bytes" | |||
"encoding/base64" | |||
"golang.org/x/crypto/openpgp/errors" | |||
"io" | |||
) | |||
// A Block represents an OpenPGP armored structure. | |||
// | |||
// The encoded form is: | |||
// -----BEGIN Type----- | |||
// Headers | |||
// | |||
// base64-encoded Bytes | |||
// '=' base64 encoded checksum | |||
// -----END Type----- | |||
// where Headers is a possibly empty sequence of Key: Value lines. | |||
// | |||
// Since the armored data can be very large, this package presents a streaming | |||
// interface. | |||
type Block struct { | |||
Type string // The type, taken from the preamble (i.e. "PGP SIGNATURE"). | |||
Header map[string]string // Optional headers. | |||
Body io.Reader // A Reader from which the contents can be read | |||
lReader lineReader | |||
oReader openpgpReader | |||
} | |||
var ArmorCorrupt error = errors.StructuralError("armor invalid") | |||
const crc24Init = 0xb704ce | |||
const crc24Poly = 0x1864cfb | |||
const crc24Mask = 0xffffff | |||
// crc24 calculates the OpenPGP checksum as specified in RFC 4880, section 6.1 | |||
func crc24(crc uint32, d []byte) uint32 { | |||
for _, b := range d { | |||
crc ^= uint32(b) << 16 | |||
for i := 0; i < 8; i++ { | |||
crc <<= 1 | |||
if crc&0x1000000 != 0 { | |||
crc ^= crc24Poly | |||
} | |||
} | |||
} | |||
return crc | |||
} | |||
var armorStart = []byte("-----BEGIN ") | |||
var armorEnd = []byte("-----END ") | |||
var armorEndOfLine = []byte("-----") | |||
// lineReader wraps a line based reader. It watches for the end of an armor | |||
// block and records the expected CRC value. | |||
type lineReader struct { | |||
in *bufio.Reader | |||
buf []byte | |||
eof bool | |||
crc uint32 | |||
} | |||
func (l *lineReader) Read(p []byte) (n int, err error) { | |||
if l.eof { | |||
return 0, io.EOF | |||
} | |||
if len(l.buf) > 0 { | |||
n = copy(p, l.buf) | |||
l.buf = l.buf[n:] | |||
return | |||
} | |||
line, isPrefix, err := l.in.ReadLine() | |||
if err != nil { | |||
return | |||
} | |||
if isPrefix { | |||
return 0, ArmorCorrupt | |||
} | |||
if len(line) == 5 && line[0] == '=' { | |||
// This is the checksum line | |||
var expectedBytes [3]byte | |||
var m int | |||
m, err = base64.StdEncoding.Decode(expectedBytes[0:], line[1:]) | |||
if m != 3 || err != nil { | |||
return | |||
} | |||
l.crc = uint32(expectedBytes[0])<<16 | | |||
uint32(expectedBytes[1])<<8 | | |||
uint32(expectedBytes[2]) | |||
line, _, err = l.in.ReadLine() | |||
if err != nil && err != io.EOF { | |||
return | |||
} | |||
if !bytes.HasPrefix(line, armorEnd) { | |||
return 0, ArmorCorrupt | |||
} | |||
l.eof = true | |||
return 0, io.EOF | |||
} | |||
if len(line) > 96 { | |||
return 0, ArmorCorrupt | |||
} | |||
n = copy(p, line) | |||
bytesToSave := len(line) - n | |||
if bytesToSave > 0 { | |||
if cap(l.buf) < bytesToSave { | |||
l.buf = make([]byte, 0, bytesToSave) | |||
} | |||
l.buf = l.buf[0:bytesToSave] | |||
copy(l.buf, line[n:]) | |||
} | |||
return | |||
} | |||
// openpgpReader passes Read calls to the underlying base64 decoder, but keeps | |||
// a running CRC of the resulting data and checks the CRC against the value | |||
// found by the lineReader at EOF. | |||
type openpgpReader struct { | |||
lReader *lineReader | |||
b64Reader io.Reader | |||
currentCRC uint32 | |||
} | |||
func (r *openpgpReader) Read(p []byte) (n int, err error) { | |||
n, err = r.b64Reader.Read(p) | |||
r.currentCRC = crc24(r.currentCRC, p[:n]) | |||
if err == io.EOF { | |||
if r.lReader.crc != uint32(r.currentCRC&crc24Mask) { | |||
return 0, ArmorCorrupt | |||
} | |||
} | |||
return | |||
} | |||
// Decode reads a PGP armored block from the given Reader. It will ignore | |||
// leading garbage. If it doesn't find a block, it will return nil, io.EOF. The | |||
// given Reader is not usable after calling this function: an arbitrary amount | |||
// of data may have been read past the end of the block. | |||
func Decode(in io.Reader) (p *Block, err error) { | |||
r := bufio.NewReaderSize(in, 100) | |||
var line []byte | |||
ignoreNext := false | |||
TryNextBlock: | |||
p = nil | |||
// Skip leading garbage | |||
for { | |||
ignoreThis := ignoreNext | |||
line, ignoreNext, err = r.ReadLine() | |||
if err != nil { | |||
return | |||
} | |||
if ignoreNext || ignoreThis { | |||
continue | |||
} | |||
line = bytes.TrimSpace(line) | |||
if len(line) > len(armorStart)+len(armorEndOfLine) && bytes.HasPrefix(line, armorStart) { | |||
break | |||
} | |||
} | |||
p = new(Block) | |||
p.Type = string(line[len(armorStart) : len(line)-len(armorEndOfLine)]) | |||
p.Header = make(map[string]string) | |||
nextIsContinuation := false | |||
var lastKey string | |||
// Read headers | |||
for { | |||
isContinuation := nextIsContinuation | |||
line, nextIsContinuation, err = r.ReadLine() | |||
if err != nil { | |||
p = nil | |||
return | |||
} | |||
if isContinuation { | |||
p.Header[lastKey] += string(line) | |||
continue | |||
} | |||
line = bytes.TrimSpace(line) | |||
if len(line) == 0 { | |||
break | |||
} | |||
i := bytes.Index(line, []byte(": ")) | |||
if i == -1 { | |||
goto TryNextBlock | |||
} | |||
lastKey = string(line[:i]) | |||
p.Header[lastKey] = string(line[i+2:]) | |||
} | |||
p.lReader.in = r | |||
p.oReader.currentCRC = crc24Init | |||
p.oReader.lReader = &p.lReader | |||
p.oReader.b64Reader = base64.NewDecoder(base64.StdEncoding, &p.lReader) | |||
p.Body = &p.oReader | |||
return | |||
} |
@@ -0,0 +1,160 @@ | |||
// Copyright 2010 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package armor | |||
import ( | |||
"encoding/base64" | |||
"io" | |||
) | |||
var armorHeaderSep = []byte(": ") | |||
var blockEnd = []byte("\n=") | |||
var newline = []byte("\n") | |||
var armorEndOfLineOut = []byte("-----\n") | |||
// writeSlices writes its arguments to the given Writer. | |||
func writeSlices(out io.Writer, slices ...[]byte) (err error) { | |||
for _, s := range slices { | |||
_, err = out.Write(s) | |||
if err != nil { | |||
return err | |||
} | |||
} | |||
return | |||
} | |||
// lineBreaker breaks data across several lines, all of the same byte length | |||
// (except possibly the last). Lines are broken with a single '\n'. | |||
type lineBreaker struct { | |||
lineLength int | |||
line []byte | |||
used int | |||
out io.Writer | |||
haveWritten bool | |||
} | |||
func newLineBreaker(out io.Writer, lineLength int) *lineBreaker { | |||
return &lineBreaker{ | |||
lineLength: lineLength, | |||
line: make([]byte, lineLength), | |||
used: 0, | |||
out: out, | |||
} | |||
} | |||
func (l *lineBreaker) Write(b []byte) (n int, err error) { | |||
n = len(b) | |||
if n == 0 { | |||
return | |||
} | |||
if l.used == 0 && l.haveWritten { | |||
_, err = l.out.Write([]byte{'\n'}) | |||
if err != nil { | |||
return | |||
} | |||
} | |||
if l.used+len(b) < l.lineLength { | |||
l.used += copy(l.line[l.used:], b) | |||
return | |||
} | |||
l.haveWritten = true | |||
_, err = l.out.Write(l.line[0:l.used]) | |||
if err != nil { | |||
return | |||
} | |||
excess := l.lineLength - l.used | |||
l.used = 0 | |||
_, err = l.out.Write(b[0:excess]) | |||
if err != nil { | |||
return | |||
} | |||
_, err = l.Write(b[excess:]) | |||
return | |||
} | |||
func (l *lineBreaker) Close() (err error) { | |||
if l.used > 0 { | |||
_, err = l.out.Write(l.line[0:l.used]) | |||
if err != nil { | |||
return | |||
} | |||
} | |||
return | |||
} | |||
// encoding keeps track of a running CRC24 over the data which has been written | |||
// to it and outputs a OpenPGP checksum when closed, followed by an armor | |||
// trailer. | |||
// | |||
// It's built into a stack of io.Writers: | |||
// encoding -> base64 encoder -> lineBreaker -> out | |||
type encoding struct { | |||
out io.Writer | |||
breaker *lineBreaker | |||
b64 io.WriteCloser | |||
crc uint32 | |||
blockType []byte | |||
} | |||
func (e *encoding) Write(data []byte) (n int, err error) { | |||
e.crc = crc24(e.crc, data) | |||
return e.b64.Write(data) | |||
} | |||
func (e *encoding) Close() (err error) { | |||
err = e.b64.Close() | |||
if err != nil { | |||
return | |||
} | |||
e.breaker.Close() | |||
var checksumBytes [3]byte | |||
checksumBytes[0] = byte(e.crc >> 16) | |||
checksumBytes[1] = byte(e.crc >> 8) | |||
checksumBytes[2] = byte(e.crc) | |||
var b64ChecksumBytes [4]byte | |||
base64.StdEncoding.Encode(b64ChecksumBytes[:], checksumBytes[:]) | |||
return writeSlices(e.out, blockEnd, b64ChecksumBytes[:], newline, armorEnd, e.blockType, armorEndOfLine) | |||
} | |||
// Encode returns a WriteCloser which will encode the data written to it in | |||
// OpenPGP armor. | |||
func Encode(out io.Writer, blockType string, headers map[string]string) (w io.WriteCloser, err error) { | |||
bType := []byte(blockType) | |||
err = writeSlices(out, armorStart, bType, armorEndOfLineOut) | |||
if err != nil { | |||
return | |||
} | |||
for k, v := range headers { | |||
err = writeSlices(out, []byte(k), armorHeaderSep, []byte(v), newline) | |||
if err != nil { | |||
return | |||
} | |||
} | |||
_, err = out.Write(newline) | |||
if err != nil { | |||
return | |||
} | |||
e := &encoding{ | |||
out: out, | |||
breaker: newLineBreaker(out, 64), | |||
crc: crc24Init, | |||
blockType: bType, | |||
} | |||
e.b64 = base64.NewEncoder(base64.StdEncoding, e.breaker) | |||
return e, nil | |||
} |
@@ -0,0 +1,59 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package openpgp | |||
import "hash" | |||
// NewCanonicalTextHash reformats text written to it into the canonical | |||
// form and then applies the hash h. See RFC 4880, section 5.2.1. | |||
func NewCanonicalTextHash(h hash.Hash) hash.Hash { | |||
return &canonicalTextHash{h, 0} | |||
} | |||
type canonicalTextHash struct { | |||
h hash.Hash | |||
s int | |||
} | |||
var newline = []byte{'\r', '\n'} | |||
func (cth *canonicalTextHash) Write(buf []byte) (int, error) { | |||
start := 0 | |||
for i, c := range buf { | |||
switch cth.s { | |||
case 0: | |||
if c == '\r' { | |||
cth.s = 1 | |||
} else if c == '\n' { | |||
cth.h.Write(buf[start:i]) | |||
cth.h.Write(newline) | |||
start = i + 1 | |||
} | |||
case 1: | |||
cth.s = 0 | |||
} | |||
} | |||
cth.h.Write(buf[start:]) | |||
return len(buf), nil | |||
} | |||
func (cth *canonicalTextHash) Sum(in []byte) []byte { | |||
return cth.h.Sum(in) | |||
} | |||
func (cth *canonicalTextHash) Reset() { | |||
cth.h.Reset() | |||
cth.s = 0 | |||
} | |||
func (cth *canonicalTextHash) Size() int { | |||
return cth.h.Size() | |||
} | |||
func (cth *canonicalTextHash) BlockSize() int { | |||
return cth.h.BlockSize() | |||
} |
@@ -0,0 +1,122 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
// Package elgamal implements ElGamal encryption, suitable for OpenPGP, | |||
// as specified in "A Public-Key Cryptosystem and a Signature Scheme Based on | |||
// Discrete Logarithms," IEEE Transactions on Information Theory, v. IT-31, | |||
// n. 4, 1985, pp. 469-472. | |||
// | |||
// This form of ElGamal embeds PKCS#1 v1.5 padding, which may make it | |||
// unsuitable for other protocols. RSA should be used in preference in any | |||
// case. | |||
package elgamal // import "golang.org/x/crypto/openpgp/elgamal" | |||
import ( | |||
"crypto/rand" | |||
"crypto/subtle" | |||
"errors" | |||
"io" | |||
"math/big" | |||
) | |||
// PublicKey represents an ElGamal public key. | |||
type PublicKey struct { | |||
G, P, Y *big.Int | |||
} | |||
// PrivateKey represents an ElGamal private key. | |||
type PrivateKey struct { | |||
PublicKey | |||
X *big.Int | |||
} | |||
// Encrypt encrypts the given message to the given public key. The result is a | |||
// pair of integers. Errors can result from reading random, or because msg is | |||
// too large to be encrypted to the public key. | |||
func Encrypt(random io.Reader, pub *PublicKey, msg []byte) (c1, c2 *big.Int, err error) { | |||
pLen := (pub.P.BitLen() + 7) / 8 | |||
if len(msg) > pLen-11 { | |||
err = errors.New("elgamal: message too long") | |||
return | |||
} | |||
// EM = 0x02 || PS || 0x00 || M | |||
em := make([]byte, pLen-1) | |||
em[0] = 2 | |||
ps, mm := em[1:len(em)-len(msg)-1], em[len(em)-len(msg):] | |||
err = nonZeroRandomBytes(ps, random) | |||
if err != nil { | |||
return | |||
} | |||
em[len(em)-len(msg)-1] = 0 | |||
copy(mm, msg) | |||
m := new(big.Int).SetBytes(em) | |||
k, err := rand.Int(random, pub.P) | |||
if err != nil { | |||
return | |||
} | |||
c1 = new(big.Int).Exp(pub.G, k, pub.P) | |||
s := new(big.Int).Exp(pub.Y, k, pub.P) | |||
c2 = s.Mul(s, m) | |||
c2.Mod(c2, pub.P) | |||
return | |||
} | |||
// Decrypt takes two integers, resulting from an ElGamal encryption, and | |||
// returns the plaintext of the message. An error can result only if the | |||
// ciphertext is invalid. Users should keep in mind that this is a padding | |||
// oracle and thus, if exposed to an adaptive chosen ciphertext attack, can | |||
// be used to break the cryptosystem. See ``Chosen Ciphertext Attacks | |||
// Against Protocols Based on the RSA Encryption Standard PKCS #1'', Daniel | |||
// Bleichenbacher, Advances in Cryptology (Crypto '98), | |||
func Decrypt(priv *PrivateKey, c1, c2 *big.Int) (msg []byte, err error) { | |||
s := new(big.Int).Exp(c1, priv.X, priv.P) | |||
s.ModInverse(s, priv.P) | |||
s.Mul(s, c2) | |||
s.Mod(s, priv.P) | |||
em := s.Bytes() | |||
firstByteIsTwo := subtle.ConstantTimeByteEq(em[0], 2) | |||
// The remainder of the plaintext must be a string of non-zero random | |||
// octets, followed by a 0, followed by the message. | |||
// lookingForIndex: 1 iff we are still looking for the zero. | |||
// index: the offset of the first zero byte. | |||
var lookingForIndex, index int | |||
lookingForIndex = 1 | |||
for i := 1; i < len(em); i++ { | |||
equals0 := subtle.ConstantTimeByteEq(em[i], 0) | |||
index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index) | |||
lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex) | |||
} | |||
if firstByteIsTwo != 1 || lookingForIndex != 0 || index < 9 { | |||
return nil, errors.New("elgamal: decryption error") | |||
} | |||
return em[index+1:], nil | |||
} | |||
// nonZeroRandomBytes fills the given slice with non-zero random octets. | |||
func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) { | |||
_, err = io.ReadFull(rand, s) | |||
if err != nil { | |||
return | |||
} | |||
for i := 0; i < len(s); i++ { | |||
for s[i] == 0 { | |||
_, err = io.ReadFull(rand, s[i:i+1]) | |||
if err != nil { | |||
return | |||
} | |||
} | |||
} | |||
return | |||
} |
@@ -0,0 +1,72 @@ | |||
// Copyright 2010 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
// Package errors contains common error types for the OpenPGP packages. | |||
package errors // import "golang.org/x/crypto/openpgp/errors" | |||
import ( | |||
"strconv" | |||
) | |||
// A StructuralError is returned when OpenPGP data is found to be syntactically | |||
// invalid. | |||
type StructuralError string | |||
func (s StructuralError) Error() string { | |||
return "openpgp: invalid data: " + string(s) | |||
} | |||
// UnsupportedError indicates that, although the OpenPGP data is valid, it | |||
// makes use of currently unimplemented features. | |||
type UnsupportedError string | |||
func (s UnsupportedError) Error() string { | |||
return "openpgp: unsupported feature: " + string(s) | |||
} | |||
// InvalidArgumentError indicates that the caller is in error and passed an | |||
// incorrect value. | |||
type InvalidArgumentError string | |||
func (i InvalidArgumentError) Error() string { | |||
return "openpgp: invalid argument: " + string(i) | |||
} | |||
// SignatureError indicates that a syntactically valid signature failed to | |||
// validate. | |||
type SignatureError string | |||
func (b SignatureError) Error() string { | |||
return "openpgp: invalid signature: " + string(b) | |||
} | |||
type keyIncorrectError int | |||
func (ki keyIncorrectError) Error() string { | |||
return "openpgp: incorrect key" | |||
} | |||
var ErrKeyIncorrect error = keyIncorrectError(0) | |||
type unknownIssuerError int | |||
func (unknownIssuerError) Error() string { | |||
return "openpgp: signature made by unknown entity" | |||
} | |||
var ErrUnknownIssuer error = unknownIssuerError(0) | |||
type keyRevokedError int | |||
func (keyRevokedError) Error() string { | |||
return "openpgp: signature made by revoked key" | |||
} | |||
var ErrKeyRevoked error = keyRevokedError(0) | |||
type UnknownPacketTypeError uint8 | |||
func (upte UnknownPacketTypeError) Error() string { | |||
return "openpgp: unknown packet type: " + strconv.Itoa(int(upte)) | |||
} |
@@ -0,0 +1,637 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package openpgp | |||
import ( | |||
"crypto/rsa" | |||
"io" | |||
"time" | |||
"golang.org/x/crypto/openpgp/armor" | |||
"golang.org/x/crypto/openpgp/errors" | |||
"golang.org/x/crypto/openpgp/packet" | |||
) | |||
// PublicKeyType is the armor type for a PGP public key. | |||
var PublicKeyType = "PGP PUBLIC KEY BLOCK" | |||
// PrivateKeyType is the armor type for a PGP private key. | |||
var PrivateKeyType = "PGP PRIVATE KEY BLOCK" | |||
// An Entity represents the components of an OpenPGP key: a primary public key | |||
// (which must be a signing key), one or more identities claimed by that key, | |||
// and zero or more subkeys, which may be encryption keys. | |||
type Entity struct { | |||
PrimaryKey *packet.PublicKey | |||
PrivateKey *packet.PrivateKey | |||
Identities map[string]*Identity // indexed by Identity.Name | |||
Revocations []*packet.Signature | |||
Subkeys []Subkey | |||
} | |||
// An Identity represents an identity claimed by an Entity and zero or more | |||
// assertions by other entities about that claim. | |||
type Identity struct { | |||
Name string // by convention, has the form "Full Name (comment) <email@example.com>" | |||
UserId *packet.UserId | |||
SelfSignature *packet.Signature | |||
Signatures []*packet.Signature | |||
} | |||
// A Subkey is an additional public key in an Entity. Subkeys can be used for | |||
// encryption. | |||
type Subkey struct { | |||
PublicKey *packet.PublicKey | |||
PrivateKey *packet.PrivateKey | |||
Sig *packet.Signature | |||
} | |||
// A Key identifies a specific public key in an Entity. This is either the | |||
// Entity's primary key or a subkey. | |||
type Key struct { | |||
Entity *Entity | |||
PublicKey *packet.PublicKey | |||
PrivateKey *packet.PrivateKey | |||
SelfSignature *packet.Signature | |||
} | |||
// A KeyRing provides access to public and private keys. | |||
type KeyRing interface { | |||
// KeysById returns the set of keys that have the given key id. | |||
KeysById(id uint64) []Key | |||
// KeysByIdAndUsage returns the set of keys with the given id | |||
// that also meet the key usage given by requiredUsage. | |||
// The requiredUsage is expressed as the bitwise-OR of | |||
// packet.KeyFlag* values. | |||
KeysByIdUsage(id uint64, requiredUsage byte) []Key | |||
// DecryptionKeys returns all private keys that are valid for | |||
// decryption. | |||
DecryptionKeys() []Key | |||
} | |||
// primaryIdentity returns the Identity marked as primary or the first identity | |||
// if none are so marked. | |||
func (e *Entity) primaryIdentity() *Identity { | |||
var firstIdentity *Identity | |||
for _, ident := range e.Identities { | |||
if firstIdentity == nil { | |||
firstIdentity = ident | |||
} | |||
if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId { | |||
return ident | |||
} | |||
} | |||
return firstIdentity | |||
} | |||
// encryptionKey returns the best candidate Key for encrypting a message to the | |||
// given Entity. | |||
func (e *Entity) encryptionKey(now time.Time) (Key, bool) { | |||
candidateSubkey := -1 | |||
// Iterate the keys to find the newest key | |||
var maxTime time.Time | |||
for i, subkey := range e.Subkeys { | |||
if subkey.Sig.FlagsValid && | |||
subkey.Sig.FlagEncryptCommunications && | |||
subkey.PublicKey.PubKeyAlgo.CanEncrypt() && | |||
!subkey.Sig.KeyExpired(now) && | |||
(maxTime.IsZero() || subkey.Sig.CreationTime.After(maxTime)) { | |||
candidateSubkey = i | |||
maxTime = subkey.Sig.CreationTime | |||
} | |||
} | |||
if candidateSubkey != -1 { | |||
subkey := e.Subkeys[candidateSubkey] | |||
return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig}, true | |||
} | |||
// If we don't have any candidate subkeys for encryption and | |||
// the primary key doesn't have any usage metadata then we | |||
// assume that the primary key is ok. Or, if the primary key is | |||
// marked as ok to encrypt to, then we can obviously use it. | |||
i := e.primaryIdentity() | |||
if !i.SelfSignature.FlagsValid || i.SelfSignature.FlagEncryptCommunications && | |||
e.PrimaryKey.PubKeyAlgo.CanEncrypt() && | |||
!i.SelfSignature.KeyExpired(now) { | |||
return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature}, true | |||
} | |||
// This Entity appears to be signing only. | |||
return Key{}, false | |||
} | |||
// signingKey return the best candidate Key for signing a message with this | |||
// Entity. | |||
func (e *Entity) signingKey(now time.Time) (Key, bool) { | |||
candidateSubkey := -1 | |||
for i, subkey := range e.Subkeys { | |||
if subkey.Sig.FlagsValid && | |||
subkey.Sig.FlagSign && | |||
subkey.PublicKey.PubKeyAlgo.CanSign() && | |||
!subkey.Sig.KeyExpired(now) { | |||
candidateSubkey = i | |||
break | |||
} | |||
} | |||
if candidateSubkey != -1 { | |||
subkey := e.Subkeys[candidateSubkey] | |||
return Key{e, subkey.PublicKey, subkey.PrivateKey, subkey.Sig}, true | |||
} | |||
// If we have no candidate subkey then we assume that it's ok to sign | |||
// with the primary key. | |||
i := e.primaryIdentity() | |||
if !i.SelfSignature.FlagsValid || i.SelfSignature.FlagSign && | |||
!i.SelfSignature.KeyExpired(now) { | |||
return Key{e, e.PrimaryKey, e.PrivateKey, i.SelfSignature}, true | |||
} | |||
return Key{}, false | |||
} | |||
// An EntityList contains one or more Entities. | |||
type EntityList []*Entity | |||
// KeysById returns the set of keys that have the given key id. | |||
func (el EntityList) KeysById(id uint64) (keys []Key) { | |||
for _, e := range el { | |||
if e.PrimaryKey.KeyId == id { | |||
var selfSig *packet.Signature | |||
for _, ident := range e.Identities { | |||
if selfSig == nil { | |||
selfSig = ident.SelfSignature | |||
} else if ident.SelfSignature.IsPrimaryId != nil && *ident.SelfSignature.IsPrimaryId { | |||
selfSig = ident.SelfSignature | |||
break | |||
} | |||
} | |||
keys = append(keys, Key{e, e.PrimaryKey, e.PrivateKey, selfSig}) | |||
} | |||
for _, subKey := range e.Subkeys { | |||
if subKey.PublicKey.KeyId == id { | |||
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig}) | |||
} | |||
} | |||
} | |||
return | |||
} | |||
// KeysByIdAndUsage returns the set of keys with the given id that also meet | |||
// the key usage given by requiredUsage. The requiredUsage is expressed as | |||
// the bitwise-OR of packet.KeyFlag* values. | |||
func (el EntityList) KeysByIdUsage(id uint64, requiredUsage byte) (keys []Key) { | |||
for _, key := range el.KeysById(id) { | |||
if len(key.Entity.Revocations) > 0 { | |||
continue | |||
} | |||
if key.SelfSignature.RevocationReason != nil { | |||
continue | |||
} | |||
if key.SelfSignature.FlagsValid && requiredUsage != 0 { | |||
var usage byte | |||
if key.SelfSignature.FlagCertify { | |||
usage |= packet.KeyFlagCertify | |||
} | |||
if key.SelfSignature.FlagSign { | |||
usage |= packet.KeyFlagSign | |||
} | |||
if key.SelfSignature.FlagEncryptCommunications { | |||
usage |= packet.KeyFlagEncryptCommunications | |||
} | |||
if key.SelfSignature.FlagEncryptStorage { | |||
usage |= packet.KeyFlagEncryptStorage | |||
} | |||
if usage&requiredUsage != requiredUsage { | |||
continue | |||
} | |||
} | |||
keys = append(keys, key) | |||
} | |||
return | |||
} | |||
// DecryptionKeys returns all private keys that are valid for decryption. | |||
func (el EntityList) DecryptionKeys() (keys []Key) { | |||
for _, e := range el { | |||
for _, subKey := range e.Subkeys { | |||
if subKey.PrivateKey != nil && (!subKey.Sig.FlagsValid || subKey.Sig.FlagEncryptStorage || subKey.Sig.FlagEncryptCommunications) { | |||
keys = append(keys, Key{e, subKey.PublicKey, subKey.PrivateKey, subKey.Sig}) | |||
} | |||
} | |||
} | |||
return | |||
} | |||
// ReadArmoredKeyRing reads one or more public/private keys from an armor keyring file. | |||
func ReadArmoredKeyRing(r io.Reader) (EntityList, error) { | |||
block, err := armor.Decode(r) | |||
if err == io.EOF { | |||
return nil, errors.InvalidArgumentError("no armored data found") | |||
} | |||
if err != nil { | |||
return nil, err | |||
} | |||
if block.Type != PublicKeyType && block.Type != PrivateKeyType { | |||
return nil, errors.InvalidArgumentError("expected public or private key block, got: " + block.Type) | |||
} | |||
return ReadKeyRing(block.Body) | |||
} | |||
// ReadKeyRing reads one or more public/private keys. Unsupported keys are | |||
// ignored as long as at least a single valid key is found. | |||
func ReadKeyRing(r io.Reader) (el EntityList, err error) { | |||
packets := packet.NewReader(r) | |||
var lastUnsupportedError error | |||
for { | |||
var e *Entity | |||
e, err = ReadEntity(packets) | |||
if err != nil { | |||
// TODO: warn about skipped unsupported/unreadable keys | |||
if _, ok := err.(errors.UnsupportedError); ok { | |||
lastUnsupportedError = err | |||
err = readToNextPublicKey(packets) | |||
} else if _, ok := err.(errors.StructuralError); ok { | |||
// Skip unreadable, badly-formatted keys | |||
lastUnsupportedError = err | |||
err = readToNextPublicKey(packets) | |||
} | |||
if err == io.EOF { | |||
err = nil | |||
break | |||
} | |||
if err != nil { | |||
el = nil | |||
break | |||
} | |||
} else { | |||
el = append(el, e) | |||
} | |||
} | |||
if len(el) == 0 && err == nil { | |||
err = lastUnsupportedError | |||
} | |||
return | |||
} | |||
// readToNextPublicKey reads packets until the start of the entity and leaves | |||
// the first packet of the new entity in the Reader. | |||
func readToNextPublicKey(packets *packet.Reader) (err error) { | |||
var p packet.Packet | |||
for { | |||
p, err = packets.Next() | |||
if err == io.EOF { | |||
return | |||
} else if err != nil { | |||
if _, ok := err.(errors.UnsupportedError); ok { | |||
err = nil | |||
continue | |||
} | |||
return | |||
} | |||
if pk, ok := p.(*packet.PublicKey); ok && !pk.IsSubkey { | |||
packets.Unread(p) | |||
return | |||
} | |||
} | |||
} | |||
// ReadEntity reads an entity (public key, identities, subkeys etc) from the | |||
// given Reader. | |||
func ReadEntity(packets *packet.Reader) (*Entity, error) { | |||
e := new(Entity) | |||
e.Identities = make(map[string]*Identity) | |||
p, err := packets.Next() | |||
if err != nil { | |||
return nil, err | |||
} | |||
var ok bool | |||
if e.PrimaryKey, ok = p.(*packet.PublicKey); !ok { | |||
if e.PrivateKey, ok = p.(*packet.PrivateKey); !ok { | |||
packets.Unread(p) | |||
return nil, errors.StructuralError("first packet was not a public/private key") | |||
} else { | |||
e.PrimaryKey = &e.PrivateKey.PublicKey | |||
} | |||
} | |||
if !e.PrimaryKey.PubKeyAlgo.CanSign() { | |||
return nil, errors.StructuralError("primary key cannot be used for signatures") | |||
} | |||
var current *Identity | |||
var revocations []*packet.Signature | |||
EachPacket: | |||
for { | |||
p, err := packets.Next() | |||
if err == io.EOF { | |||
break | |||
} else if err != nil { | |||
return nil, err | |||
} | |||
switch pkt := p.(type) { | |||
case *packet.UserId: | |||
current = new(Identity) | |||
current.Name = pkt.Id | |||
current.UserId = pkt | |||
e.Identities[pkt.Id] = current | |||
for { | |||
p, err = packets.Next() | |||
if err == io.EOF { | |||
return nil, io.ErrUnexpectedEOF | |||
} else if err != nil { | |||
return nil, err | |||
} | |||
sig, ok := p.(*packet.Signature) | |||
if !ok { | |||
return nil, errors.StructuralError("user ID packet not followed by self-signature") | |||
} | |||
if (sig.SigType == packet.SigTypePositiveCert || sig.SigType == packet.SigTypeGenericCert) && sig.IssuerKeyId != nil && *sig.IssuerKeyId == e.PrimaryKey.KeyId { | |||
if err = e.PrimaryKey.VerifyUserIdSignature(pkt.Id, e.PrimaryKey, sig); err != nil { | |||
return nil, errors.StructuralError("user ID self-signature invalid: " + err.Error()) | |||
} | |||
current.SelfSignature = sig | |||
break | |||
} | |||
current.Signatures = append(current.Signatures, sig) | |||
} | |||
case *packet.Signature: | |||
if pkt.SigType == packet.SigTypeKeyRevocation { | |||
revocations = append(revocations, pkt) | |||
} else if pkt.SigType == packet.SigTypeDirectSignature { | |||
// TODO: RFC4880 5.2.1 permits signatures | |||
// directly on keys (eg. to bind additional | |||
// revocation keys). | |||
} else if current == nil { | |||
return nil, errors.StructuralError("signature packet found before user id packet") | |||
} else { | |||
current.Signatures = append(current.Signatures, pkt) | |||
} | |||
case *packet.PrivateKey: | |||
if pkt.IsSubkey == false { | |||
packets.Unread(p) | |||
break EachPacket | |||
} | |||
err = addSubkey(e, packets, &pkt.PublicKey, pkt) | |||
if err != nil { | |||
return nil, err | |||
} | |||
case *packet.PublicKey: | |||
if pkt.IsSubkey == false { | |||
packets.Unread(p) | |||
break EachPacket | |||
} | |||
err = addSubkey(e, packets, pkt, nil) | |||
if err != nil { | |||
return nil, err | |||
} | |||
default: | |||
// we ignore unknown packets | |||
} | |||
} | |||
if len(e.Identities) == 0 { | |||
return nil, errors.StructuralError("entity without any identities") | |||
} | |||
for _, revocation := range revocations { | |||
err = e.PrimaryKey.VerifyRevocationSignature(revocation) | |||
if err == nil { | |||
e.Revocations = append(e.Revocations, revocation) | |||
} else { | |||
// TODO: RFC 4880 5.2.3.15 defines revocation keys. | |||
return nil, errors.StructuralError("revocation signature signed by alternate key") | |||
} | |||
} | |||
return e, nil | |||
} | |||
func addSubkey(e *Entity, packets *packet.Reader, pub *packet.PublicKey, priv *packet.PrivateKey) error { | |||
var subKey Subkey | |||
subKey.PublicKey = pub | |||
subKey.PrivateKey = priv | |||
p, err := packets.Next() | |||
if err == io.EOF { | |||
return io.ErrUnexpectedEOF | |||
} | |||
if err != nil { | |||
return errors.StructuralError("subkey signature invalid: " + err.Error()) | |||
} | |||
var ok bool | |||
subKey.Sig, ok = p.(*packet.Signature) | |||
if !ok { | |||
return errors.StructuralError("subkey packet not followed by signature") | |||
} | |||
if subKey.Sig.SigType != packet.SigTypeSubkeyBinding && subKey.Sig.SigType != packet.SigTypeSubkeyRevocation { | |||
return errors.StructuralError("subkey signature with wrong type") | |||
} | |||
err = e.PrimaryKey.VerifyKeySignature(subKey.PublicKey, subKey.Sig) | |||
if err != nil { | |||
return errors.StructuralError("subkey signature invalid: " + err.Error()) | |||
} | |||
e.Subkeys = append(e.Subkeys, subKey) | |||
return nil | |||
} | |||
const defaultRSAKeyBits = 2048 | |||
// NewEntity returns an Entity that contains a fresh RSA/RSA keypair with a | |||
// single identity composed of the given full name, comment and email, any of | |||
// which may be empty but must not contain any of "()<>\x00". | |||
// If config is nil, sensible defaults will be used. | |||
func NewEntity(name, comment, email string, config *packet.Config) (*Entity, error) { | |||
currentTime := config.Now() | |||
bits := defaultRSAKeyBits | |||
if config != nil && config.RSABits != 0 { | |||
bits = config.RSABits | |||
} | |||
uid := packet.NewUserId(name, comment, email) | |||
if uid == nil { | |||
return nil, errors.InvalidArgumentError("user id field contained invalid characters") | |||
} | |||
signingPriv, err := rsa.GenerateKey(config.Random(), bits) | |||
if err != nil { | |||
return nil, err | |||
} | |||
encryptingPriv, err := rsa.GenerateKey(config.Random(), bits) | |||
if err != nil { | |||
return nil, err | |||
} | |||
e := &Entity{ | |||
PrimaryKey: packet.NewRSAPublicKey(currentTime, &signingPriv.PublicKey), | |||
PrivateKey: packet.NewRSAPrivateKey(currentTime, signingPriv), | |||
Identities: make(map[string]*Identity), | |||
} | |||
isPrimaryId := true | |||
e.Identities[uid.Id] = &Identity{ | |||
Name: uid.Name, | |||
UserId: uid, | |||
SelfSignature: &packet.Signature{ | |||
CreationTime: currentTime, | |||
SigType: packet.SigTypePositiveCert, | |||
PubKeyAlgo: packet.PubKeyAlgoRSA, | |||
Hash: config.Hash(), | |||
IsPrimaryId: &isPrimaryId, | |||
FlagsValid: true, | |||
FlagSign: true, | |||
FlagCertify: true, | |||
IssuerKeyId: &e.PrimaryKey.KeyId, | |||
}, | |||
} | |||
// If the user passes in a DefaultHash via packet.Config, | |||
// set the PreferredHash for the SelfSignature. | |||
if config != nil && config.DefaultHash != 0 { | |||
e.Identities[uid.Id].SelfSignature.PreferredHash = []uint8{hashToHashId(config.DefaultHash)} | |||
} | |||
e.Subkeys = make([]Subkey, 1) | |||
e.Subkeys[0] = Subkey{ | |||
PublicKey: packet.NewRSAPublicKey(currentTime, &encryptingPriv.PublicKey), | |||
PrivateKey: packet.NewRSAPrivateKey(currentTime, encryptingPriv), | |||
Sig: &packet.Signature{ | |||
CreationTime: currentTime, | |||
SigType: packet.SigTypeSubkeyBinding, | |||
PubKeyAlgo: packet.PubKeyAlgoRSA, | |||
Hash: config.Hash(), | |||
FlagsValid: true, | |||
FlagEncryptStorage: true, | |||
FlagEncryptCommunications: true, | |||
IssuerKeyId: &e.PrimaryKey.KeyId, | |||
}, | |||
} | |||
e.Subkeys[0].PublicKey.IsSubkey = true | |||
e.Subkeys[0].PrivateKey.IsSubkey = true | |||
return e, nil | |||
} | |||
// SerializePrivate serializes an Entity, including private key material, to | |||
// the given Writer. For now, it must only be used on an Entity returned from | |||
// NewEntity. | |||
// If config is nil, sensible defaults will be used. | |||
func (e *Entity) SerializePrivate(w io.Writer, config *packet.Config) (err error) { | |||
err = e.PrivateKey.Serialize(w) | |||
if err != nil { | |||
return | |||
} | |||
for _, ident := range e.Identities { | |||
err = ident.UserId.Serialize(w) | |||
if err != nil { | |||
return | |||
} | |||
err = ident.SelfSignature.SignUserId(ident.UserId.Id, e.PrimaryKey, e.PrivateKey, config) | |||
if err != nil { | |||
return | |||
} | |||
err = ident.SelfSignature.Serialize(w) | |||
if err != nil { | |||
return | |||
} | |||
} | |||
for _, subkey := range e.Subkeys { | |||
err = subkey.PrivateKey.Serialize(w) | |||
if err != nil { | |||
return | |||
} | |||
err = subkey.Sig.SignKey(subkey.PublicKey, e.PrivateKey, config) | |||
if err != nil { | |||
return | |||
} | |||
err = subkey.Sig.Serialize(w) | |||
if err != nil { | |||
return | |||
} | |||
} | |||
return nil | |||
} | |||
// Serialize writes the public part of the given Entity to w. (No private | |||
// key material will be output). | |||
func (e *Entity) Serialize(w io.Writer) error { | |||
err := e.PrimaryKey.Serialize(w) | |||
if err != nil { | |||
return err | |||
} | |||
for _, ident := range e.Identities { | |||
err = ident.UserId.Serialize(w) | |||
if err != nil { | |||
return err | |||
} | |||
err = ident.SelfSignature.Serialize(w) | |||
if err != nil { | |||
return err | |||
} | |||
for _, sig := range ident.Signatures { | |||
err = sig.Serialize(w) | |||
if err != nil { | |||
return err | |||
} | |||
} | |||
} | |||
for _, subkey := range e.Subkeys { | |||
err = subkey.PublicKey.Serialize(w) | |||
if err != nil { | |||
return err | |||
} | |||
err = subkey.Sig.Serialize(w) | |||
if err != nil { | |||
return err | |||
} | |||
} | |||
return nil | |||
} | |||
// SignIdentity adds a signature to e, from signer, attesting that identity is | |||
// associated with e. The provided identity must already be an element of | |||
// e.Identities and the private key of signer must have been decrypted if | |||
// necessary. | |||
// If config is nil, sensible defaults will be used. | |||
func (e *Entity) SignIdentity(identity string, signer *Entity, config *packet.Config) error { | |||
if signer.PrivateKey == nil { | |||
return errors.InvalidArgumentError("signing Entity must have a private key") | |||
} | |||
if signer.PrivateKey.Encrypted { | |||
return errors.InvalidArgumentError("signing Entity's private key must be decrypted") | |||
} | |||
ident, ok := e.Identities[identity] | |||
if !ok { | |||
return errors.InvalidArgumentError("given identity string not found in Entity") | |||
} | |||
sig := &packet.Signature{ | |||
SigType: packet.SigTypeGenericCert, | |||
PubKeyAlgo: signer.PrivateKey.PubKeyAlgo, | |||
Hash: config.Hash(), | |||
CreationTime: config.Now(), | |||
IssuerKeyId: &signer.PrivateKey.KeyId, | |||
} | |||
if err := sig.SignUserId(identity, e.PrimaryKey, signer.PrivateKey, config); err != nil { | |||
return err | |||
} | |||
ident.Signatures = append(ident.Signatures, sig) | |||
return nil | |||
} |
@@ -0,0 +1,123 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"compress/bzip2" | |||
"compress/flate" | |||
"compress/zlib" | |||
"golang.org/x/crypto/openpgp/errors" | |||
"io" | |||
"strconv" | |||
) | |||
// Compressed represents a compressed OpenPGP packet. The decompressed contents | |||
// will contain more OpenPGP packets. See RFC 4880, section 5.6. | |||
type Compressed struct { | |||
Body io.Reader | |||
} | |||
const ( | |||
NoCompression = flate.NoCompression | |||
BestSpeed = flate.BestSpeed | |||
BestCompression = flate.BestCompression | |||
DefaultCompression = flate.DefaultCompression | |||
) | |||
// CompressionConfig contains compressor configuration settings. | |||
type CompressionConfig struct { | |||
// Level is the compression level to use. It must be set to | |||
// between -1 and 9, with -1 causing the compressor to use the | |||
// default compression level, 0 causing the compressor to use | |||
// no compression and 1 to 9 representing increasing (better, | |||
// slower) compression levels. If Level is less than -1 or | |||
// more then 9, a non-nil error will be returned during | |||
// encryption. See the constants above for convenient common | |||
// settings for Level. | |||
Level int | |||
} | |||
func (c *Compressed) parse(r io.Reader) error { | |||
var buf [1]byte | |||
_, err := readFull(r, buf[:]) | |||
if err != nil { | |||
return err | |||
} | |||
switch buf[0] { | |||
case 1: | |||
c.Body = flate.NewReader(r) | |||
case 2: | |||
c.Body, err = zlib.NewReader(r) | |||
case 3: | |||
c.Body = bzip2.NewReader(r) | |||
default: | |||
err = errors.UnsupportedError("unknown compression algorithm: " + strconv.Itoa(int(buf[0]))) | |||
} | |||
return err | |||
} | |||
// compressedWriterCloser represents the serialized compression stream | |||
// header and the compressor. Its Close() method ensures that both the | |||
// compressor and serialized stream header are closed. Its Write() | |||
// method writes to the compressor. | |||
type compressedWriteCloser struct { | |||
sh io.Closer // Stream Header | |||
c io.WriteCloser // Compressor | |||
} | |||
func (cwc compressedWriteCloser) Write(p []byte) (int, error) { | |||
return cwc.c.Write(p) | |||
} | |||
func (cwc compressedWriteCloser) Close() (err error) { | |||
err = cwc.c.Close() | |||
if err != nil { | |||
return err | |||
} | |||
return cwc.sh.Close() | |||
} | |||
// SerializeCompressed serializes a compressed data packet to w and | |||
// returns a WriteCloser to which the literal data packets themselves | |||
// can be written and which MUST be closed on completion. If cc is | |||
// nil, sensible defaults will be used to configure the compression | |||
// algorithm. | |||
func SerializeCompressed(w io.WriteCloser, algo CompressionAlgo, cc *CompressionConfig) (literaldata io.WriteCloser, err error) { | |||
compressed, err := serializeStreamHeader(w, packetTypeCompressed) | |||
if err != nil { | |||
return | |||
} | |||
_, err = compressed.Write([]byte{uint8(algo)}) | |||
if err != nil { | |||
return | |||
} | |||
level := DefaultCompression | |||
if cc != nil { | |||
level = cc.Level | |||
} | |||
var compressor io.WriteCloser | |||
switch algo { | |||
case CompressionZIP: | |||
compressor, err = flate.NewWriter(compressed, level) | |||
case CompressionZLIB: | |||
compressor, err = zlib.NewWriterLevel(compressed, level) | |||
default: | |||
s := strconv.Itoa(int(algo)) | |||
err = errors.UnsupportedError("Unsupported compression algorithm: " + s) | |||
} | |||
if err != nil { | |||
return | |||
} | |||
literaldata = compressedWriteCloser{compressed, compressor} | |||
return | |||
} |
@@ -0,0 +1,91 @@ | |||
// Copyright 2012 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"crypto" | |||
"crypto/rand" | |||
"io" | |||
"time" | |||
) | |||
// Config collects a number of parameters along with sensible defaults. | |||
// A nil *Config is valid and results in all default values. | |||
type Config struct { | |||
// Rand provides the source of entropy. | |||
// If nil, the crypto/rand Reader is used. | |||
Rand io.Reader | |||
// DefaultHash is the default hash function to be used. | |||
// If zero, SHA-256 is used. | |||
DefaultHash crypto.Hash | |||
// DefaultCipher is the cipher to be used. | |||
// If zero, AES-128 is used. | |||
DefaultCipher CipherFunction | |||
// Time returns the current time as the number of seconds since the | |||
// epoch. If Time is nil, time.Now is used. | |||
Time func() time.Time | |||
// DefaultCompressionAlgo is the compression algorithm to be | |||
// applied to the plaintext before encryption. If zero, no | |||
// compression is done. | |||
DefaultCompressionAlgo CompressionAlgo | |||
// CompressionConfig configures the compression settings. | |||
CompressionConfig *CompressionConfig | |||
// S2KCount is only used for symmetric encryption. It | |||
// determines the strength of the passphrase stretching when | |||
// the said passphrase is hashed to produce a key. S2KCount | |||
// should be between 1024 and 65011712, inclusive. If Config | |||
// is nil or S2KCount is 0, the value 65536 used. Not all | |||
// values in the above range can be represented. S2KCount will | |||
// be rounded up to the next representable value if it cannot | |||
// be encoded exactly. When set, it is strongly encrouraged to | |||
// use a value that is at least 65536. See RFC 4880 Section | |||
// 3.7.1.3. | |||
S2KCount int | |||
// RSABits is the number of bits in new RSA keys made with NewEntity. | |||
// If zero, then 2048 bit keys are created. | |||
RSABits int | |||
} | |||
func (c *Config) Random() io.Reader { | |||
if c == nil || c.Rand == nil { | |||
return rand.Reader | |||
} | |||
return c.Rand | |||
} | |||
func (c *Config) Hash() crypto.Hash { | |||
if c == nil || uint(c.DefaultHash) == 0 { | |||
return crypto.SHA256 | |||
} | |||
return c.DefaultHash | |||
} | |||
func (c *Config) Cipher() CipherFunction { | |||
if c == nil || uint8(c.DefaultCipher) == 0 { | |||
return CipherAES128 | |||
} | |||
return c.DefaultCipher | |||
} | |||
func (c *Config) Now() time.Time { | |||
if c == nil || c.Time == nil { | |||
return time.Now() | |||
} | |||
return c.Time() | |||
} | |||
func (c *Config) Compression() CompressionAlgo { | |||
if c == nil { | |||
return CompressionNone | |||
} | |||
return c.DefaultCompressionAlgo | |||
} | |||
func (c *Config) PasswordHashIterations() int { | |||
if c == nil || c.S2KCount == 0 { | |||
return 0 | |||
} | |||
return c.S2KCount | |||
} |
@@ -0,0 +1,199 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"crypto/rsa" | |||
"encoding/binary" | |||
"io" | |||
"math/big" | |||
"strconv" | |||
"golang.org/x/crypto/openpgp/elgamal" | |||
"golang.org/x/crypto/openpgp/errors" | |||
) | |||
const encryptedKeyVersion = 3 | |||
// EncryptedKey represents a public-key encrypted session key. See RFC 4880, | |||
// section 5.1. | |||
type EncryptedKey struct { | |||
KeyId uint64 | |||
Algo PublicKeyAlgorithm | |||
CipherFunc CipherFunction // only valid after a successful Decrypt | |||
Key []byte // only valid after a successful Decrypt | |||
encryptedMPI1, encryptedMPI2 parsedMPI | |||
} | |||
func (e *EncryptedKey) parse(r io.Reader) (err error) { | |||
var buf [10]byte | |||
_, err = readFull(r, buf[:]) | |||
if err != nil { | |||
return | |||
} | |||
if buf[0] != encryptedKeyVersion { | |||
return errors.UnsupportedError("unknown EncryptedKey version " + strconv.Itoa(int(buf[0]))) | |||
} | |||
e.KeyId = binary.BigEndian.Uint64(buf[1:9]) | |||
e.Algo = PublicKeyAlgorithm(buf[9]) | |||
switch e.Algo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly: | |||
e.encryptedMPI1.bytes, e.encryptedMPI1.bitLength, err = readMPI(r) | |||
case PubKeyAlgoElGamal: | |||
e.encryptedMPI1.bytes, e.encryptedMPI1.bitLength, err = readMPI(r) | |||
if err != nil { | |||
return | |||
} | |||
e.encryptedMPI2.bytes, e.encryptedMPI2.bitLength, err = readMPI(r) | |||
} | |||
_, err = consumeAll(r) | |||
return | |||
} | |||
func checksumKeyMaterial(key []byte) uint16 { | |||
var checksum uint16 | |||
for _, v := range key { | |||
checksum += uint16(v) | |||
} | |||
return checksum | |||
} | |||
// Decrypt decrypts an encrypted session key with the given private key. The | |||
// private key must have been decrypted first. | |||
// If config is nil, sensible defaults will be used. | |||
func (e *EncryptedKey) Decrypt(priv *PrivateKey, config *Config) error { | |||
var err error | |||
var b []byte | |||
// TODO(agl): use session key decryption routines here to avoid | |||
// padding oracle attacks. | |||
switch priv.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly: | |||
b, err = rsa.DecryptPKCS1v15(config.Random(), priv.PrivateKey.(*rsa.PrivateKey), e.encryptedMPI1.bytes) | |||
case PubKeyAlgoElGamal: | |||
c1 := new(big.Int).SetBytes(e.encryptedMPI1.bytes) | |||
c2 := new(big.Int).SetBytes(e.encryptedMPI2.bytes) | |||
b, err = elgamal.Decrypt(priv.PrivateKey.(*elgamal.PrivateKey), c1, c2) | |||
default: | |||
err = errors.InvalidArgumentError("cannot decrypted encrypted session key with private key of type " + strconv.Itoa(int(priv.PubKeyAlgo))) | |||
} | |||
if err != nil { | |||
return err | |||
} | |||
e.CipherFunc = CipherFunction(b[0]) | |||
e.Key = b[1 : len(b)-2] | |||
expectedChecksum := uint16(b[len(b)-2])<<8 | uint16(b[len(b)-1]) | |||
checksum := checksumKeyMaterial(e.Key) | |||
if checksum != expectedChecksum { | |||
return errors.StructuralError("EncryptedKey checksum incorrect") | |||
} | |||
return nil | |||
} | |||
// Serialize writes the encrypted key packet, e, to w. | |||
func (e *EncryptedKey) Serialize(w io.Writer) error { | |||
var mpiLen int | |||
switch e.Algo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly: | |||
mpiLen = 2 + len(e.encryptedMPI1.bytes) | |||
case PubKeyAlgoElGamal: | |||
mpiLen = 2 + len(e.encryptedMPI1.bytes) + 2 + len(e.encryptedMPI2.bytes) | |||
default: | |||
return errors.InvalidArgumentError("don't know how to serialize encrypted key type " + strconv.Itoa(int(e.Algo))) | |||
} | |||
serializeHeader(w, packetTypeEncryptedKey, 1 /* version */ +8 /* key id */ +1 /* algo */ +mpiLen) | |||
w.Write([]byte{encryptedKeyVersion}) | |||
binary.Write(w, binary.BigEndian, e.KeyId) | |||
w.Write([]byte{byte(e.Algo)}) | |||
switch e.Algo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly: | |||
writeMPIs(w, e.encryptedMPI1) | |||
case PubKeyAlgoElGamal: | |||
writeMPIs(w, e.encryptedMPI1, e.encryptedMPI2) | |||
default: | |||
panic("internal error") | |||
} | |||
return nil | |||
} | |||
// SerializeEncryptedKey serializes an encrypted key packet to w that contains | |||
// key, encrypted to pub. | |||
// If config is nil, sensible defaults will be used. | |||
func SerializeEncryptedKey(w io.Writer, pub *PublicKey, cipherFunc CipherFunction, key []byte, config *Config) error { | |||
var buf [10]byte | |||
buf[0] = encryptedKeyVersion | |||
binary.BigEndian.PutUint64(buf[1:9], pub.KeyId) | |||
buf[9] = byte(pub.PubKeyAlgo) | |||
keyBlock := make([]byte, 1 /* cipher type */ +len(key)+2 /* checksum */) | |||
keyBlock[0] = byte(cipherFunc) | |||
copy(keyBlock[1:], key) | |||
checksum := checksumKeyMaterial(key) | |||
keyBlock[1+len(key)] = byte(checksum >> 8) | |||
keyBlock[1+len(key)+1] = byte(checksum) | |||
switch pub.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly: | |||
return serializeEncryptedKeyRSA(w, config.Random(), buf, pub.PublicKey.(*rsa.PublicKey), keyBlock) | |||
case PubKeyAlgoElGamal: | |||
return serializeEncryptedKeyElGamal(w, config.Random(), buf, pub.PublicKey.(*elgamal.PublicKey), keyBlock) | |||
case PubKeyAlgoDSA, PubKeyAlgoRSASignOnly: | |||
return errors.InvalidArgumentError("cannot encrypt to public key of type " + strconv.Itoa(int(pub.PubKeyAlgo))) | |||
} | |||
return errors.UnsupportedError("encrypting a key to public key of type " + strconv.Itoa(int(pub.PubKeyAlgo))) | |||
} | |||
func serializeEncryptedKeyRSA(w io.Writer, rand io.Reader, header [10]byte, pub *rsa.PublicKey, keyBlock []byte) error { | |||
cipherText, err := rsa.EncryptPKCS1v15(rand, pub, keyBlock) | |||
if err != nil { | |||
return errors.InvalidArgumentError("RSA encryption failed: " + err.Error()) | |||
} | |||
packetLen := 10 /* header length */ + 2 /* mpi size */ + len(cipherText) | |||
err = serializeHeader(w, packetTypeEncryptedKey, packetLen) | |||
if err != nil { | |||
return err | |||
} | |||
_, err = w.Write(header[:]) | |||
if err != nil { | |||
return err | |||
} | |||
return writeMPI(w, 8*uint16(len(cipherText)), cipherText) | |||
} | |||
func serializeEncryptedKeyElGamal(w io.Writer, rand io.Reader, header [10]byte, pub *elgamal.PublicKey, keyBlock []byte) error { | |||
c1, c2, err := elgamal.Encrypt(rand, pub, keyBlock) | |||
if err != nil { | |||
return errors.InvalidArgumentError("ElGamal encryption failed: " + err.Error()) | |||
} | |||
packetLen := 10 /* header length */ | |||
packetLen += 2 /* mpi size */ + (c1.BitLen()+7)/8 | |||
packetLen += 2 /* mpi size */ + (c2.BitLen()+7)/8 | |||
err = serializeHeader(w, packetTypeEncryptedKey, packetLen) | |||
if err != nil { | |||
return err | |||
} | |||
_, err = w.Write(header[:]) | |||
if err != nil { | |||
return err | |||
} | |||
err = writeBig(w, c1) | |||
if err != nil { | |||
return err | |||
} | |||
return writeBig(w, c2) | |||
} |
@@ -0,0 +1,89 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"encoding/binary" | |||
"io" | |||
) | |||
// LiteralData represents an encrypted file. See RFC 4880, section 5.9. | |||
type LiteralData struct { | |||
IsBinary bool | |||
FileName string | |||
Time uint32 // Unix epoch time. Either creation time or modification time. 0 means undefined. | |||
Body io.Reader | |||
} | |||
// ForEyesOnly returns whether the contents of the LiteralData have been marked | |||
// as especially sensitive. | |||
func (l *LiteralData) ForEyesOnly() bool { | |||
return l.FileName == "_CONSOLE" | |||
} | |||
func (l *LiteralData) parse(r io.Reader) (err error) { | |||
var buf [256]byte | |||
_, err = readFull(r, buf[:2]) | |||
if err != nil { | |||
return | |||
} | |||
l.IsBinary = buf[0] == 'b' | |||
fileNameLen := int(buf[1]) | |||
_, err = readFull(r, buf[:fileNameLen]) | |||
if err != nil { | |||
return | |||
} | |||
l.FileName = string(buf[:fileNameLen]) | |||
_, err = readFull(r, buf[:4]) | |||
if err != nil { | |||
return | |||
} | |||
l.Time = binary.BigEndian.Uint32(buf[:4]) | |||
l.Body = r | |||
return | |||
} | |||
// SerializeLiteral serializes a literal data packet to w and returns a | |||
// WriteCloser to which the data itself can be written and which MUST be closed | |||
// on completion. The fileName is truncated to 255 bytes. | |||
func SerializeLiteral(w io.WriteCloser, isBinary bool, fileName string, time uint32) (plaintext io.WriteCloser, err error) { | |||
var buf [4]byte | |||
buf[0] = 't' | |||
if isBinary { | |||
buf[0] = 'b' | |||
} | |||
if len(fileName) > 255 { | |||
fileName = fileName[:255] | |||
} | |||
buf[1] = byte(len(fileName)) | |||
inner, err := serializeStreamHeader(w, packetTypeLiteralData) | |||
if err != nil { | |||
return | |||
} | |||
_, err = inner.Write(buf[:2]) | |||
if err != nil { | |||
return | |||
} | |||
_, err = inner.Write([]byte(fileName)) | |||
if err != nil { | |||
return | |||
} | |||
binary.BigEndian.PutUint32(buf[:], time) | |||
_, err = inner.Write(buf[:]) | |||
if err != nil { | |||
return | |||
} | |||
plaintext = inner | |||
return | |||
} |
@@ -0,0 +1,143 @@ | |||
// Copyright 2010 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
// OpenPGP CFB Mode. http://tools.ietf.org/html/rfc4880#section-13.9 | |||
package packet | |||
import ( | |||
"crypto/cipher" | |||
) | |||
type ocfbEncrypter struct { | |||
b cipher.Block | |||
fre []byte | |||
outUsed int | |||
} | |||
// An OCFBResyncOption determines if the "resynchronization step" of OCFB is | |||
// performed. | |||
type OCFBResyncOption bool | |||
const ( | |||
OCFBResync OCFBResyncOption = true | |||
OCFBNoResync OCFBResyncOption = false | |||
) | |||
// NewOCFBEncrypter returns a cipher.Stream which encrypts data with OpenPGP's | |||
// cipher feedback mode using the given cipher.Block, and an initial amount of | |||
// ciphertext. randData must be random bytes and be the same length as the | |||
// cipher.Block's block size. Resync determines if the "resynchronization step" | |||
// from RFC 4880, 13.9 step 7 is performed. Different parts of OpenPGP vary on | |||
// this point. | |||
func NewOCFBEncrypter(block cipher.Block, randData []byte, resync OCFBResyncOption) (cipher.Stream, []byte) { | |||
blockSize := block.BlockSize() | |||
if len(randData) != blockSize { | |||
return nil, nil | |||
} | |||
x := &ocfbEncrypter{ | |||
b: block, | |||
fre: make([]byte, blockSize), | |||
outUsed: 0, | |||
} | |||
prefix := make([]byte, blockSize+2) | |||
block.Encrypt(x.fre, x.fre) | |||
for i := 0; i < blockSize; i++ { | |||
prefix[i] = randData[i] ^ x.fre[i] | |||
} | |||
block.Encrypt(x.fre, prefix[:blockSize]) | |||
prefix[blockSize] = x.fre[0] ^ randData[blockSize-2] | |||
prefix[blockSize+1] = x.fre[1] ^ randData[blockSize-1] | |||
if resync { | |||
block.Encrypt(x.fre, prefix[2:]) | |||
} else { | |||
x.fre[0] = prefix[blockSize] | |||
x.fre[1] = prefix[blockSize+1] | |||
x.outUsed = 2 | |||
} | |||
return x, prefix | |||
} | |||
func (x *ocfbEncrypter) XORKeyStream(dst, src []byte) { | |||
for i := 0; i < len(src); i++ { | |||
if x.outUsed == len(x.fre) { | |||
x.b.Encrypt(x.fre, x.fre) | |||
x.outUsed = 0 | |||
} | |||
x.fre[x.outUsed] ^= src[i] | |||
dst[i] = x.fre[x.outUsed] | |||
x.outUsed++ | |||
} | |||
} | |||
type ocfbDecrypter struct { | |||
b cipher.Block | |||
fre []byte | |||
outUsed int | |||
} | |||
// NewOCFBDecrypter returns a cipher.Stream which decrypts data with OpenPGP's | |||
// cipher feedback mode using the given cipher.Block. Prefix must be the first | |||
// blockSize + 2 bytes of the ciphertext, where blockSize is the cipher.Block's | |||
// block size. If an incorrect key is detected then nil is returned. On | |||
// successful exit, blockSize+2 bytes of decrypted data are written into | |||
// prefix. Resync determines if the "resynchronization step" from RFC 4880, | |||
// 13.9 step 7 is performed. Different parts of OpenPGP vary on this point. | |||
func NewOCFBDecrypter(block cipher.Block, prefix []byte, resync OCFBResyncOption) cipher.Stream { | |||
blockSize := block.BlockSize() | |||
if len(prefix) != blockSize+2 { | |||
return nil | |||
} | |||
x := &ocfbDecrypter{ | |||
b: block, | |||
fre: make([]byte, blockSize), | |||
outUsed: 0, | |||
} | |||
prefixCopy := make([]byte, len(prefix)) | |||
copy(prefixCopy, prefix) | |||
block.Encrypt(x.fre, x.fre) | |||
for i := 0; i < blockSize; i++ { | |||
prefixCopy[i] ^= x.fre[i] | |||
} | |||
block.Encrypt(x.fre, prefix[:blockSize]) | |||
prefixCopy[blockSize] ^= x.fre[0] | |||
prefixCopy[blockSize+1] ^= x.fre[1] | |||
if prefixCopy[blockSize-2] != prefixCopy[blockSize] || | |||
prefixCopy[blockSize-1] != prefixCopy[blockSize+1] { | |||
return nil | |||
} | |||
if resync { | |||
block.Encrypt(x.fre, prefix[2:]) | |||
} else { | |||
x.fre[0] = prefix[blockSize] | |||
x.fre[1] = prefix[blockSize+1] | |||
x.outUsed = 2 | |||
} | |||
copy(prefix, prefixCopy) | |||
return x | |||
} | |||
func (x *ocfbDecrypter) XORKeyStream(dst, src []byte) { | |||
for i := 0; i < len(src); i++ { | |||
if x.outUsed == len(x.fre) { | |||
x.b.Encrypt(x.fre, x.fre) | |||
x.outUsed = 0 | |||
} | |||
c := src[i] | |||
dst[i] = x.fre[x.outUsed] ^ src[i] | |||
x.fre[x.outUsed] = c | |||
x.outUsed++ | |||
} | |||
} |
@@ -0,0 +1,73 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"crypto" | |||
"encoding/binary" | |||
"golang.org/x/crypto/openpgp/errors" | |||
"golang.org/x/crypto/openpgp/s2k" | |||
"io" | |||
"strconv" | |||
) | |||
// OnePassSignature represents a one-pass signature packet. See RFC 4880, | |||
// section 5.4. | |||
type OnePassSignature struct { | |||
SigType SignatureType | |||
Hash crypto.Hash | |||
PubKeyAlgo PublicKeyAlgorithm | |||
KeyId uint64 | |||
IsLast bool | |||
} | |||
const onePassSignatureVersion = 3 | |||
func (ops *OnePassSignature) parse(r io.Reader) (err error) { | |||
var buf [13]byte | |||
_, err = readFull(r, buf[:]) | |||
if err != nil { | |||
return | |||
} | |||
if buf[0] != onePassSignatureVersion { | |||
err = errors.UnsupportedError("one-pass-signature packet version " + strconv.Itoa(int(buf[0]))) | |||
} | |||
var ok bool | |||
ops.Hash, ok = s2k.HashIdToHash(buf[2]) | |||
if !ok { | |||
return errors.UnsupportedError("hash function: " + strconv.Itoa(int(buf[2]))) | |||
} | |||
ops.SigType = SignatureType(buf[1]) | |||
ops.PubKeyAlgo = PublicKeyAlgorithm(buf[3]) | |||
ops.KeyId = binary.BigEndian.Uint64(buf[4:12]) | |||
ops.IsLast = buf[12] != 0 | |||
return | |||
} | |||
// Serialize marshals the given OnePassSignature to w. | |||
func (ops *OnePassSignature) Serialize(w io.Writer) error { | |||
var buf [13]byte | |||
buf[0] = onePassSignatureVersion | |||
buf[1] = uint8(ops.SigType) | |||
var ok bool | |||
buf[2], ok = s2k.HashToHashId(ops.Hash) | |||
if !ok { | |||
return errors.UnsupportedError("hash type: " + strconv.Itoa(int(ops.Hash))) | |||
} | |||
buf[3] = uint8(ops.PubKeyAlgo) | |||
binary.BigEndian.PutUint64(buf[4:12], ops.KeyId) | |||
if ops.IsLast { | |||
buf[12] = 1 | |||
} | |||
if err := serializeHeader(w, packetTypeOnePassSignature, len(buf)); err != nil { | |||
return err | |||
} | |||
_, err := w.Write(buf[:]) | |||
return err | |||
} |
@@ -0,0 +1,162 @@ | |||
// Copyright 2012 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"bytes" | |||
"io" | |||
"io/ioutil" | |||
"golang.org/x/crypto/openpgp/errors" | |||
) | |||
// OpaquePacket represents an OpenPGP packet as raw, unparsed data. This is | |||
// useful for splitting and storing the original packet contents separately, | |||
// handling unsupported packet types or accessing parts of the packet not yet | |||
// implemented by this package. | |||
type OpaquePacket struct { | |||
// Packet type | |||
Tag uint8 | |||
// Reason why the packet was parsed opaquely | |||
Reason error | |||
// Binary contents of the packet data | |||
Contents []byte | |||
} | |||
func (op *OpaquePacket) parse(r io.Reader) (err error) { | |||
op.Contents, err = ioutil.ReadAll(r) | |||
return | |||
} | |||
// Serialize marshals the packet to a writer in its original form, including | |||
// the packet header. | |||
func (op *OpaquePacket) Serialize(w io.Writer) (err error) { | |||
err = serializeHeader(w, packetType(op.Tag), len(op.Contents)) | |||
if err == nil { | |||
_, err = w.Write(op.Contents) | |||
} | |||
return | |||
} | |||
// Parse attempts to parse the opaque contents into a structure supported by | |||
// this package. If the packet is not known then the result will be another | |||
// OpaquePacket. | |||
func (op *OpaquePacket) Parse() (p Packet, err error) { | |||
hdr := bytes.NewBuffer(nil) | |||
err = serializeHeader(hdr, packetType(op.Tag), len(op.Contents)) | |||
if err != nil { | |||
op.Reason = err | |||
return op, err | |||
} | |||
p, err = Read(io.MultiReader(hdr, bytes.NewBuffer(op.Contents))) | |||
if err != nil { | |||
op.Reason = err | |||
p = op | |||
} | |||
return | |||
} | |||
// OpaqueReader reads OpaquePackets from an io.Reader. | |||
type OpaqueReader struct { | |||
r io.Reader | |||
} | |||
func NewOpaqueReader(r io.Reader) *OpaqueReader { | |||
return &OpaqueReader{r: r} | |||
} | |||
// Read the next OpaquePacket. | |||
func (or *OpaqueReader) Next() (op *OpaquePacket, err error) { | |||
tag, _, contents, err := readHeader(or.r) | |||
if err != nil { | |||
return | |||
} | |||
op = &OpaquePacket{Tag: uint8(tag), Reason: err} | |||
err = op.parse(contents) | |||
if err != nil { | |||
consumeAll(contents) | |||
} | |||
return | |||
} | |||
// OpaqueSubpacket represents an unparsed OpenPGP subpacket, | |||
// as found in signature and user attribute packets. | |||
type OpaqueSubpacket struct { | |||
SubType uint8 | |||
Contents []byte | |||
} | |||
// OpaqueSubpackets extracts opaque, unparsed OpenPGP subpackets from | |||
// their byte representation. | |||
func OpaqueSubpackets(contents []byte) (result []*OpaqueSubpacket, err error) { | |||
var ( | |||
subHeaderLen int | |||
subPacket *OpaqueSubpacket | |||
) | |||
for len(contents) > 0 { | |||
subHeaderLen, subPacket, err = nextSubpacket(contents) | |||
if err != nil { | |||
break | |||
} | |||
result = append(result, subPacket) | |||
contents = contents[subHeaderLen+len(subPacket.Contents):] | |||
} | |||
return | |||
} | |||
func nextSubpacket(contents []byte) (subHeaderLen int, subPacket *OpaqueSubpacket, err error) { | |||
// RFC 4880, section 5.2.3.1 | |||
var subLen uint32 | |||
if len(contents) < 1 { | |||
goto Truncated | |||
} | |||
subPacket = &OpaqueSubpacket{} | |||
switch { | |||
case contents[0] < 192: | |||
subHeaderLen = 2 // 1 length byte, 1 subtype byte | |||
if len(contents) < subHeaderLen { | |||
goto Truncated | |||
} | |||
subLen = uint32(contents[0]) | |||
contents = contents[1:] | |||
case contents[0] < 255: | |||
subHeaderLen = 3 // 2 length bytes, 1 subtype | |||
if len(contents) < subHeaderLen { | |||
goto Truncated | |||
} | |||
subLen = uint32(contents[0]-192)<<8 + uint32(contents[1]) + 192 | |||
contents = contents[2:] | |||
default: | |||
subHeaderLen = 6 // 5 length bytes, 1 subtype | |||
if len(contents) < subHeaderLen { | |||
goto Truncated | |||
} | |||
subLen = uint32(contents[1])<<24 | | |||
uint32(contents[2])<<16 | | |||
uint32(contents[3])<<8 | | |||
uint32(contents[4]) | |||
contents = contents[5:] | |||
} | |||
if subLen > uint32(len(contents)) || subLen == 0 { | |||
goto Truncated | |||
} | |||
subPacket.SubType = contents[0] | |||
subPacket.Contents = contents[1:subLen] | |||
return | |||
Truncated: | |||
err = errors.StructuralError("subpacket truncated") | |||
return | |||
} | |||
func (osp *OpaqueSubpacket) Serialize(w io.Writer) (err error) { | |||
buf := make([]byte, 6) | |||
n := serializeSubpacketLength(buf, len(osp.Contents)+1) | |||
buf[n] = osp.SubType | |||
if _, err = w.Write(buf[:n+1]); err != nil { | |||
return | |||
} | |||
_, err = w.Write(osp.Contents) | |||
return | |||
} |
@@ -0,0 +1,537 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
// Package packet implements parsing and serialization of OpenPGP packets, as | |||
// specified in RFC 4880. | |||
package packet // import "golang.org/x/crypto/openpgp/packet" | |||
import ( | |||
"bufio" | |||
"crypto/aes" | |||
"crypto/cipher" | |||
"crypto/des" | |||
"golang.org/x/crypto/cast5" | |||
"golang.org/x/crypto/openpgp/errors" | |||
"io" | |||
"math/big" | |||
) | |||
// readFull is the same as io.ReadFull except that reading zero bytes returns | |||
// ErrUnexpectedEOF rather than EOF. | |||
func readFull(r io.Reader, buf []byte) (n int, err error) { | |||
n, err = io.ReadFull(r, buf) | |||
if err == io.EOF { | |||
err = io.ErrUnexpectedEOF | |||
} | |||
return | |||
} | |||
// readLength reads an OpenPGP length from r. See RFC 4880, section 4.2.2. | |||
func readLength(r io.Reader) (length int64, isPartial bool, err error) { | |||
var buf [4]byte | |||
_, err = readFull(r, buf[:1]) | |||
if err != nil { | |||
return | |||
} | |||
switch { | |||
case buf[0] < 192: | |||
length = int64(buf[0]) | |||
case buf[0] < 224: | |||
length = int64(buf[0]-192) << 8 | |||
_, err = readFull(r, buf[0:1]) | |||
if err != nil { | |||
return | |||
} | |||
length += int64(buf[0]) + 192 | |||
case buf[0] < 255: | |||
length = int64(1) << (buf[0] & 0x1f) | |||
isPartial = true | |||
default: | |||
_, err = readFull(r, buf[0:4]) | |||
if err != nil { | |||
return | |||
} | |||
length = int64(buf[0])<<24 | | |||
int64(buf[1])<<16 | | |||
int64(buf[2])<<8 | | |||
int64(buf[3]) | |||
} | |||
return | |||
} | |||
// partialLengthReader wraps an io.Reader and handles OpenPGP partial lengths. | |||
// The continuation lengths are parsed and removed from the stream and EOF is | |||
// returned at the end of the packet. See RFC 4880, section 4.2.2.4. | |||
type partialLengthReader struct { | |||
r io.Reader | |||
remaining int64 | |||
isPartial bool | |||
} | |||
func (r *partialLengthReader) Read(p []byte) (n int, err error) { | |||
for r.remaining == 0 { | |||
if !r.isPartial { | |||
return 0, io.EOF | |||
} | |||
r.remaining, r.isPartial, err = readLength(r.r) | |||
if err != nil { | |||
return 0, err | |||
} | |||
} | |||
toRead := int64(len(p)) | |||
if toRead > r.remaining { | |||
toRead = r.remaining | |||
} | |||
n, err = r.r.Read(p[:int(toRead)]) | |||
r.remaining -= int64(n) | |||
if n < int(toRead) && err == io.EOF { | |||
err = io.ErrUnexpectedEOF | |||
} | |||
return | |||
} | |||
// partialLengthWriter writes a stream of data using OpenPGP partial lengths. | |||
// See RFC 4880, section 4.2.2.4. | |||
type partialLengthWriter struct { | |||
w io.WriteCloser | |||
lengthByte [1]byte | |||
} | |||
func (w *partialLengthWriter) Write(p []byte) (n int, err error) { | |||
for len(p) > 0 { | |||
for power := uint(14); power < 32; power-- { | |||
l := 1 << power | |||
if len(p) >= l { | |||
w.lengthByte[0] = 224 + uint8(power) | |||
_, err = w.w.Write(w.lengthByte[:]) | |||
if err != nil { | |||
return | |||
} | |||
var m int | |||
m, err = w.w.Write(p[:l]) | |||
n += m | |||
if err != nil { | |||
return | |||
} | |||
p = p[l:] | |||
break | |||
} | |||
} | |||
} | |||
return | |||
} | |||
func (w *partialLengthWriter) Close() error { | |||
w.lengthByte[0] = 0 | |||
_, err := w.w.Write(w.lengthByte[:]) | |||
if err != nil { | |||
return err | |||
} | |||
return w.w.Close() | |||
} | |||
// A spanReader is an io.LimitReader, but it returns ErrUnexpectedEOF if the | |||
// underlying Reader returns EOF before the limit has been reached. | |||
type spanReader struct { | |||
r io.Reader | |||
n int64 | |||
} | |||
func (l *spanReader) Read(p []byte) (n int, err error) { | |||
if l.n <= 0 { | |||
return 0, io.EOF | |||
} | |||
if int64(len(p)) > l.n { | |||
p = p[0:l.n] | |||
} | |||
n, err = l.r.Read(p) | |||
l.n -= int64(n) | |||
if l.n > 0 && err == io.EOF { | |||
err = io.ErrUnexpectedEOF | |||
} | |||
return | |||
} | |||
// readHeader parses a packet header and returns an io.Reader which will return | |||
// the contents of the packet. See RFC 4880, section 4.2. | |||
func readHeader(r io.Reader) (tag packetType, length int64, contents io.Reader, err error) { | |||
var buf [4]byte | |||
_, err = io.ReadFull(r, buf[:1]) | |||
if err != nil { | |||
return | |||
} | |||
if buf[0]&0x80 == 0 { | |||
err = errors.StructuralError("tag byte does not have MSB set") | |||
return | |||
} | |||
if buf[0]&0x40 == 0 { | |||
// Old format packet | |||
tag = packetType((buf[0] & 0x3f) >> 2) | |||
lengthType := buf[0] & 3 | |||
if lengthType == 3 { | |||
length = -1 | |||
contents = r | |||
return | |||
} | |||
lengthBytes := 1 << lengthType | |||
_, err = readFull(r, buf[0:lengthBytes]) | |||
if err != nil { | |||
return | |||
} | |||
for i := 0; i < lengthBytes; i++ { | |||
length <<= 8 | |||
length |= int64(buf[i]) | |||
} | |||
contents = &spanReader{r, length} | |||
return | |||
} | |||
// New format packet | |||
tag = packetType(buf[0] & 0x3f) | |||
length, isPartial, err := readLength(r) | |||
if err != nil { | |||
return | |||
} | |||
if isPartial { | |||
contents = &partialLengthReader{ | |||
remaining: length, | |||
isPartial: true, | |||
r: r, | |||
} | |||
length = -1 | |||
} else { | |||
contents = &spanReader{r, length} | |||
} | |||
return | |||
} | |||
// serializeHeader writes an OpenPGP packet header to w. See RFC 4880, section | |||
// 4.2. | |||
func serializeHeader(w io.Writer, ptype packetType, length int) (err error) { | |||
var buf [6]byte | |||
var n int | |||
buf[0] = 0x80 | 0x40 | byte(ptype) | |||
if length < 192 { | |||
buf[1] = byte(length) | |||
n = 2 | |||
} else if length < 8384 { | |||
length -= 192 | |||
buf[1] = 192 + byte(length>>8) | |||
buf[2] = byte(length) | |||
n = 3 | |||
} else { | |||
buf[1] = 255 | |||
buf[2] = byte(length >> 24) | |||
buf[3] = byte(length >> 16) | |||
buf[4] = byte(length >> 8) | |||
buf[5] = byte(length) | |||
n = 6 | |||
} | |||
_, err = w.Write(buf[:n]) | |||
return | |||
} | |||
// serializeStreamHeader writes an OpenPGP packet header to w where the | |||
// length of the packet is unknown. It returns a io.WriteCloser which can be | |||
// used to write the contents of the packet. See RFC 4880, section 4.2. | |||
func serializeStreamHeader(w io.WriteCloser, ptype packetType) (out io.WriteCloser, err error) { | |||
var buf [1]byte | |||
buf[0] = 0x80 | 0x40 | byte(ptype) | |||
_, err = w.Write(buf[:]) | |||
if err != nil { | |||
return | |||
} | |||
out = &partialLengthWriter{w: w} | |||
return | |||
} | |||
// Packet represents an OpenPGP packet. Users are expected to try casting | |||
// instances of this interface to specific packet types. | |||
type Packet interface { | |||
parse(io.Reader) error | |||
} | |||
// consumeAll reads from the given Reader until error, returning the number of | |||
// bytes read. | |||
func consumeAll(r io.Reader) (n int64, err error) { | |||
var m int | |||
var buf [1024]byte | |||
for { | |||
m, err = r.Read(buf[:]) | |||
n += int64(m) | |||
if err == io.EOF { | |||
err = nil | |||
return | |||
} | |||
if err != nil { | |||
return | |||
} | |||
} | |||
} | |||
// packetType represents the numeric ids of the different OpenPGP packet types. See | |||
// http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml#pgp-parameters-2 | |||
type packetType uint8 | |||
const ( | |||
packetTypeEncryptedKey packetType = 1 | |||
packetTypeSignature packetType = 2 | |||
packetTypeSymmetricKeyEncrypted packetType = 3 | |||
packetTypeOnePassSignature packetType = 4 | |||
packetTypePrivateKey packetType = 5 | |||
packetTypePublicKey packetType = 6 | |||
packetTypePrivateSubkey packetType = 7 | |||
packetTypeCompressed packetType = 8 | |||
packetTypeSymmetricallyEncrypted packetType = 9 | |||
packetTypeLiteralData packetType = 11 | |||
packetTypeUserId packetType = 13 | |||
packetTypePublicSubkey packetType = 14 | |||
packetTypeUserAttribute packetType = 17 | |||
packetTypeSymmetricallyEncryptedMDC packetType = 18 | |||
) | |||
// peekVersion detects the version of a public key packet about to | |||
// be read. A bufio.Reader at the original position of the io.Reader | |||
// is returned. | |||
func peekVersion(r io.Reader) (bufr *bufio.Reader, ver byte, err error) { | |||
bufr = bufio.NewReader(r) | |||
var verBuf []byte | |||
if verBuf, err = bufr.Peek(1); err != nil { | |||
return | |||
} | |||
ver = verBuf[0] | |||
return | |||
} | |||
// Read reads a single OpenPGP packet from the given io.Reader. If there is an | |||
// error parsing a packet, the whole packet is consumed from the input. | |||
func Read(r io.Reader) (p Packet, err error) { | |||
tag, _, contents, err := readHeader(r) | |||
if err != nil { | |||
return | |||
} | |||
switch tag { | |||
case packetTypeEncryptedKey: | |||
p = new(EncryptedKey) | |||
case packetTypeSignature: | |||
var version byte | |||
// Detect signature version | |||
if contents, version, err = peekVersion(contents); err != nil { | |||
return | |||
} | |||
if version < 4 { | |||
p = new(SignatureV3) | |||
} else { | |||
p = new(Signature) | |||
} | |||
case packetTypeSymmetricKeyEncrypted: | |||
p = new(SymmetricKeyEncrypted) | |||
case packetTypeOnePassSignature: | |||
p = new(OnePassSignature) | |||
case packetTypePrivateKey, packetTypePrivateSubkey: | |||
pk := new(PrivateKey) | |||
if tag == packetTypePrivateSubkey { | |||
pk.IsSubkey = true | |||
} | |||
p = pk | |||
case packetTypePublicKey, packetTypePublicSubkey: | |||
var version byte | |||
if contents, version, err = peekVersion(contents); err != nil { | |||
return | |||
} | |||
isSubkey := tag == packetTypePublicSubkey | |||
if version < 4 { | |||
p = &PublicKeyV3{IsSubkey: isSubkey} | |||
} else { | |||
p = &PublicKey{IsSubkey: isSubkey} | |||
} | |||
case packetTypeCompressed: | |||
p = new(Compressed) | |||
case packetTypeSymmetricallyEncrypted: | |||
p = new(SymmetricallyEncrypted) | |||
case packetTypeLiteralData: | |||
p = new(LiteralData) | |||
case packetTypeUserId: | |||
p = new(UserId) | |||
case packetTypeUserAttribute: | |||
p = new(UserAttribute) | |||
case packetTypeSymmetricallyEncryptedMDC: | |||
se := new(SymmetricallyEncrypted) | |||
se.MDC = true | |||
p = se | |||
default: | |||
err = errors.UnknownPacketTypeError(tag) | |||
} | |||
if p != nil { | |||
err = p.parse(contents) | |||
} | |||
if err != nil { | |||
consumeAll(contents) | |||
} | |||
return | |||
} | |||
// SignatureType represents the different semantic meanings of an OpenPGP | |||
// signature. See RFC 4880, section 5.2.1. | |||
type SignatureType uint8 | |||
const ( | |||
SigTypeBinary SignatureType = 0 | |||
SigTypeText = 1 | |||
SigTypeGenericCert = 0x10 | |||
SigTypePersonaCert = 0x11 | |||
SigTypeCasualCert = 0x12 | |||
SigTypePositiveCert = 0x13 | |||
SigTypeSubkeyBinding = 0x18 | |||
SigTypePrimaryKeyBinding = 0x19 | |||
SigTypeDirectSignature = 0x1F | |||
SigTypeKeyRevocation = 0x20 | |||
SigTypeSubkeyRevocation = 0x28 | |||
) | |||
// PublicKeyAlgorithm represents the different public key system specified for | |||
// OpenPGP. See | |||
// http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml#pgp-parameters-12 | |||
type PublicKeyAlgorithm uint8 | |||
const ( | |||
PubKeyAlgoRSA PublicKeyAlgorithm = 1 | |||
PubKeyAlgoRSAEncryptOnly PublicKeyAlgorithm = 2 | |||
PubKeyAlgoRSASignOnly PublicKeyAlgorithm = 3 | |||
PubKeyAlgoElGamal PublicKeyAlgorithm = 16 | |||
PubKeyAlgoDSA PublicKeyAlgorithm = 17 | |||
// RFC 6637, Section 5. | |||
PubKeyAlgoECDH PublicKeyAlgorithm = 18 | |||
PubKeyAlgoECDSA PublicKeyAlgorithm = 19 | |||
) | |||
// CanEncrypt returns true if it's possible to encrypt a message to a public | |||
// key of the given type. | |||
func (pka PublicKeyAlgorithm) CanEncrypt() bool { | |||
switch pka { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoElGamal: | |||
return true | |||
} | |||
return false | |||
} | |||
// CanSign returns true if it's possible for a public key of the given type to | |||
// sign a message. | |||
func (pka PublicKeyAlgorithm) CanSign() bool { | |||
switch pka { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA: | |||
return true | |||
} | |||
return false | |||
} | |||
// CipherFunction represents the different block ciphers specified for OpenPGP. See | |||
// http://www.iana.org/assignments/pgp-parameters/pgp-parameters.xhtml#pgp-parameters-13 | |||
type CipherFunction uint8 | |||
const ( | |||
Cipher3DES CipherFunction = 2 | |||
CipherCAST5 CipherFunction = 3 | |||
CipherAES128 CipherFunction = 7 | |||
CipherAES192 CipherFunction = 8 | |||
CipherAES256 CipherFunction = 9 | |||
) | |||
// KeySize returns the key size, in bytes, of cipher. | |||
func (cipher CipherFunction) KeySize() int { | |||
switch cipher { | |||
case Cipher3DES: | |||
return 24 | |||
case CipherCAST5: | |||
return cast5.KeySize | |||
case CipherAES128: | |||
return 16 | |||
case CipherAES192: | |||
return 24 | |||
case CipherAES256: | |||
return 32 | |||
} | |||
return 0 | |||
} | |||
// blockSize returns the block size, in bytes, of cipher. | |||
func (cipher CipherFunction) blockSize() int { | |||
switch cipher { | |||
case Cipher3DES: | |||
return des.BlockSize | |||
case CipherCAST5: | |||
return 8 | |||
case CipherAES128, CipherAES192, CipherAES256: | |||
return 16 | |||
} | |||
return 0 | |||
} | |||
// new returns a fresh instance of the given cipher. | |||
func (cipher CipherFunction) new(key []byte) (block cipher.Block) { | |||
switch cipher { | |||
case Cipher3DES: | |||
block, _ = des.NewTripleDESCipher(key) | |||
case CipherCAST5: | |||
block, _ = cast5.NewCipher(key) | |||
case CipherAES128, CipherAES192, CipherAES256: | |||
block, _ = aes.NewCipher(key) | |||
} | |||
return | |||
} | |||
// readMPI reads a big integer from r. The bit length returned is the bit | |||
// length that was specified in r. This is preserved so that the integer can be | |||
// reserialized exactly. | |||
func readMPI(r io.Reader) (mpi []byte, bitLength uint16, err error) { | |||
var buf [2]byte | |||
_, err = readFull(r, buf[0:]) | |||
if err != nil { | |||
return | |||
} | |||
bitLength = uint16(buf[0])<<8 | uint16(buf[1]) | |||
numBytes := (int(bitLength) + 7) / 8 | |||
mpi = make([]byte, numBytes) | |||
_, err = readFull(r, mpi) | |||
return | |||
} | |||
// mpiLength returns the length of the given *big.Int when serialized as an | |||
// MPI. | |||
func mpiLength(n *big.Int) (mpiLengthInBytes int) { | |||
mpiLengthInBytes = 2 /* MPI length */ | |||
mpiLengthInBytes += (n.BitLen() + 7) / 8 | |||
return | |||
} | |||
// writeMPI serializes a big integer to w. | |||
func writeMPI(w io.Writer, bitLength uint16, mpiBytes []byte) (err error) { | |||
_, err = w.Write([]byte{byte(bitLength >> 8), byte(bitLength)}) | |||
if err == nil { | |||
_, err = w.Write(mpiBytes) | |||
} | |||
return | |||
} | |||
// writeBig serializes a *big.Int to w. | |||
func writeBig(w io.Writer, i *big.Int) error { | |||
return writeMPI(w, uint16(i.BitLen()), i.Bytes()) | |||
} | |||
// CompressionAlgo Represents the different compression algorithms | |||
// supported by OpenPGP (except for BZIP2, which is not currently | |||
// supported). See Section 9.3 of RFC 4880. | |||
type CompressionAlgo uint8 | |||
const ( | |||
CompressionNone CompressionAlgo = 0 | |||
CompressionZIP CompressionAlgo = 1 | |||
CompressionZLIB CompressionAlgo = 2 | |||
) |
@@ -0,0 +1,380 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"bytes" | |||
"crypto" | |||
"crypto/cipher" | |||
"crypto/dsa" | |||
"crypto/ecdsa" | |||
"crypto/rsa" | |||
"crypto/sha1" | |||
"io" | |||
"io/ioutil" | |||
"math/big" | |||
"strconv" | |||
"time" | |||
"golang.org/x/crypto/openpgp/elgamal" | |||
"golang.org/x/crypto/openpgp/errors" | |||
"golang.org/x/crypto/openpgp/s2k" | |||
) | |||
// PrivateKey represents a possibly encrypted private key. See RFC 4880, | |||
// section 5.5.3. | |||
type PrivateKey struct { | |||
PublicKey | |||
Encrypted bool // if true then the private key is unavailable until Decrypt has been called. | |||
encryptedData []byte | |||
cipher CipherFunction | |||
s2k func(out, in []byte) | |||
PrivateKey interface{} // An *{rsa|dsa|ecdsa}.PrivateKey or a crypto.Signer. | |||
sha1Checksum bool | |||
iv []byte | |||
} | |||
func NewRSAPrivateKey(currentTime time.Time, priv *rsa.PrivateKey) *PrivateKey { | |||
pk := new(PrivateKey) | |||
pk.PublicKey = *NewRSAPublicKey(currentTime, &priv.PublicKey) | |||
pk.PrivateKey = priv | |||
return pk | |||
} | |||
func NewDSAPrivateKey(currentTime time.Time, priv *dsa.PrivateKey) *PrivateKey { | |||
pk := new(PrivateKey) | |||
pk.PublicKey = *NewDSAPublicKey(currentTime, &priv.PublicKey) | |||
pk.PrivateKey = priv | |||
return pk | |||
} | |||
func NewElGamalPrivateKey(currentTime time.Time, priv *elgamal.PrivateKey) *PrivateKey { | |||
pk := new(PrivateKey) | |||
pk.PublicKey = *NewElGamalPublicKey(currentTime, &priv.PublicKey) | |||
pk.PrivateKey = priv | |||
return pk | |||
} | |||
func NewECDSAPrivateKey(currentTime time.Time, priv *ecdsa.PrivateKey) *PrivateKey { | |||
pk := new(PrivateKey) | |||
pk.PublicKey = *NewECDSAPublicKey(currentTime, &priv.PublicKey) | |||
pk.PrivateKey = priv | |||
return pk | |||
} | |||
// NewSignerPrivateKey creates a sign-only PrivateKey from a crypto.Signer that | |||
// implements RSA or ECDSA. | |||
func NewSignerPrivateKey(currentTime time.Time, signer crypto.Signer) *PrivateKey { | |||
pk := new(PrivateKey) | |||
switch pubkey := signer.Public().(type) { | |||
case rsa.PublicKey: | |||
pk.PublicKey = *NewRSAPublicKey(currentTime, &pubkey) | |||
pk.PubKeyAlgo = PubKeyAlgoRSASignOnly | |||
case ecdsa.PublicKey: | |||
pk.PublicKey = *NewECDSAPublicKey(currentTime, &pubkey) | |||
default: | |||
panic("openpgp: unknown crypto.Signer type in NewSignerPrivateKey") | |||
} | |||
pk.PrivateKey = signer | |||
return pk | |||
} | |||
func (pk *PrivateKey) parse(r io.Reader) (err error) { | |||
err = (&pk.PublicKey).parse(r) | |||
if err != nil { | |||
return | |||
} | |||
var buf [1]byte | |||
_, err = readFull(r, buf[:]) | |||
if err != nil { | |||
return | |||
} | |||
s2kType := buf[0] | |||
switch s2kType { | |||
case 0: | |||
pk.s2k = nil | |||
pk.Encrypted = false | |||
case 254, 255: | |||
_, err = readFull(r, buf[:]) | |||
if err != nil { | |||
return | |||
} | |||
pk.cipher = CipherFunction(buf[0]) | |||
pk.Encrypted = true | |||
pk.s2k, err = s2k.Parse(r) | |||
if err != nil { | |||
return | |||
} | |||
if s2kType == 254 { | |||
pk.sha1Checksum = true | |||
} | |||
default: | |||
return errors.UnsupportedError("deprecated s2k function in private key") | |||
} | |||
if pk.Encrypted { | |||
blockSize := pk.cipher.blockSize() | |||
if blockSize == 0 { | |||
return errors.UnsupportedError("unsupported cipher in private key: " + strconv.Itoa(int(pk.cipher))) | |||
} | |||
pk.iv = make([]byte, blockSize) | |||
_, err = readFull(r, pk.iv) | |||
if err != nil { | |||
return | |||
} | |||
} | |||
pk.encryptedData, err = ioutil.ReadAll(r) | |||
if err != nil { | |||
return | |||
} | |||
if !pk.Encrypted { | |||
return pk.parsePrivateKey(pk.encryptedData) | |||
} | |||
return | |||
} | |||
func mod64kHash(d []byte) uint16 { | |||
var h uint16 | |||
for _, b := range d { | |||
h += uint16(b) | |||
} | |||
return h | |||
} | |||
func (pk *PrivateKey) Serialize(w io.Writer) (err error) { | |||
// TODO(agl): support encrypted private keys | |||
buf := bytes.NewBuffer(nil) | |||
err = pk.PublicKey.serializeWithoutHeaders(buf) | |||
if err != nil { | |||
return | |||
} | |||
buf.WriteByte(0 /* no encryption */) | |||
privateKeyBuf := bytes.NewBuffer(nil) | |||
switch priv := pk.PrivateKey.(type) { | |||
case *rsa.PrivateKey: | |||
err = serializeRSAPrivateKey(privateKeyBuf, priv) | |||
case *dsa.PrivateKey: | |||
err = serializeDSAPrivateKey(privateKeyBuf, priv) | |||
case *elgamal.PrivateKey: | |||
err = serializeElGamalPrivateKey(privateKeyBuf, priv) | |||
case *ecdsa.PrivateKey: | |||
err = serializeECDSAPrivateKey(privateKeyBuf, priv) | |||
default: | |||
err = errors.InvalidArgumentError("unknown private key type") | |||
} | |||
if err != nil { | |||
return | |||
} | |||
ptype := packetTypePrivateKey | |||
contents := buf.Bytes() | |||
privateKeyBytes := privateKeyBuf.Bytes() | |||
if pk.IsSubkey { | |||
ptype = packetTypePrivateSubkey | |||
} | |||
err = serializeHeader(w, ptype, len(contents)+len(privateKeyBytes)+2) | |||
if err != nil { | |||
return | |||
} | |||
_, err = w.Write(contents) | |||
if err != nil { | |||
return | |||
} | |||
_, err = w.Write(privateKeyBytes) | |||
if err != nil { | |||
return | |||
} | |||
checksum := mod64kHash(privateKeyBytes) | |||
var checksumBytes [2]byte | |||
checksumBytes[0] = byte(checksum >> 8) | |||
checksumBytes[1] = byte(checksum) | |||
_, err = w.Write(checksumBytes[:]) | |||
return | |||
} | |||
func serializeRSAPrivateKey(w io.Writer, priv *rsa.PrivateKey) error { | |||
err := writeBig(w, priv.D) | |||
if err != nil { | |||
return err | |||
} | |||
err = writeBig(w, priv.Primes[1]) | |||
if err != nil { | |||
return err | |||
} | |||
err = writeBig(w, priv.Primes[0]) | |||
if err != nil { | |||
return err | |||
} | |||
return writeBig(w, priv.Precomputed.Qinv) | |||
} | |||
func serializeDSAPrivateKey(w io.Writer, priv *dsa.PrivateKey) error { | |||
return writeBig(w, priv.X) | |||
} | |||
func serializeElGamalPrivateKey(w io.Writer, priv *elgamal.PrivateKey) error { | |||
return writeBig(w, priv.X) | |||
} | |||
func serializeECDSAPrivateKey(w io.Writer, priv *ecdsa.PrivateKey) error { | |||
return writeBig(w, priv.D) | |||
} | |||
// Decrypt decrypts an encrypted private key using a passphrase. | |||
func (pk *PrivateKey) Decrypt(passphrase []byte) error { | |||
if !pk.Encrypted { | |||
return nil | |||
} | |||
key := make([]byte, pk.cipher.KeySize()) | |||
pk.s2k(key, passphrase) | |||
block := pk.cipher.new(key) | |||
cfb := cipher.NewCFBDecrypter(block, pk.iv) | |||
data := make([]byte, len(pk.encryptedData)) | |||
cfb.XORKeyStream(data, pk.encryptedData) | |||
if pk.sha1Checksum { | |||
if len(data) < sha1.Size { | |||
return errors.StructuralError("truncated private key data") | |||
} | |||
h := sha1.New() | |||
h.Write(data[:len(data)-sha1.Size]) | |||
sum := h.Sum(nil) | |||
if !bytes.Equal(sum, data[len(data)-sha1.Size:]) { | |||
return errors.StructuralError("private key checksum failure") | |||
} | |||
data = data[:len(data)-sha1.Size] | |||
} else { | |||
if len(data) < 2 { | |||
return errors.StructuralError("truncated private key data") | |||
} | |||
var sum uint16 | |||
for i := 0; i < len(data)-2; i++ { | |||
sum += uint16(data[i]) | |||
} | |||
if data[len(data)-2] != uint8(sum>>8) || | |||
data[len(data)-1] != uint8(sum) { | |||
return errors.StructuralError("private key checksum failure") | |||
} | |||
data = data[:len(data)-2] | |||
} | |||
return pk.parsePrivateKey(data) | |||
} | |||
func (pk *PrivateKey) parsePrivateKey(data []byte) (err error) { | |||
switch pk.PublicKey.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoRSAEncryptOnly: | |||
return pk.parseRSAPrivateKey(data) | |||
case PubKeyAlgoDSA: | |||
return pk.parseDSAPrivateKey(data) | |||
case PubKeyAlgoElGamal: | |||
return pk.parseElGamalPrivateKey(data) | |||
case PubKeyAlgoECDSA: | |||
return pk.parseECDSAPrivateKey(data) | |||
} | |||
panic("impossible") | |||
} | |||
func (pk *PrivateKey) parseRSAPrivateKey(data []byte) (err error) { | |||
rsaPub := pk.PublicKey.PublicKey.(*rsa.PublicKey) | |||
rsaPriv := new(rsa.PrivateKey) | |||
rsaPriv.PublicKey = *rsaPub | |||
buf := bytes.NewBuffer(data) | |||
d, _, err := readMPI(buf) | |||
if err != nil { | |||
return | |||
} | |||
p, _, err := readMPI(buf) | |||
if err != nil { | |||
return | |||
} | |||
q, _, err := readMPI(buf) | |||
if err != nil { | |||
return | |||
} | |||
rsaPriv.D = new(big.Int).SetBytes(d) | |||
rsaPriv.Primes = make([]*big.Int, 2) | |||
rsaPriv.Primes[0] = new(big.Int).SetBytes(p) | |||
rsaPriv.Primes[1] = new(big.Int).SetBytes(q) | |||
if err := rsaPriv.Validate(); err != nil { | |||
return err | |||
} | |||
rsaPriv.Precompute() | |||
pk.PrivateKey = rsaPriv | |||
pk.Encrypted = false | |||
pk.encryptedData = nil | |||
return nil | |||
} | |||
func (pk *PrivateKey) parseDSAPrivateKey(data []byte) (err error) { | |||
dsaPub := pk.PublicKey.PublicKey.(*dsa.PublicKey) | |||
dsaPriv := new(dsa.PrivateKey) | |||
dsaPriv.PublicKey = *dsaPub | |||
buf := bytes.NewBuffer(data) | |||
x, _, err := readMPI(buf) | |||
if err != nil { | |||
return | |||
} | |||
dsaPriv.X = new(big.Int).SetBytes(x) | |||
pk.PrivateKey = dsaPriv | |||
pk.Encrypted = false | |||
pk.encryptedData = nil | |||
return nil | |||
} | |||
func (pk *PrivateKey) parseElGamalPrivateKey(data []byte) (err error) { | |||
pub := pk.PublicKey.PublicKey.(*elgamal.PublicKey) | |||
priv := new(elgamal.PrivateKey) | |||
priv.PublicKey = *pub | |||
buf := bytes.NewBuffer(data) | |||
x, _, err := readMPI(buf) | |||
if err != nil { | |||
return | |||
} | |||
priv.X = new(big.Int).SetBytes(x) | |||
pk.PrivateKey = priv | |||
pk.Encrypted = false | |||
pk.encryptedData = nil | |||
return nil | |||
} | |||
func (pk *PrivateKey) parseECDSAPrivateKey(data []byte) (err error) { | |||
ecdsaPub := pk.PublicKey.PublicKey.(*ecdsa.PublicKey) | |||
buf := bytes.NewBuffer(data) | |||
d, _, err := readMPI(buf) | |||
if err != nil { | |||
return | |||
} | |||
pk.PrivateKey = &ecdsa.PrivateKey{ | |||
PublicKey: *ecdsaPub, | |||
D: new(big.Int).SetBytes(d), | |||
} | |||
pk.Encrypted = false | |||
pk.encryptedData = nil | |||
return nil | |||
} |
@@ -0,0 +1,748 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"bytes" | |||
"crypto" | |||
"crypto/dsa" | |||
"crypto/ecdsa" | |||
"crypto/elliptic" | |||
"crypto/rsa" | |||
"crypto/sha1" | |||
_ "crypto/sha256" | |||
_ "crypto/sha512" | |||
"encoding/binary" | |||
"fmt" | |||
"hash" | |||
"io" | |||
"math/big" | |||
"strconv" | |||
"time" | |||
"golang.org/x/crypto/openpgp/elgamal" | |||
"golang.org/x/crypto/openpgp/errors" | |||
) | |||
var ( | |||
// NIST curve P-256 | |||
oidCurveP256 []byte = []byte{0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, 0x01, 0x07} | |||
// NIST curve P-384 | |||
oidCurveP384 []byte = []byte{0x2B, 0x81, 0x04, 0x00, 0x22} | |||
// NIST curve P-521 | |||
oidCurveP521 []byte = []byte{0x2B, 0x81, 0x04, 0x00, 0x23} | |||
) | |||
const maxOIDLength = 8 | |||
// ecdsaKey stores the algorithm-specific fields for ECDSA keys. | |||
// as defined in RFC 6637, Section 9. | |||
type ecdsaKey struct { | |||
// oid contains the OID byte sequence identifying the elliptic curve used | |||
oid []byte | |||
// p contains the elliptic curve point that represents the public key | |||
p parsedMPI | |||
} | |||
// parseOID reads the OID for the curve as defined in RFC 6637, Section 9. | |||
func parseOID(r io.Reader) (oid []byte, err error) { | |||
buf := make([]byte, maxOIDLength) | |||
if _, err = readFull(r, buf[:1]); err != nil { | |||
return | |||
} | |||
oidLen := buf[0] | |||
if int(oidLen) > len(buf) { | |||
err = errors.UnsupportedError("invalid oid length: " + strconv.Itoa(int(oidLen))) | |||
return | |||
} | |||
oid = buf[:oidLen] | |||
_, err = readFull(r, oid) | |||
return | |||
} | |||
func (f *ecdsaKey) parse(r io.Reader) (err error) { | |||
if f.oid, err = parseOID(r); err != nil { | |||
return err | |||
} | |||
f.p.bytes, f.p.bitLength, err = readMPI(r) | |||
return | |||
} | |||
func (f *ecdsaKey) serialize(w io.Writer) (err error) { | |||
buf := make([]byte, maxOIDLength+1) | |||
buf[0] = byte(len(f.oid)) | |||
copy(buf[1:], f.oid) | |||
if _, err = w.Write(buf[:len(f.oid)+1]); err != nil { | |||
return | |||
} | |||
return writeMPIs(w, f.p) | |||
} | |||
func (f *ecdsaKey) newECDSA() (*ecdsa.PublicKey, error) { | |||
var c elliptic.Curve | |||
if bytes.Equal(f.oid, oidCurveP256) { | |||
c = elliptic.P256() | |||
} else if bytes.Equal(f.oid, oidCurveP384) { | |||
c = elliptic.P384() | |||
} else if bytes.Equal(f.oid, oidCurveP521) { | |||
c = elliptic.P521() | |||
} else { | |||
return nil, errors.UnsupportedError(fmt.Sprintf("unsupported oid: %x", f.oid)) | |||
} | |||
x, y := elliptic.Unmarshal(c, f.p.bytes) | |||
if x == nil { | |||
return nil, errors.UnsupportedError("failed to parse EC point") | |||
} | |||
return &ecdsa.PublicKey{Curve: c, X: x, Y: y}, nil | |||
} | |||
func (f *ecdsaKey) byteLen() int { | |||
return 1 + len(f.oid) + 2 + len(f.p.bytes) | |||
} | |||
type kdfHashFunction byte | |||
type kdfAlgorithm byte | |||
// ecdhKdf stores key derivation function parameters | |||
// used for ECDH encryption. See RFC 6637, Section 9. | |||
type ecdhKdf struct { | |||
KdfHash kdfHashFunction | |||
KdfAlgo kdfAlgorithm | |||
} | |||
func (f *ecdhKdf) parse(r io.Reader) (err error) { | |||
buf := make([]byte, 1) | |||
if _, err = readFull(r, buf); err != nil { | |||
return | |||
} | |||
kdfLen := int(buf[0]) | |||
if kdfLen < 3 { | |||
return errors.UnsupportedError("Unsupported ECDH KDF length: " + strconv.Itoa(kdfLen)) | |||
} | |||
buf = make([]byte, kdfLen) | |||
if _, err = readFull(r, buf); err != nil { | |||
return | |||
} | |||
reserved := int(buf[0]) | |||
f.KdfHash = kdfHashFunction(buf[1]) | |||
f.KdfAlgo = kdfAlgorithm(buf[2]) | |||
if reserved != 0x01 { | |||
return errors.UnsupportedError("Unsupported KDF reserved field: " + strconv.Itoa(reserved)) | |||
} | |||
return | |||
} | |||
func (f *ecdhKdf) serialize(w io.Writer) (err error) { | |||
buf := make([]byte, 4) | |||
// See RFC 6637, Section 9, Algorithm-Specific Fields for ECDH keys. | |||
buf[0] = byte(0x03) // Length of the following fields | |||
buf[1] = byte(0x01) // Reserved for future extensions, must be 1 for now | |||
buf[2] = byte(f.KdfHash) | |||
buf[3] = byte(f.KdfAlgo) | |||
_, err = w.Write(buf[:]) | |||
return | |||
} | |||
func (f *ecdhKdf) byteLen() int { | |||
return 4 | |||
} | |||
// PublicKey represents an OpenPGP public key. See RFC 4880, section 5.5.2. | |||
type PublicKey struct { | |||
CreationTime time.Time | |||
PubKeyAlgo PublicKeyAlgorithm | |||
PublicKey interface{} // *rsa.PublicKey, *dsa.PublicKey or *ecdsa.PublicKey | |||
Fingerprint [20]byte | |||
KeyId uint64 | |||
IsSubkey bool | |||
n, e, p, q, g, y parsedMPI | |||
// RFC 6637 fields | |||
ec *ecdsaKey | |||
ecdh *ecdhKdf | |||
} | |||
// signingKey provides a convenient abstraction over signature verification | |||
// for v3 and v4 public keys. | |||
type signingKey interface { | |||
SerializeSignaturePrefix(io.Writer) | |||
serializeWithoutHeaders(io.Writer) error | |||
} | |||
func fromBig(n *big.Int) parsedMPI { | |||
return parsedMPI{ | |||
bytes: n.Bytes(), | |||
bitLength: uint16(n.BitLen()), | |||
} | |||
} | |||
// NewRSAPublicKey returns a PublicKey that wraps the given rsa.PublicKey. | |||
func NewRSAPublicKey(creationTime time.Time, pub *rsa.PublicKey) *PublicKey { | |||
pk := &PublicKey{ | |||
CreationTime: creationTime, | |||
PubKeyAlgo: PubKeyAlgoRSA, | |||
PublicKey: pub, | |||
n: fromBig(pub.N), | |||
e: fromBig(big.NewInt(int64(pub.E))), | |||
} | |||
pk.setFingerPrintAndKeyId() | |||
return pk | |||
} | |||
// NewDSAPublicKey returns a PublicKey that wraps the given dsa.PublicKey. | |||
func NewDSAPublicKey(creationTime time.Time, pub *dsa.PublicKey) *PublicKey { | |||
pk := &PublicKey{ | |||
CreationTime: creationTime, | |||
PubKeyAlgo: PubKeyAlgoDSA, | |||
PublicKey: pub, | |||
p: fromBig(pub.P), | |||
q: fromBig(pub.Q), | |||
g: fromBig(pub.G), | |||
y: fromBig(pub.Y), | |||
} | |||
pk.setFingerPrintAndKeyId() | |||
return pk | |||
} | |||
// NewElGamalPublicKey returns a PublicKey that wraps the given elgamal.PublicKey. | |||
func NewElGamalPublicKey(creationTime time.Time, pub *elgamal.PublicKey) *PublicKey { | |||
pk := &PublicKey{ | |||
CreationTime: creationTime, | |||
PubKeyAlgo: PubKeyAlgoElGamal, | |||
PublicKey: pub, | |||
p: fromBig(pub.P), | |||
g: fromBig(pub.G), | |||
y: fromBig(pub.Y), | |||
} | |||
pk.setFingerPrintAndKeyId() | |||
return pk | |||
} | |||
func NewECDSAPublicKey(creationTime time.Time, pub *ecdsa.PublicKey) *PublicKey { | |||
pk := &PublicKey{ | |||
CreationTime: creationTime, | |||
PubKeyAlgo: PubKeyAlgoECDSA, | |||
PublicKey: pub, | |||
ec: new(ecdsaKey), | |||
} | |||
switch pub.Curve { | |||
case elliptic.P256(): | |||
pk.ec.oid = oidCurveP256 | |||
case elliptic.P384(): | |||
pk.ec.oid = oidCurveP384 | |||
case elliptic.P521(): | |||
pk.ec.oid = oidCurveP521 | |||
default: | |||
panic("unknown elliptic curve") | |||
} | |||
pk.ec.p.bytes = elliptic.Marshal(pub.Curve, pub.X, pub.Y) | |||
pk.ec.p.bitLength = uint16(8 * len(pk.ec.p.bytes)) | |||
pk.setFingerPrintAndKeyId() | |||
return pk | |||
} | |||
func (pk *PublicKey) parse(r io.Reader) (err error) { | |||
// RFC 4880, section 5.5.2 | |||
var buf [6]byte | |||
_, err = readFull(r, buf[:]) | |||
if err != nil { | |||
return | |||
} | |||
if buf[0] != 4 { | |||
return errors.UnsupportedError("public key version") | |||
} | |||
pk.CreationTime = time.Unix(int64(uint32(buf[1])<<24|uint32(buf[2])<<16|uint32(buf[3])<<8|uint32(buf[4])), 0) | |||
pk.PubKeyAlgo = PublicKeyAlgorithm(buf[5]) | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: | |||
err = pk.parseRSA(r) | |||
case PubKeyAlgoDSA: | |||
err = pk.parseDSA(r) | |||
case PubKeyAlgoElGamal: | |||
err = pk.parseElGamal(r) | |||
case PubKeyAlgoECDSA: | |||
pk.ec = new(ecdsaKey) | |||
if err = pk.ec.parse(r); err != nil { | |||
return err | |||
} | |||
pk.PublicKey, err = pk.ec.newECDSA() | |||
case PubKeyAlgoECDH: | |||
pk.ec = new(ecdsaKey) | |||
if err = pk.ec.parse(r); err != nil { | |||
return | |||
} | |||
pk.ecdh = new(ecdhKdf) | |||
if err = pk.ecdh.parse(r); err != nil { | |||
return | |||
} | |||
// The ECDH key is stored in an ecdsa.PublicKey for convenience. | |||
pk.PublicKey, err = pk.ec.newECDSA() | |||
default: | |||
err = errors.UnsupportedError("public key type: " + strconv.Itoa(int(pk.PubKeyAlgo))) | |||
} | |||
if err != nil { | |||
return | |||
} | |||
pk.setFingerPrintAndKeyId() | |||
return | |||
} | |||
func (pk *PublicKey) setFingerPrintAndKeyId() { | |||
// RFC 4880, section 12.2 | |||
fingerPrint := sha1.New() | |||
pk.SerializeSignaturePrefix(fingerPrint) | |||
pk.serializeWithoutHeaders(fingerPrint) | |||
copy(pk.Fingerprint[:], fingerPrint.Sum(nil)) | |||
pk.KeyId = binary.BigEndian.Uint64(pk.Fingerprint[12:20]) | |||
} | |||
// parseRSA parses RSA public key material from the given Reader. See RFC 4880, | |||
// section 5.5.2. | |||
func (pk *PublicKey) parseRSA(r io.Reader) (err error) { | |||
pk.n.bytes, pk.n.bitLength, err = readMPI(r) | |||
if err != nil { | |||
return | |||
} | |||
pk.e.bytes, pk.e.bitLength, err = readMPI(r) | |||
if err != nil { | |||
return | |||
} | |||
if len(pk.e.bytes) > 3 { | |||
err = errors.UnsupportedError("large public exponent") | |||
return | |||
} | |||
rsa := &rsa.PublicKey{ | |||
N: new(big.Int).SetBytes(pk.n.bytes), | |||
E: 0, | |||
} | |||
for i := 0; i < len(pk.e.bytes); i++ { | |||
rsa.E <<= 8 | |||
rsa.E |= int(pk.e.bytes[i]) | |||
} | |||
pk.PublicKey = rsa | |||
return | |||
} | |||
// parseDSA parses DSA public key material from the given Reader. See RFC 4880, | |||
// section 5.5.2. | |||
func (pk *PublicKey) parseDSA(r io.Reader) (err error) { | |||
pk.p.bytes, pk.p.bitLength, err = readMPI(r) | |||
if err != nil { | |||
return | |||
} | |||
pk.q.bytes, pk.q.bitLength, err = readMPI(r) | |||
if err != nil { | |||
return | |||
} | |||
pk.g.bytes, pk.g.bitLength, err = readMPI(r) | |||
if err != nil { | |||
return | |||
} | |||
pk.y.bytes, pk.y.bitLength, err = readMPI(r) | |||
if err != nil { | |||
return | |||
} | |||
dsa := new(dsa.PublicKey) | |||
dsa.P = new(big.Int).SetBytes(pk.p.bytes) | |||
dsa.Q = new(big.Int).SetBytes(pk.q.bytes) | |||
dsa.G = new(big.Int).SetBytes(pk.g.bytes) | |||
dsa.Y = new(big.Int).SetBytes(pk.y.bytes) | |||
pk.PublicKey = dsa | |||
return | |||
} | |||
// parseElGamal parses ElGamal public key material from the given Reader. See | |||
// RFC 4880, section 5.5.2. | |||
func (pk *PublicKey) parseElGamal(r io.Reader) (err error) { | |||
pk.p.bytes, pk.p.bitLength, err = readMPI(r) | |||
if err != nil { | |||
return | |||
} | |||
pk.g.bytes, pk.g.bitLength, err = readMPI(r) | |||
if err != nil { | |||
return | |||
} | |||
pk.y.bytes, pk.y.bitLength, err = readMPI(r) | |||
if err != nil { | |||
return | |||
} | |||
elgamal := new(elgamal.PublicKey) | |||
elgamal.P = new(big.Int).SetBytes(pk.p.bytes) | |||
elgamal.G = new(big.Int).SetBytes(pk.g.bytes) | |||
elgamal.Y = new(big.Int).SetBytes(pk.y.bytes) | |||
pk.PublicKey = elgamal | |||
return | |||
} | |||
// SerializeSignaturePrefix writes the prefix for this public key to the given Writer. | |||
// The prefix is used when calculating a signature over this public key. See | |||
// RFC 4880, section 5.2.4. | |||
func (pk *PublicKey) SerializeSignaturePrefix(h io.Writer) { | |||
var pLength uint16 | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: | |||
pLength += 2 + uint16(len(pk.n.bytes)) | |||
pLength += 2 + uint16(len(pk.e.bytes)) | |||
case PubKeyAlgoDSA: | |||
pLength += 2 + uint16(len(pk.p.bytes)) | |||
pLength += 2 + uint16(len(pk.q.bytes)) | |||
pLength += 2 + uint16(len(pk.g.bytes)) | |||
pLength += 2 + uint16(len(pk.y.bytes)) | |||
case PubKeyAlgoElGamal: | |||
pLength += 2 + uint16(len(pk.p.bytes)) | |||
pLength += 2 + uint16(len(pk.g.bytes)) | |||
pLength += 2 + uint16(len(pk.y.bytes)) | |||
case PubKeyAlgoECDSA: | |||
pLength += uint16(pk.ec.byteLen()) | |||
case PubKeyAlgoECDH: | |||
pLength += uint16(pk.ec.byteLen()) | |||
pLength += uint16(pk.ecdh.byteLen()) | |||
default: | |||
panic("unknown public key algorithm") | |||
} | |||
pLength += 6 | |||
h.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)}) | |||
return | |||
} | |||
func (pk *PublicKey) Serialize(w io.Writer) (err error) { | |||
length := 6 // 6 byte header | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: | |||
length += 2 + len(pk.n.bytes) | |||
length += 2 + len(pk.e.bytes) | |||
case PubKeyAlgoDSA: | |||
length += 2 + len(pk.p.bytes) | |||
length += 2 + len(pk.q.bytes) | |||
length += 2 + len(pk.g.bytes) | |||
length += 2 + len(pk.y.bytes) | |||
case PubKeyAlgoElGamal: | |||
length += 2 + len(pk.p.bytes) | |||
length += 2 + len(pk.g.bytes) | |||
length += 2 + len(pk.y.bytes) | |||
case PubKeyAlgoECDSA: | |||
length += pk.ec.byteLen() | |||
case PubKeyAlgoECDH: | |||
length += pk.ec.byteLen() | |||
length += pk.ecdh.byteLen() | |||
default: | |||
panic("unknown public key algorithm") | |||
} | |||
packetType := packetTypePublicKey | |||
if pk.IsSubkey { | |||
packetType = packetTypePublicSubkey | |||
} | |||
err = serializeHeader(w, packetType, length) | |||
if err != nil { | |||
return | |||
} | |||
return pk.serializeWithoutHeaders(w) | |||
} | |||
// serializeWithoutHeaders marshals the PublicKey to w in the form of an | |||
// OpenPGP public key packet, not including the packet header. | |||
func (pk *PublicKey) serializeWithoutHeaders(w io.Writer) (err error) { | |||
var buf [6]byte | |||
buf[0] = 4 | |||
t := uint32(pk.CreationTime.Unix()) | |||
buf[1] = byte(t >> 24) | |||
buf[2] = byte(t >> 16) | |||
buf[3] = byte(t >> 8) | |||
buf[4] = byte(t) | |||
buf[5] = byte(pk.PubKeyAlgo) | |||
_, err = w.Write(buf[:]) | |||
if err != nil { | |||
return | |||
} | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: | |||
return writeMPIs(w, pk.n, pk.e) | |||
case PubKeyAlgoDSA: | |||
return writeMPIs(w, pk.p, pk.q, pk.g, pk.y) | |||
case PubKeyAlgoElGamal: | |||
return writeMPIs(w, pk.p, pk.g, pk.y) | |||
case PubKeyAlgoECDSA: | |||
return pk.ec.serialize(w) | |||
case PubKeyAlgoECDH: | |||
if err = pk.ec.serialize(w); err != nil { | |||
return | |||
} | |||
return pk.ecdh.serialize(w) | |||
} | |||
return errors.InvalidArgumentError("bad public-key algorithm") | |||
} | |||
// CanSign returns true iff this public key can generate signatures | |||
func (pk *PublicKey) CanSign() bool { | |||
return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly && pk.PubKeyAlgo != PubKeyAlgoElGamal | |||
} | |||
// VerifySignature returns nil iff sig is a valid signature, made by this | |||
// public key, of the data hashed into signed. signed is mutated by this call. | |||
func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err error) { | |||
if !pk.CanSign() { | |||
return errors.InvalidArgumentError("public key cannot generate signatures") | |||
} | |||
signed.Write(sig.HashSuffix) | |||
hashBytes := signed.Sum(nil) | |||
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] { | |||
return errors.SignatureError("hash tag doesn't match") | |||
} | |||
if pk.PubKeyAlgo != sig.PubKeyAlgo { | |||
return errors.InvalidArgumentError("public key and signature use different algorithms") | |||
} | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly: | |||
rsaPublicKey, _ := pk.PublicKey.(*rsa.PublicKey) | |||
err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, sig.RSASignature.bytes) | |||
if err != nil { | |||
return errors.SignatureError("RSA verification failure") | |||
} | |||
return nil | |||
case PubKeyAlgoDSA: | |||
dsaPublicKey, _ := pk.PublicKey.(*dsa.PublicKey) | |||
// Need to truncate hashBytes to match FIPS 186-3 section 4.6. | |||
subgroupSize := (dsaPublicKey.Q.BitLen() + 7) / 8 | |||
if len(hashBytes) > subgroupSize { | |||
hashBytes = hashBytes[:subgroupSize] | |||
} | |||
if !dsa.Verify(dsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.DSASigR.bytes), new(big.Int).SetBytes(sig.DSASigS.bytes)) { | |||
return errors.SignatureError("DSA verification failure") | |||
} | |||
return nil | |||
case PubKeyAlgoECDSA: | |||
ecdsaPublicKey := pk.PublicKey.(*ecdsa.PublicKey) | |||
if !ecdsa.Verify(ecdsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.ECDSASigR.bytes), new(big.Int).SetBytes(sig.ECDSASigS.bytes)) { | |||
return errors.SignatureError("ECDSA verification failure") | |||
} | |||
return nil | |||
default: | |||
return errors.SignatureError("Unsupported public key algorithm used in signature") | |||
} | |||
} | |||
// VerifySignatureV3 returns nil iff sig is a valid signature, made by this | |||
// public key, of the data hashed into signed. signed is mutated by this call. | |||
func (pk *PublicKey) VerifySignatureV3(signed hash.Hash, sig *SignatureV3) (err error) { | |||
if !pk.CanSign() { | |||
return errors.InvalidArgumentError("public key cannot generate signatures") | |||
} | |||
suffix := make([]byte, 5) | |||
suffix[0] = byte(sig.SigType) | |||
binary.BigEndian.PutUint32(suffix[1:], uint32(sig.CreationTime.Unix())) | |||
signed.Write(suffix) | |||
hashBytes := signed.Sum(nil) | |||
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] { | |||
return errors.SignatureError("hash tag doesn't match") | |||
} | |||
if pk.PubKeyAlgo != sig.PubKeyAlgo { | |||
return errors.InvalidArgumentError("public key and signature use different algorithms") | |||
} | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly: | |||
rsaPublicKey := pk.PublicKey.(*rsa.PublicKey) | |||
if err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, sig.RSASignature.bytes); err != nil { | |||
return errors.SignatureError("RSA verification failure") | |||
} | |||
return | |||
case PubKeyAlgoDSA: | |||
dsaPublicKey := pk.PublicKey.(*dsa.PublicKey) | |||
// Need to truncate hashBytes to match FIPS 186-3 section 4.6. | |||
subgroupSize := (dsaPublicKey.Q.BitLen() + 7) / 8 | |||
if len(hashBytes) > subgroupSize { | |||
hashBytes = hashBytes[:subgroupSize] | |||
} | |||
if !dsa.Verify(dsaPublicKey, hashBytes, new(big.Int).SetBytes(sig.DSASigR.bytes), new(big.Int).SetBytes(sig.DSASigS.bytes)) { | |||
return errors.SignatureError("DSA verification failure") | |||
} | |||
return nil | |||
default: | |||
panic("shouldn't happen") | |||
} | |||
} | |||
// keySignatureHash returns a Hash of the message that needs to be signed for | |||
// pk to assert a subkey relationship to signed. | |||
func keySignatureHash(pk, signed signingKey, hashFunc crypto.Hash) (h hash.Hash, err error) { | |||
if !hashFunc.Available() { | |||
return nil, errors.UnsupportedError("hash function") | |||
} | |||
h = hashFunc.New() | |||
// RFC 4880, section 5.2.4 | |||
pk.SerializeSignaturePrefix(h) | |||
pk.serializeWithoutHeaders(h) | |||
signed.SerializeSignaturePrefix(h) | |||
signed.serializeWithoutHeaders(h) | |||
return | |||
} | |||
// VerifyKeySignature returns nil iff sig is a valid signature, made by this | |||
// public key, of signed. | |||
func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) error { | |||
h, err := keySignatureHash(pk, signed, sig.Hash) | |||
if err != nil { | |||
return err | |||
} | |||
if err = pk.VerifySignature(h, sig); err != nil { | |||
return err | |||
} | |||
if sig.FlagSign { | |||
// Signing subkeys must be cross-signed. See | |||
// https://www.gnupg.org/faq/subkey-cross-certify.html. | |||
if sig.EmbeddedSignature == nil { | |||
return errors.StructuralError("signing subkey is missing cross-signature") | |||
} | |||
// Verify the cross-signature. This is calculated over the same | |||
// data as the main signature, so we cannot just recursively | |||
// call signed.VerifyKeySignature(...) | |||
if h, err = keySignatureHash(pk, signed, sig.EmbeddedSignature.Hash); err != nil { | |||
return errors.StructuralError("error while hashing for cross-signature: " + err.Error()) | |||
} | |||
if err := signed.VerifySignature(h, sig.EmbeddedSignature); err != nil { | |||
return errors.StructuralError("error while verifying cross-signature: " + err.Error()) | |||
} | |||
} | |||
return nil | |||
} | |||
func keyRevocationHash(pk signingKey, hashFunc crypto.Hash) (h hash.Hash, err error) { | |||
if !hashFunc.Available() { | |||
return nil, errors.UnsupportedError("hash function") | |||
} | |||
h = hashFunc.New() | |||
// RFC 4880, section 5.2.4 | |||
pk.SerializeSignaturePrefix(h) | |||
pk.serializeWithoutHeaders(h) | |||
return | |||
} | |||
// VerifyRevocationSignature returns nil iff sig is a valid signature, made by this | |||
// public key. | |||
func (pk *PublicKey) VerifyRevocationSignature(sig *Signature) (err error) { | |||
h, err := keyRevocationHash(pk, sig.Hash) | |||
if err != nil { | |||
return err | |||
} | |||
return pk.VerifySignature(h, sig) | |||
} | |||
// userIdSignatureHash returns a Hash of the message that needs to be signed | |||
// to assert that pk is a valid key for id. | |||
func userIdSignatureHash(id string, pk *PublicKey, hashFunc crypto.Hash) (h hash.Hash, err error) { | |||
if !hashFunc.Available() { | |||
return nil, errors.UnsupportedError("hash function") | |||
} | |||
h = hashFunc.New() | |||
// RFC 4880, section 5.2.4 | |||
pk.SerializeSignaturePrefix(h) | |||
pk.serializeWithoutHeaders(h) | |||
var buf [5]byte | |||
buf[0] = 0xb4 | |||
buf[1] = byte(len(id) >> 24) | |||
buf[2] = byte(len(id) >> 16) | |||
buf[3] = byte(len(id) >> 8) | |||
buf[4] = byte(len(id)) | |||
h.Write(buf[:]) | |||
h.Write([]byte(id)) | |||
return | |||
} | |||
// VerifyUserIdSignature returns nil iff sig is a valid signature, made by this | |||
// public key, that id is the identity of pub. | |||
func (pk *PublicKey) VerifyUserIdSignature(id string, pub *PublicKey, sig *Signature) (err error) { | |||
h, err := userIdSignatureHash(id, pub, sig.Hash) | |||
if err != nil { | |||
return err | |||
} | |||
return pk.VerifySignature(h, sig) | |||
} | |||
// VerifyUserIdSignatureV3 returns nil iff sig is a valid signature, made by this | |||
// public key, that id is the identity of pub. | |||
func (pk *PublicKey) VerifyUserIdSignatureV3(id string, pub *PublicKey, sig *SignatureV3) (err error) { | |||
h, err := userIdSignatureV3Hash(id, pub, sig.Hash) | |||
if err != nil { | |||
return err | |||
} | |||
return pk.VerifySignatureV3(h, sig) | |||
} | |||
// KeyIdString returns the public key's fingerprint in capital hex | |||
// (e.g. "6C7EE1B8621CC013"). | |||
func (pk *PublicKey) KeyIdString() string { | |||
return fmt.Sprintf("%X", pk.Fingerprint[12:20]) | |||
} | |||
// KeyIdShortString returns the short form of public key's fingerprint | |||
// in capital hex, as shown by gpg --list-keys (e.g. "621CC013"). | |||
func (pk *PublicKey) KeyIdShortString() string { | |||
return fmt.Sprintf("%X", pk.Fingerprint[16:20]) | |||
} | |||
// A parsedMPI is used to store the contents of a big integer, along with the | |||
// bit length that was specified in the original input. This allows the MPI to | |||
// be reserialized exactly. | |||
type parsedMPI struct { | |||
bytes []byte | |||
bitLength uint16 | |||
} | |||
// writeMPIs is a utility function for serializing several big integers to the | |||
// given Writer. | |||
func writeMPIs(w io.Writer, mpis ...parsedMPI) (err error) { | |||
for _, mpi := range mpis { | |||
err = writeMPI(w, mpi.bitLength, mpi.bytes) | |||
if err != nil { | |||
return | |||
} | |||
} | |||
return | |||
} | |||
// BitLength returns the bit length for the given public key. | |||
func (pk *PublicKey) BitLength() (bitLength uint16, err error) { | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: | |||
bitLength = pk.n.bitLength | |||
case PubKeyAlgoDSA: | |||
bitLength = pk.p.bitLength | |||
case PubKeyAlgoElGamal: | |||
bitLength = pk.p.bitLength | |||
default: | |||
err = errors.InvalidArgumentError("bad public-key algorithm") | |||
} | |||
return | |||
} |
@@ -0,0 +1,279 @@ | |||
// Copyright 2013 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"crypto" | |||
"crypto/md5" | |||
"crypto/rsa" | |||
"encoding/binary" | |||
"fmt" | |||
"hash" | |||
"io" | |||
"math/big" | |||
"strconv" | |||
"time" | |||
"golang.org/x/crypto/openpgp/errors" | |||
) | |||
// PublicKeyV3 represents older, version 3 public keys. These keys are less secure and | |||
// should not be used for signing or encrypting. They are supported here only for | |||
// parsing version 3 key material and validating signatures. | |||
// See RFC 4880, section 5.5.2. | |||
type PublicKeyV3 struct { | |||
CreationTime time.Time | |||
DaysToExpire uint16 | |||
PubKeyAlgo PublicKeyAlgorithm | |||
PublicKey *rsa.PublicKey | |||
Fingerprint [16]byte | |||
KeyId uint64 | |||
IsSubkey bool | |||
n, e parsedMPI | |||
} | |||
// newRSAPublicKeyV3 returns a PublicKey that wraps the given rsa.PublicKey. | |||
// Included here for testing purposes only. RFC 4880, section 5.5.2: | |||
// "an implementation MUST NOT generate a V3 key, but MAY accept it." | |||
func newRSAPublicKeyV3(creationTime time.Time, pub *rsa.PublicKey) *PublicKeyV3 { | |||
pk := &PublicKeyV3{ | |||
CreationTime: creationTime, | |||
PublicKey: pub, | |||
n: fromBig(pub.N), | |||
e: fromBig(big.NewInt(int64(pub.E))), | |||
} | |||
pk.setFingerPrintAndKeyId() | |||
return pk | |||
} | |||
func (pk *PublicKeyV3) parse(r io.Reader) (err error) { | |||
// RFC 4880, section 5.5.2 | |||
var buf [8]byte | |||
if _, err = readFull(r, buf[:]); err != nil { | |||
return | |||
} | |||
if buf[0] < 2 || buf[0] > 3 { | |||
return errors.UnsupportedError("public key version") | |||
} | |||
pk.CreationTime = time.Unix(int64(uint32(buf[1])<<24|uint32(buf[2])<<16|uint32(buf[3])<<8|uint32(buf[4])), 0) | |||
pk.DaysToExpire = binary.BigEndian.Uint16(buf[5:7]) | |||
pk.PubKeyAlgo = PublicKeyAlgorithm(buf[7]) | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: | |||
err = pk.parseRSA(r) | |||
default: | |||
err = errors.UnsupportedError("public key type: " + strconv.Itoa(int(pk.PubKeyAlgo))) | |||
} | |||
if err != nil { | |||
return | |||
} | |||
pk.setFingerPrintAndKeyId() | |||
return | |||
} | |||
func (pk *PublicKeyV3) setFingerPrintAndKeyId() { | |||
// RFC 4880, section 12.2 | |||
fingerPrint := md5.New() | |||
fingerPrint.Write(pk.n.bytes) | |||
fingerPrint.Write(pk.e.bytes) | |||
fingerPrint.Sum(pk.Fingerprint[:0]) | |||
pk.KeyId = binary.BigEndian.Uint64(pk.n.bytes[len(pk.n.bytes)-8:]) | |||
} | |||
// parseRSA parses RSA public key material from the given Reader. See RFC 4880, | |||
// section 5.5.2. | |||
func (pk *PublicKeyV3) parseRSA(r io.Reader) (err error) { | |||
if pk.n.bytes, pk.n.bitLength, err = readMPI(r); err != nil { | |||
return | |||
} | |||
if pk.e.bytes, pk.e.bitLength, err = readMPI(r); err != nil { | |||
return | |||
} | |||
// RFC 4880 Section 12.2 requires the low 8 bytes of the | |||
// modulus to form the key id. | |||
if len(pk.n.bytes) < 8 { | |||
return errors.StructuralError("v3 public key modulus is too short") | |||
} | |||
if len(pk.e.bytes) > 3 { | |||
err = errors.UnsupportedError("large public exponent") | |||
return | |||
} | |||
rsa := &rsa.PublicKey{N: new(big.Int).SetBytes(pk.n.bytes)} | |||
for i := 0; i < len(pk.e.bytes); i++ { | |||
rsa.E <<= 8 | |||
rsa.E |= int(pk.e.bytes[i]) | |||
} | |||
pk.PublicKey = rsa | |||
return | |||
} | |||
// SerializeSignaturePrefix writes the prefix for this public key to the given Writer. | |||
// The prefix is used when calculating a signature over this public key. See | |||
// RFC 4880, section 5.2.4. | |||
func (pk *PublicKeyV3) SerializeSignaturePrefix(w io.Writer) { | |||
var pLength uint16 | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: | |||
pLength += 2 + uint16(len(pk.n.bytes)) | |||
pLength += 2 + uint16(len(pk.e.bytes)) | |||
default: | |||
panic("unknown public key algorithm") | |||
} | |||
pLength += 6 | |||
w.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)}) | |||
return | |||
} | |||
func (pk *PublicKeyV3) Serialize(w io.Writer) (err error) { | |||
length := 8 // 8 byte header | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: | |||
length += 2 + len(pk.n.bytes) | |||
length += 2 + len(pk.e.bytes) | |||
default: | |||
panic("unknown public key algorithm") | |||
} | |||
packetType := packetTypePublicKey | |||
if pk.IsSubkey { | |||
packetType = packetTypePublicSubkey | |||
} | |||
if err = serializeHeader(w, packetType, length); err != nil { | |||
return | |||
} | |||
return pk.serializeWithoutHeaders(w) | |||
} | |||
// serializeWithoutHeaders marshals the PublicKey to w in the form of an | |||
// OpenPGP public key packet, not including the packet header. | |||
func (pk *PublicKeyV3) serializeWithoutHeaders(w io.Writer) (err error) { | |||
var buf [8]byte | |||
// Version 3 | |||
buf[0] = 3 | |||
// Creation time | |||
t := uint32(pk.CreationTime.Unix()) | |||
buf[1] = byte(t >> 24) | |||
buf[2] = byte(t >> 16) | |||
buf[3] = byte(t >> 8) | |||
buf[4] = byte(t) | |||
// Days to expire | |||
buf[5] = byte(pk.DaysToExpire >> 8) | |||
buf[6] = byte(pk.DaysToExpire) | |||
// Public key algorithm | |||
buf[7] = byte(pk.PubKeyAlgo) | |||
if _, err = w.Write(buf[:]); err != nil { | |||
return | |||
} | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: | |||
return writeMPIs(w, pk.n, pk.e) | |||
} | |||
return errors.InvalidArgumentError("bad public-key algorithm") | |||
} | |||
// CanSign returns true iff this public key can generate signatures | |||
func (pk *PublicKeyV3) CanSign() bool { | |||
return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly | |||
} | |||
// VerifySignatureV3 returns nil iff sig is a valid signature, made by this | |||
// public key, of the data hashed into signed. signed is mutated by this call. | |||
func (pk *PublicKeyV3) VerifySignatureV3(signed hash.Hash, sig *SignatureV3) (err error) { | |||
if !pk.CanSign() { | |||
return errors.InvalidArgumentError("public key cannot generate signatures") | |||
} | |||
suffix := make([]byte, 5) | |||
suffix[0] = byte(sig.SigType) | |||
binary.BigEndian.PutUint32(suffix[1:], uint32(sig.CreationTime.Unix())) | |||
signed.Write(suffix) | |||
hashBytes := signed.Sum(nil) | |||
if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] { | |||
return errors.SignatureError("hash tag doesn't match") | |||
} | |||
if pk.PubKeyAlgo != sig.PubKeyAlgo { | |||
return errors.InvalidArgumentError("public key and signature use different algorithms") | |||
} | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly: | |||
if err = rsa.VerifyPKCS1v15(pk.PublicKey, sig.Hash, hashBytes, sig.RSASignature.bytes); err != nil { | |||
return errors.SignatureError("RSA verification failure") | |||
} | |||
return | |||
default: | |||
// V3 public keys only support RSA. | |||
panic("shouldn't happen") | |||
} | |||
} | |||
// VerifyUserIdSignatureV3 returns nil iff sig is a valid signature, made by this | |||
// public key, that id is the identity of pub. | |||
func (pk *PublicKeyV3) VerifyUserIdSignatureV3(id string, pub *PublicKeyV3, sig *SignatureV3) (err error) { | |||
h, err := userIdSignatureV3Hash(id, pk, sig.Hash) | |||
if err != nil { | |||
return err | |||
} | |||
return pk.VerifySignatureV3(h, sig) | |||
} | |||
// VerifyKeySignatureV3 returns nil iff sig is a valid signature, made by this | |||
// public key, of signed. | |||
func (pk *PublicKeyV3) VerifyKeySignatureV3(signed *PublicKeyV3, sig *SignatureV3) (err error) { | |||
h, err := keySignatureHash(pk, signed, sig.Hash) | |||
if err != nil { | |||
return err | |||
} | |||
return pk.VerifySignatureV3(h, sig) | |||
} | |||
// userIdSignatureV3Hash returns a Hash of the message that needs to be signed | |||
// to assert that pk is a valid key for id. | |||
func userIdSignatureV3Hash(id string, pk signingKey, hfn crypto.Hash) (h hash.Hash, err error) { | |||
if !hfn.Available() { | |||
return nil, errors.UnsupportedError("hash function") | |||
} | |||
h = hfn.New() | |||
// RFC 4880, section 5.2.4 | |||
pk.SerializeSignaturePrefix(h) | |||
pk.serializeWithoutHeaders(h) | |||
h.Write([]byte(id)) | |||
return | |||
} | |||
// KeyIdString returns the public key's fingerprint in capital hex | |||
// (e.g. "6C7EE1B8621CC013"). | |||
func (pk *PublicKeyV3) KeyIdString() string { | |||
return fmt.Sprintf("%X", pk.KeyId) | |||
} | |||
// KeyIdShortString returns the short form of public key's fingerprint | |||
// in capital hex, as shown by gpg --list-keys (e.g. "621CC013"). | |||
func (pk *PublicKeyV3) KeyIdShortString() string { | |||
return fmt.Sprintf("%X", pk.KeyId&0xFFFFFFFF) | |||
} | |||
// BitLength returns the bit length for the given public key. | |||
func (pk *PublicKeyV3) BitLength() (bitLength uint16, err error) { | |||
switch pk.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly: | |||
bitLength = pk.n.bitLength | |||
default: | |||
err = errors.InvalidArgumentError("bad public-key algorithm") | |||
} | |||
return | |||
} |
@@ -0,0 +1,76 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"golang.org/x/crypto/openpgp/errors" | |||
"io" | |||
) | |||
// Reader reads packets from an io.Reader and allows packets to be 'unread' so | |||
// that they result from the next call to Next. | |||
type Reader struct { | |||
q []Packet | |||
readers []io.Reader | |||
} | |||
// New io.Readers are pushed when a compressed or encrypted packet is processed | |||
// and recursively treated as a new source of packets. However, a carefully | |||
// crafted packet can trigger an infinite recursive sequence of packets. See | |||
// http://mumble.net/~campbell/misc/pgp-quine | |||
// https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4402 | |||
// This constant limits the number of recursive packets that may be pushed. | |||
const maxReaders = 32 | |||
// Next returns the most recently unread Packet, or reads another packet from | |||
// the top-most io.Reader. Unknown packet types are skipped. | |||
func (r *Reader) Next() (p Packet, err error) { | |||
if len(r.q) > 0 { | |||
p = r.q[len(r.q)-1] | |||
r.q = r.q[:len(r.q)-1] | |||
return | |||
} | |||
for len(r.readers) > 0 { | |||
p, err = Read(r.readers[len(r.readers)-1]) | |||
if err == nil { | |||
return | |||
} | |||
if err == io.EOF { | |||
r.readers = r.readers[:len(r.readers)-1] | |||
continue | |||
} | |||
if _, ok := err.(errors.UnknownPacketTypeError); !ok { | |||
return nil, err | |||
} | |||
} | |||
return nil, io.EOF | |||
} | |||
// Push causes the Reader to start reading from a new io.Reader. When an EOF | |||
// error is seen from the new io.Reader, it is popped and the Reader continues | |||
// to read from the next most recent io.Reader. Push returns a StructuralError | |||
// if pushing the reader would exceed the maximum recursion level, otherwise it | |||
// returns nil. | |||
func (r *Reader) Push(reader io.Reader) (err error) { | |||
if len(r.readers) >= maxReaders { | |||
return errors.StructuralError("too many layers of packets") | |||
} | |||
r.readers = append(r.readers, reader) | |||
return nil | |||
} | |||
// Unread causes the given Packet to be returned from the next call to Next. | |||
func (r *Reader) Unread(p Packet) { | |||
r.q = append(r.q, p) | |||
} | |||
func NewReader(r io.Reader) *Reader { | |||
return &Reader{ | |||
q: nil, | |||
readers: []io.Reader{r}, | |||
} | |||
} |
@@ -0,0 +1,731 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"bytes" | |||
"crypto" | |||
"crypto/dsa" | |||
"crypto/ecdsa" | |||
"encoding/asn1" | |||
"encoding/binary" | |||
"hash" | |||
"io" | |||
"math/big" | |||
"strconv" | |||
"time" | |||
"golang.org/x/crypto/openpgp/errors" | |||
"golang.org/x/crypto/openpgp/s2k" | |||
) | |||
const ( | |||
// See RFC 4880, section 5.2.3.21 for details. | |||
KeyFlagCertify = 1 << iota | |||
KeyFlagSign | |||
KeyFlagEncryptCommunications | |||
KeyFlagEncryptStorage | |||
) | |||
// Signature represents a signature. See RFC 4880, section 5.2. | |||
type Signature struct { | |||
SigType SignatureType | |||
PubKeyAlgo PublicKeyAlgorithm | |||
Hash crypto.Hash | |||
// HashSuffix is extra data that is hashed in after the signed data. | |||
HashSuffix []byte | |||
// HashTag contains the first two bytes of the hash for fast rejection | |||
// of bad signed data. | |||
HashTag [2]byte | |||
CreationTime time.Time | |||
RSASignature parsedMPI | |||
DSASigR, DSASigS parsedMPI | |||
ECDSASigR, ECDSASigS parsedMPI | |||
// rawSubpackets contains the unparsed subpackets, in order. | |||
rawSubpackets []outputSubpacket | |||
// The following are optional so are nil when not included in the | |||
// signature. | |||
SigLifetimeSecs, KeyLifetimeSecs *uint32 | |||
PreferredSymmetric, PreferredHash, PreferredCompression []uint8 | |||
IssuerKeyId *uint64 | |||
IsPrimaryId *bool | |||
// FlagsValid is set if any flags were given. See RFC 4880, section | |||
// 5.2.3.21 for details. | |||
FlagsValid bool | |||
FlagCertify, FlagSign, FlagEncryptCommunications, FlagEncryptStorage bool | |||
// RevocationReason is set if this signature has been revoked. | |||
// See RFC 4880, section 5.2.3.23 for details. | |||
RevocationReason *uint8 | |||
RevocationReasonText string | |||
// MDC is set if this signature has a feature packet that indicates | |||
// support for MDC subpackets. | |||
MDC bool | |||
// EmbeddedSignature, if non-nil, is a signature of the parent key, by | |||
// this key. This prevents an attacker from claiming another's signing | |||
// subkey as their own. | |||
EmbeddedSignature *Signature | |||
outSubpackets []outputSubpacket | |||
} | |||
func (sig *Signature) parse(r io.Reader) (err error) { | |||
// RFC 4880, section 5.2.3 | |||
var buf [5]byte | |||
_, err = readFull(r, buf[:1]) | |||
if err != nil { | |||
return | |||
} | |||
if buf[0] != 4 { | |||
err = errors.UnsupportedError("signature packet version " + strconv.Itoa(int(buf[0]))) | |||
return | |||
} | |||
_, err = readFull(r, buf[:5]) | |||
if err != nil { | |||
return | |||
} | |||
sig.SigType = SignatureType(buf[0]) | |||
sig.PubKeyAlgo = PublicKeyAlgorithm(buf[1]) | |||
switch sig.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA, PubKeyAlgoECDSA: | |||
default: | |||
err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo))) | |||
return | |||
} | |||
var ok bool | |||
sig.Hash, ok = s2k.HashIdToHash(buf[2]) | |||
if !ok { | |||
return errors.UnsupportedError("hash function " + strconv.Itoa(int(buf[2]))) | |||
} | |||
hashedSubpacketsLength := int(buf[3])<<8 | int(buf[4]) | |||
l := 6 + hashedSubpacketsLength | |||
sig.HashSuffix = make([]byte, l+6) | |||
sig.HashSuffix[0] = 4 | |||
copy(sig.HashSuffix[1:], buf[:5]) | |||
hashedSubpackets := sig.HashSuffix[6:l] | |||
_, err = readFull(r, hashedSubpackets) | |||
if err != nil { | |||
return | |||
} | |||
// See RFC 4880, section 5.2.4 | |||
trailer := sig.HashSuffix[l:] | |||
trailer[0] = 4 | |||
trailer[1] = 0xff | |||
trailer[2] = uint8(l >> 24) | |||
trailer[3] = uint8(l >> 16) | |||
trailer[4] = uint8(l >> 8) | |||
trailer[5] = uint8(l) | |||
err = parseSignatureSubpackets(sig, hashedSubpackets, true) | |||
if err != nil { | |||
return | |||
} | |||
_, err = readFull(r, buf[:2]) | |||
if err != nil { | |||
return | |||
} | |||
unhashedSubpacketsLength := int(buf[0])<<8 | int(buf[1]) | |||
unhashedSubpackets := make([]byte, unhashedSubpacketsLength) | |||
_, err = readFull(r, unhashedSubpackets) | |||
if err != nil { | |||
return | |||
} | |||
err = parseSignatureSubpackets(sig, unhashedSubpackets, false) | |||
if err != nil { | |||
return | |||
} | |||
_, err = readFull(r, sig.HashTag[:2]) | |||
if err != nil { | |||
return | |||
} | |||
switch sig.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly: | |||
sig.RSASignature.bytes, sig.RSASignature.bitLength, err = readMPI(r) | |||
case PubKeyAlgoDSA: | |||
sig.DSASigR.bytes, sig.DSASigR.bitLength, err = readMPI(r) | |||
if err == nil { | |||
sig.DSASigS.bytes, sig.DSASigS.bitLength, err = readMPI(r) | |||
} | |||
case PubKeyAlgoECDSA: | |||
sig.ECDSASigR.bytes, sig.ECDSASigR.bitLength, err = readMPI(r) | |||
if err == nil { | |||
sig.ECDSASigS.bytes, sig.ECDSASigS.bitLength, err = readMPI(r) | |||
} | |||
default: | |||
panic("unreachable") | |||
} | |||
return | |||
} | |||
// parseSignatureSubpackets parses subpackets of the main signature packet. See | |||
// RFC 4880, section 5.2.3.1. | |||
func parseSignatureSubpackets(sig *Signature, subpackets []byte, isHashed bool) (err error) { | |||
for len(subpackets) > 0 { | |||
subpackets, err = parseSignatureSubpacket(sig, subpackets, isHashed) | |||
if err != nil { | |||
return | |||
} | |||
} | |||
if sig.CreationTime.IsZero() { | |||
err = errors.StructuralError("no creation time in signature") | |||
} | |||
return | |||
} | |||
type signatureSubpacketType uint8 | |||
const ( | |||
creationTimeSubpacket signatureSubpacketType = 2 | |||
signatureExpirationSubpacket signatureSubpacketType = 3 | |||
keyExpirationSubpacket signatureSubpacketType = 9 | |||
prefSymmetricAlgosSubpacket signatureSubpacketType = 11 | |||
issuerSubpacket signatureSubpacketType = 16 | |||
prefHashAlgosSubpacket signatureSubpacketType = 21 | |||
prefCompressionSubpacket signatureSubpacketType = 22 | |||
primaryUserIdSubpacket signatureSubpacketType = 25 | |||
keyFlagsSubpacket signatureSubpacketType = 27 | |||
reasonForRevocationSubpacket signatureSubpacketType = 29 | |||
featuresSubpacket signatureSubpacketType = 30 | |||
embeddedSignatureSubpacket signatureSubpacketType = 32 | |||
) | |||
// parseSignatureSubpacket parses a single subpacket. len(subpacket) is >= 1. | |||
func parseSignatureSubpacket(sig *Signature, subpacket []byte, isHashed bool) (rest []byte, err error) { | |||
// RFC 4880, section 5.2.3.1 | |||
var ( | |||
length uint32 | |||
packetType signatureSubpacketType | |||
isCritical bool | |||
) | |||
switch { | |||
case subpacket[0] < 192: | |||
length = uint32(subpacket[0]) | |||
subpacket = subpacket[1:] | |||
case subpacket[0] < 255: | |||
if len(subpacket) < 2 { | |||
goto Truncated | |||
} | |||
length = uint32(subpacket[0]-192)<<8 + uint32(subpacket[1]) + 192 | |||
subpacket = subpacket[2:] | |||
default: | |||
if len(subpacket) < 5 { | |||
goto Truncated | |||
} | |||
length = uint32(subpacket[1])<<24 | | |||
uint32(subpacket[2])<<16 | | |||
uint32(subpacket[3])<<8 | | |||
uint32(subpacket[4]) | |||
subpacket = subpacket[5:] | |||
} | |||
if length > uint32(len(subpacket)) { | |||
goto Truncated | |||
} | |||
rest = subpacket[length:] | |||
subpacket = subpacket[:length] | |||
if len(subpacket) == 0 { | |||
err = errors.StructuralError("zero length signature subpacket") | |||
return | |||
} | |||
packetType = signatureSubpacketType(subpacket[0] & 0x7f) | |||
isCritical = subpacket[0]&0x80 == 0x80 | |||
subpacket = subpacket[1:] | |||
sig.rawSubpackets = append(sig.rawSubpackets, outputSubpacket{isHashed, packetType, isCritical, subpacket}) | |||
switch packetType { | |||
case creationTimeSubpacket: | |||
if !isHashed { | |||
err = errors.StructuralError("signature creation time in non-hashed area") | |||
return | |||
} | |||
if len(subpacket) != 4 { | |||
err = errors.StructuralError("signature creation time not four bytes") | |||
return | |||
} | |||
t := binary.BigEndian.Uint32(subpacket) | |||
sig.CreationTime = time.Unix(int64(t), 0) | |||
case signatureExpirationSubpacket: | |||
// Signature expiration time, section 5.2.3.10 | |||
if !isHashed { | |||
return | |||
} | |||
if len(subpacket) != 4 { | |||
err = errors.StructuralError("expiration subpacket with bad length") | |||
return | |||
} | |||
sig.SigLifetimeSecs = new(uint32) | |||
*sig.SigLifetimeSecs = binary.BigEndian.Uint32(subpacket) | |||
case keyExpirationSubpacket: | |||
// Key expiration time, section 5.2.3.6 | |||
if !isHashed { | |||
return | |||
} | |||
if len(subpacket) != 4 { | |||
err = errors.StructuralError("key expiration subpacket with bad length") | |||
return | |||
} | |||
sig.KeyLifetimeSecs = new(uint32) | |||
*sig.KeyLifetimeSecs = binary.BigEndian.Uint32(subpacket) | |||
case prefSymmetricAlgosSubpacket: | |||
// Preferred symmetric algorithms, section 5.2.3.7 | |||
if !isHashed { | |||
return | |||
} | |||
sig.PreferredSymmetric = make([]byte, len(subpacket)) | |||
copy(sig.PreferredSymmetric, subpacket) | |||
case issuerSubpacket: | |||
// Issuer, section 5.2.3.5 | |||
if len(subpacket) != 8 { | |||
err = errors.StructuralError("issuer subpacket with bad length") | |||
return | |||
} | |||
sig.IssuerKeyId = new(uint64) | |||
*sig.IssuerKeyId = binary.BigEndian.Uint64(subpacket) | |||
case prefHashAlgosSubpacket: | |||
// Preferred hash algorithms, section 5.2.3.8 | |||
if !isHashed { | |||
return | |||
} | |||
sig.PreferredHash = make([]byte, len(subpacket)) | |||
copy(sig.PreferredHash, subpacket) | |||
case prefCompressionSubpacket: | |||
// Preferred compression algorithms, section 5.2.3.9 | |||
if !isHashed { | |||
return | |||
} | |||
sig.PreferredCompression = make([]byte, len(subpacket)) | |||
copy(sig.PreferredCompression, subpacket) | |||
case primaryUserIdSubpacket: | |||
// Primary User ID, section 5.2.3.19 | |||
if !isHashed { | |||
return | |||
} | |||
if len(subpacket) != 1 { | |||
err = errors.StructuralError("primary user id subpacket with bad length") | |||
return | |||
} | |||
sig.IsPrimaryId = new(bool) | |||
if subpacket[0] > 0 { | |||
*sig.IsPrimaryId = true | |||
} | |||
case keyFlagsSubpacket: | |||
// Key flags, section 5.2.3.21 | |||
if !isHashed { | |||
return | |||
} | |||
if len(subpacket) == 0 { | |||
err = errors.StructuralError("empty key flags subpacket") | |||
return | |||
} | |||
sig.FlagsValid = true | |||
if subpacket[0]&KeyFlagCertify != 0 { | |||
sig.FlagCertify = true | |||
} | |||
if subpacket[0]&KeyFlagSign != 0 { | |||
sig.FlagSign = true | |||
} | |||
if subpacket[0]&KeyFlagEncryptCommunications != 0 { | |||
sig.FlagEncryptCommunications = true | |||
} | |||
if subpacket[0]&KeyFlagEncryptStorage != 0 { | |||
sig.FlagEncryptStorage = true | |||
} | |||
case reasonForRevocationSubpacket: | |||
// Reason For Revocation, section 5.2.3.23 | |||
if !isHashed { | |||
return | |||
} | |||
if len(subpacket) == 0 { | |||
err = errors.StructuralError("empty revocation reason subpacket") | |||
return | |||
} | |||
sig.RevocationReason = new(uint8) | |||
*sig.RevocationReason = subpacket[0] | |||
sig.RevocationReasonText = string(subpacket[1:]) | |||
case featuresSubpacket: | |||
// Features subpacket, section 5.2.3.24 specifies a very general | |||
// mechanism for OpenPGP implementations to signal support for new | |||
// features. In practice, the subpacket is used exclusively to | |||
// indicate support for MDC-protected encryption. | |||
sig.MDC = len(subpacket) >= 1 && subpacket[0]&1 == 1 | |||
case embeddedSignatureSubpacket: | |||
// Only usage is in signatures that cross-certify | |||
// signing subkeys. section 5.2.3.26 describes the | |||
// format, with its usage described in section 11.1 | |||
if sig.EmbeddedSignature != nil { | |||
err = errors.StructuralError("Cannot have multiple embedded signatures") | |||
return | |||
} | |||
sig.EmbeddedSignature = new(Signature) | |||
// Embedded signatures are required to be v4 signatures see | |||
// section 12.1. However, we only parse v4 signatures in this | |||
// file anyway. | |||
if err := sig.EmbeddedSignature.parse(bytes.NewBuffer(subpacket)); err != nil { | |||
return nil, err | |||
} | |||
if sigType := sig.EmbeddedSignature.SigType; sigType != SigTypePrimaryKeyBinding { | |||
return nil, errors.StructuralError("cross-signature has unexpected type " + strconv.Itoa(int(sigType))) | |||
} | |||
default: | |||
if isCritical { | |||
err = errors.UnsupportedError("unknown critical signature subpacket type " + strconv.Itoa(int(packetType))) | |||
return | |||
} | |||
} | |||
return | |||
Truncated: | |||
err = errors.StructuralError("signature subpacket truncated") | |||
return | |||
} | |||
// subpacketLengthLength returns the length, in bytes, of an encoded length value. | |||
func subpacketLengthLength(length int) int { | |||
if length < 192 { | |||
return 1 | |||
} | |||
if length < 16320 { | |||
return 2 | |||
} | |||
return 5 | |||
} | |||
// serializeSubpacketLength marshals the given length into to. | |||
func serializeSubpacketLength(to []byte, length int) int { | |||
// RFC 4880, Section 4.2.2. | |||
if length < 192 { | |||
to[0] = byte(length) | |||
return 1 | |||
} | |||
if length < 16320 { | |||
length -= 192 | |||
to[0] = byte((length >> 8) + 192) | |||
to[1] = byte(length) | |||
return 2 | |||
} | |||
to[0] = 255 | |||
to[1] = byte(length >> 24) | |||
to[2] = byte(length >> 16) | |||
to[3] = byte(length >> 8) | |||
to[4] = byte(length) | |||
return 5 | |||
} | |||
// subpacketsLength returns the serialized length, in bytes, of the given | |||
// subpackets. | |||
func subpacketsLength(subpackets []outputSubpacket, hashed bool) (length int) { | |||
for _, subpacket := range subpackets { | |||
if subpacket.hashed == hashed { | |||
length += subpacketLengthLength(len(subpacket.contents) + 1) | |||
length += 1 // type byte | |||
length += len(subpacket.contents) | |||
} | |||
} | |||
return | |||
} | |||
// serializeSubpackets marshals the given subpackets into to. | |||
func serializeSubpackets(to []byte, subpackets []outputSubpacket, hashed bool) { | |||
for _, subpacket := range subpackets { | |||
if subpacket.hashed == hashed { | |||
n := serializeSubpacketLength(to, len(subpacket.contents)+1) | |||
to[n] = byte(subpacket.subpacketType) | |||
to = to[1+n:] | |||
n = copy(to, subpacket.contents) | |||
to = to[n:] | |||
} | |||
} | |||
return | |||
} | |||
// KeyExpired returns whether sig is a self-signature of a key that has | |||
// expired. | |||
func (sig *Signature) KeyExpired(currentTime time.Time) bool { | |||
if sig.KeyLifetimeSecs == nil { | |||
return false | |||
} | |||
expiry := sig.CreationTime.Add(time.Duration(*sig.KeyLifetimeSecs) * time.Second) | |||
return currentTime.After(expiry) | |||
} | |||
// buildHashSuffix constructs the HashSuffix member of sig in preparation for signing. | |||
func (sig *Signature) buildHashSuffix() (err error) { | |||
hashedSubpacketsLen := subpacketsLength(sig.outSubpackets, true) | |||
var ok bool | |||
l := 6 + hashedSubpacketsLen | |||
sig.HashSuffix = make([]byte, l+6) | |||
sig.HashSuffix[0] = 4 | |||
sig.HashSuffix[1] = uint8(sig.SigType) | |||
sig.HashSuffix[2] = uint8(sig.PubKeyAlgo) | |||
sig.HashSuffix[3], ok = s2k.HashToHashId(sig.Hash) | |||
if !ok { | |||
sig.HashSuffix = nil | |||
return errors.InvalidArgumentError("hash cannot be represented in OpenPGP: " + strconv.Itoa(int(sig.Hash))) | |||
} | |||
sig.HashSuffix[4] = byte(hashedSubpacketsLen >> 8) | |||
sig.HashSuffix[5] = byte(hashedSubpacketsLen) | |||
serializeSubpackets(sig.HashSuffix[6:l], sig.outSubpackets, true) | |||
trailer := sig.HashSuffix[l:] | |||
trailer[0] = 4 | |||
trailer[1] = 0xff | |||
trailer[2] = byte(l >> 24) | |||
trailer[3] = byte(l >> 16) | |||
trailer[4] = byte(l >> 8) | |||
trailer[5] = byte(l) | |||
return | |||
} | |||
func (sig *Signature) signPrepareHash(h hash.Hash) (digest []byte, err error) { | |||
err = sig.buildHashSuffix() | |||
if err != nil { | |||
return | |||
} | |||
h.Write(sig.HashSuffix) | |||
digest = h.Sum(nil) | |||
copy(sig.HashTag[:], digest) | |||
return | |||
} | |||
// Sign signs a message with a private key. The hash, h, must contain | |||
// the hash of the message to be signed and will be mutated by this function. | |||
// On success, the signature is stored in sig. Call Serialize to write it out. | |||
// If config is nil, sensible defaults will be used. | |||
func (sig *Signature) Sign(h hash.Hash, priv *PrivateKey, config *Config) (err error) { | |||
sig.outSubpackets = sig.buildSubpackets() | |||
digest, err := sig.signPrepareHash(h) | |||
if err != nil { | |||
return | |||
} | |||
switch priv.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly: | |||
// supports both *rsa.PrivateKey and crypto.Signer | |||
sig.RSASignature.bytes, err = priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, sig.Hash) | |||
sig.RSASignature.bitLength = uint16(8 * len(sig.RSASignature.bytes)) | |||
case PubKeyAlgoDSA: | |||
dsaPriv := priv.PrivateKey.(*dsa.PrivateKey) | |||
// Need to truncate hashBytes to match FIPS 186-3 section 4.6. | |||
subgroupSize := (dsaPriv.Q.BitLen() + 7) / 8 | |||
if len(digest) > subgroupSize { | |||
digest = digest[:subgroupSize] | |||
} | |||
r, s, err := dsa.Sign(config.Random(), dsaPriv, digest) | |||
if err == nil { | |||
sig.DSASigR.bytes = r.Bytes() | |||
sig.DSASigR.bitLength = uint16(8 * len(sig.DSASigR.bytes)) | |||
sig.DSASigS.bytes = s.Bytes() | |||
sig.DSASigS.bitLength = uint16(8 * len(sig.DSASigS.bytes)) | |||
} | |||
case PubKeyAlgoECDSA: | |||
var r, s *big.Int | |||
if pk, ok := priv.PrivateKey.(*ecdsa.PrivateKey); ok { | |||
// direct support, avoid asn1 wrapping/unwrapping | |||
r, s, err = ecdsa.Sign(config.Random(), pk, digest) | |||
} else { | |||
var b []byte | |||
b, err = priv.PrivateKey.(crypto.Signer).Sign(config.Random(), digest, nil) | |||
if err == nil { | |||
r, s, err = unwrapECDSASig(b) | |||
} | |||
} | |||
if err == nil { | |||
sig.ECDSASigR = fromBig(r) | |||
sig.ECDSASigS = fromBig(s) | |||
} | |||
default: | |||
err = errors.UnsupportedError("public key algorithm: " + strconv.Itoa(int(sig.PubKeyAlgo))) | |||
} | |||
return | |||
} | |||
// unwrapECDSASig parses the two integer components of an ASN.1-encoded ECDSA | |||
// signature. | |||
func unwrapECDSASig(b []byte) (r, s *big.Int, err error) { | |||
var ecsdaSig struct { | |||
R, S *big.Int | |||
} | |||
_, err = asn1.Unmarshal(b, &ecsdaSig) | |||
if err != nil { | |||
return | |||
} | |||
return ecsdaSig.R, ecsdaSig.S, nil | |||
} | |||
// SignUserId computes a signature from priv, asserting that pub is a valid | |||
// key for the identity id. On success, the signature is stored in sig. Call | |||
// Serialize to write it out. | |||
// If config is nil, sensible defaults will be used. | |||
func (sig *Signature) SignUserId(id string, pub *PublicKey, priv *PrivateKey, config *Config) error { | |||
h, err := userIdSignatureHash(id, pub, sig.Hash) | |||
if err != nil { | |||
return err | |||
} | |||
return sig.Sign(h, priv, config) | |||
} | |||
// SignKey computes a signature from priv, asserting that pub is a subkey. On | |||
// success, the signature is stored in sig. Call Serialize to write it out. | |||
// If config is nil, sensible defaults will be used. | |||
func (sig *Signature) SignKey(pub *PublicKey, priv *PrivateKey, config *Config) error { | |||
h, err := keySignatureHash(&priv.PublicKey, pub, sig.Hash) | |||
if err != nil { | |||
return err | |||
} | |||
return sig.Sign(h, priv, config) | |||
} | |||
// Serialize marshals sig to w. Sign, SignUserId or SignKey must have been | |||
// called first. | |||
func (sig *Signature) Serialize(w io.Writer) (err error) { | |||
if len(sig.outSubpackets) == 0 { | |||
sig.outSubpackets = sig.rawSubpackets | |||
} | |||
if sig.RSASignature.bytes == nil && sig.DSASigR.bytes == nil && sig.ECDSASigR.bytes == nil { | |||
return errors.InvalidArgumentError("Signature: need to call Sign, SignUserId or SignKey before Serialize") | |||
} | |||
sigLength := 0 | |||
switch sig.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly: | |||
sigLength = 2 + len(sig.RSASignature.bytes) | |||
case PubKeyAlgoDSA: | |||
sigLength = 2 + len(sig.DSASigR.bytes) | |||
sigLength += 2 + len(sig.DSASigS.bytes) | |||
case PubKeyAlgoECDSA: | |||
sigLength = 2 + len(sig.ECDSASigR.bytes) | |||
sigLength += 2 + len(sig.ECDSASigS.bytes) | |||
default: | |||
panic("impossible") | |||
} | |||
unhashedSubpacketsLen := subpacketsLength(sig.outSubpackets, false) | |||
length := len(sig.HashSuffix) - 6 /* trailer not included */ + | |||
2 /* length of unhashed subpackets */ + unhashedSubpacketsLen + | |||
2 /* hash tag */ + sigLength | |||
err = serializeHeader(w, packetTypeSignature, length) | |||
if err != nil { | |||
return | |||
} | |||
_, err = w.Write(sig.HashSuffix[:len(sig.HashSuffix)-6]) | |||
if err != nil { | |||
return | |||
} | |||
unhashedSubpackets := make([]byte, 2+unhashedSubpacketsLen) | |||
unhashedSubpackets[0] = byte(unhashedSubpacketsLen >> 8) | |||
unhashedSubpackets[1] = byte(unhashedSubpacketsLen) | |||
serializeSubpackets(unhashedSubpackets[2:], sig.outSubpackets, false) | |||
_, err = w.Write(unhashedSubpackets) | |||
if err != nil { | |||
return | |||
} | |||
_, err = w.Write(sig.HashTag[:]) | |||
if err != nil { | |||
return | |||
} | |||
switch sig.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly: | |||
err = writeMPIs(w, sig.RSASignature) | |||
case PubKeyAlgoDSA: | |||
err = writeMPIs(w, sig.DSASigR, sig.DSASigS) | |||
case PubKeyAlgoECDSA: | |||
err = writeMPIs(w, sig.ECDSASigR, sig.ECDSASigS) | |||
default: | |||
panic("impossible") | |||
} | |||
return | |||
} | |||
// outputSubpacket represents a subpacket to be marshaled. | |||
type outputSubpacket struct { | |||
hashed bool // true if this subpacket is in the hashed area. | |||
subpacketType signatureSubpacketType | |||
isCritical bool | |||
contents []byte | |||
} | |||
func (sig *Signature) buildSubpackets() (subpackets []outputSubpacket) { | |||
creationTime := make([]byte, 4) | |||
binary.BigEndian.PutUint32(creationTime, uint32(sig.CreationTime.Unix())) | |||
subpackets = append(subpackets, outputSubpacket{true, creationTimeSubpacket, false, creationTime}) | |||
if sig.IssuerKeyId != nil { | |||
keyId := make([]byte, 8) | |||
binary.BigEndian.PutUint64(keyId, *sig.IssuerKeyId) | |||
subpackets = append(subpackets, outputSubpacket{true, issuerSubpacket, false, keyId}) | |||
} | |||
if sig.SigLifetimeSecs != nil && *sig.SigLifetimeSecs != 0 { | |||
sigLifetime := make([]byte, 4) | |||
binary.BigEndian.PutUint32(sigLifetime, *sig.SigLifetimeSecs) | |||
subpackets = append(subpackets, outputSubpacket{true, signatureExpirationSubpacket, true, sigLifetime}) | |||
} | |||
// Key flags may only appear in self-signatures or certification signatures. | |||
if sig.FlagsValid { | |||
var flags byte | |||
if sig.FlagCertify { | |||
flags |= KeyFlagCertify | |||
} | |||
if sig.FlagSign { | |||
flags |= KeyFlagSign | |||
} | |||
if sig.FlagEncryptCommunications { | |||
flags |= KeyFlagEncryptCommunications | |||
} | |||
if sig.FlagEncryptStorage { | |||
flags |= KeyFlagEncryptStorage | |||
} | |||
subpackets = append(subpackets, outputSubpacket{true, keyFlagsSubpacket, false, []byte{flags}}) | |||
} | |||
// The following subpackets may only appear in self-signatures | |||
if sig.KeyLifetimeSecs != nil && *sig.KeyLifetimeSecs != 0 { | |||
keyLifetime := make([]byte, 4) | |||
binary.BigEndian.PutUint32(keyLifetime, *sig.KeyLifetimeSecs) | |||
subpackets = append(subpackets, outputSubpacket{true, keyExpirationSubpacket, true, keyLifetime}) | |||
} | |||
if sig.IsPrimaryId != nil && *sig.IsPrimaryId { | |||
subpackets = append(subpackets, outputSubpacket{true, primaryUserIdSubpacket, false, []byte{1}}) | |||
} | |||
if len(sig.PreferredSymmetric) > 0 { | |||
subpackets = append(subpackets, outputSubpacket{true, prefSymmetricAlgosSubpacket, false, sig.PreferredSymmetric}) | |||
} | |||
if len(sig.PreferredHash) > 0 { | |||
subpackets = append(subpackets, outputSubpacket{true, prefHashAlgosSubpacket, false, sig.PreferredHash}) | |||
} | |||
if len(sig.PreferredCompression) > 0 { | |||
subpackets = append(subpackets, outputSubpacket{true, prefCompressionSubpacket, false, sig.PreferredCompression}) | |||
} | |||
return | |||
} |
@@ -0,0 +1,146 @@ | |||
// Copyright 2013 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"crypto" | |||
"encoding/binary" | |||
"fmt" | |||
"io" | |||
"strconv" | |||
"time" | |||
"golang.org/x/crypto/openpgp/errors" | |||
"golang.org/x/crypto/openpgp/s2k" | |||
) | |||
// SignatureV3 represents older version 3 signatures. These signatures are less secure | |||
// than version 4 and should not be used to create new signatures. They are included | |||
// here for backwards compatibility to read and validate with older key material. | |||
// See RFC 4880, section 5.2.2. | |||
type SignatureV3 struct { | |||
SigType SignatureType | |||
CreationTime time.Time | |||
IssuerKeyId uint64 | |||
PubKeyAlgo PublicKeyAlgorithm | |||
Hash crypto.Hash | |||
HashTag [2]byte | |||
RSASignature parsedMPI | |||
DSASigR, DSASigS parsedMPI | |||
} | |||
func (sig *SignatureV3) parse(r io.Reader) (err error) { | |||
// RFC 4880, section 5.2.2 | |||
var buf [8]byte | |||
if _, err = readFull(r, buf[:1]); err != nil { | |||
return | |||
} | |||
if buf[0] < 2 || buf[0] > 3 { | |||
err = errors.UnsupportedError("signature packet version " + strconv.Itoa(int(buf[0]))) | |||
return | |||
} | |||
if _, err = readFull(r, buf[:1]); err != nil { | |||
return | |||
} | |||
if buf[0] != 5 { | |||
err = errors.UnsupportedError( | |||
"invalid hashed material length " + strconv.Itoa(int(buf[0]))) | |||
return | |||
} | |||
// Read hashed material: signature type + creation time | |||
if _, err = readFull(r, buf[:5]); err != nil { | |||
return | |||
} | |||
sig.SigType = SignatureType(buf[0]) | |||
t := binary.BigEndian.Uint32(buf[1:5]) | |||
sig.CreationTime = time.Unix(int64(t), 0) | |||
// Eight-octet Key ID of signer. | |||
if _, err = readFull(r, buf[:8]); err != nil { | |||
return | |||
} | |||
sig.IssuerKeyId = binary.BigEndian.Uint64(buf[:]) | |||
// Public-key and hash algorithm | |||
if _, err = readFull(r, buf[:2]); err != nil { | |||
return | |||
} | |||
sig.PubKeyAlgo = PublicKeyAlgorithm(buf[0]) | |||
switch sig.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly, PubKeyAlgoDSA: | |||
default: | |||
err = errors.UnsupportedError("public key algorithm " + strconv.Itoa(int(sig.PubKeyAlgo))) | |||
return | |||
} | |||
var ok bool | |||
if sig.Hash, ok = s2k.HashIdToHash(buf[1]); !ok { | |||
return errors.UnsupportedError("hash function " + strconv.Itoa(int(buf[2]))) | |||
} | |||
// Two-octet field holding left 16 bits of signed hash value. | |||
if _, err = readFull(r, sig.HashTag[:2]); err != nil { | |||
return | |||
} | |||
switch sig.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly: | |||
sig.RSASignature.bytes, sig.RSASignature.bitLength, err = readMPI(r) | |||
case PubKeyAlgoDSA: | |||
if sig.DSASigR.bytes, sig.DSASigR.bitLength, err = readMPI(r); err != nil { | |||
return | |||
} | |||
sig.DSASigS.bytes, sig.DSASigS.bitLength, err = readMPI(r) | |||
default: | |||
panic("unreachable") | |||
} | |||
return | |||
} | |||
// Serialize marshals sig to w. Sign, SignUserId or SignKey must have been | |||
// called first. | |||
func (sig *SignatureV3) Serialize(w io.Writer) (err error) { | |||
buf := make([]byte, 8) | |||
// Write the sig type and creation time | |||
buf[0] = byte(sig.SigType) | |||
binary.BigEndian.PutUint32(buf[1:5], uint32(sig.CreationTime.Unix())) | |||
if _, err = w.Write(buf[:5]); err != nil { | |||
return | |||
} | |||
// Write the issuer long key ID | |||
binary.BigEndian.PutUint64(buf[:8], sig.IssuerKeyId) | |||
if _, err = w.Write(buf[:8]); err != nil { | |||
return | |||
} | |||
// Write public key algorithm, hash ID, and hash value | |||
buf[0] = byte(sig.PubKeyAlgo) | |||
hashId, ok := s2k.HashToHashId(sig.Hash) | |||
if !ok { | |||
return errors.UnsupportedError(fmt.Sprintf("hash function %v", sig.Hash)) | |||
} | |||
buf[1] = hashId | |||
copy(buf[2:4], sig.HashTag[:]) | |||
if _, err = w.Write(buf[:4]); err != nil { | |||
return | |||
} | |||
if sig.RSASignature.bytes == nil && sig.DSASigR.bytes == nil { | |||
return errors.InvalidArgumentError("Signature: need to call Sign, SignUserId or SignKey before Serialize") | |||
} | |||
switch sig.PubKeyAlgo { | |||
case PubKeyAlgoRSA, PubKeyAlgoRSASignOnly: | |||
err = writeMPIs(w, sig.RSASignature) | |||
case PubKeyAlgoDSA: | |||
err = writeMPIs(w, sig.DSASigR, sig.DSASigS) | |||
default: | |||
panic("impossible") | |||
} | |||
return | |||
} |
@@ -0,0 +1,155 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"bytes" | |||
"crypto/cipher" | |||
"io" | |||
"strconv" | |||
"golang.org/x/crypto/openpgp/errors" | |||
"golang.org/x/crypto/openpgp/s2k" | |||
) | |||
// This is the largest session key that we'll support. Since no 512-bit cipher | |||
// has even been seriously used, this is comfortably large. | |||
const maxSessionKeySizeInBytes = 64 | |||
// SymmetricKeyEncrypted represents a passphrase protected session key. See RFC | |||
// 4880, section 5.3. | |||
type SymmetricKeyEncrypted struct { | |||
CipherFunc CipherFunction | |||
s2k func(out, in []byte) | |||
encryptedKey []byte | |||
} | |||
const symmetricKeyEncryptedVersion = 4 | |||
func (ske *SymmetricKeyEncrypted) parse(r io.Reader) error { | |||
// RFC 4880, section 5.3. | |||
var buf [2]byte | |||
if _, err := readFull(r, buf[:]); err != nil { | |||
return err | |||
} | |||
if buf[0] != symmetricKeyEncryptedVersion { | |||
return errors.UnsupportedError("SymmetricKeyEncrypted version") | |||
} | |||
ske.CipherFunc = CipherFunction(buf[1]) | |||
if ske.CipherFunc.KeySize() == 0 { | |||
return errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(buf[1]))) | |||
} | |||
var err error | |||
ske.s2k, err = s2k.Parse(r) | |||
if err != nil { | |||
return err | |||
} | |||
encryptedKey := make([]byte, maxSessionKeySizeInBytes) | |||
// The session key may follow. We just have to try and read to find | |||
// out. If it exists then we limit it to maxSessionKeySizeInBytes. | |||
n, err := readFull(r, encryptedKey) | |||
if err != nil && err != io.ErrUnexpectedEOF { | |||
return err | |||
} | |||
if n != 0 { | |||
if n == maxSessionKeySizeInBytes { | |||
return errors.UnsupportedError("oversized encrypted session key") | |||
} | |||
ske.encryptedKey = encryptedKey[:n] | |||
} | |||
return nil | |||
} | |||
// Decrypt attempts to decrypt an encrypted session key and returns the key and | |||
// the cipher to use when decrypting a subsequent Symmetrically Encrypted Data | |||
// packet. | |||
func (ske *SymmetricKeyEncrypted) Decrypt(passphrase []byte) ([]byte, CipherFunction, error) { | |||
key := make([]byte, ske.CipherFunc.KeySize()) | |||
ske.s2k(key, passphrase) | |||
if len(ske.encryptedKey) == 0 { | |||
return key, ske.CipherFunc, nil | |||
} | |||
// the IV is all zeros | |||
iv := make([]byte, ske.CipherFunc.blockSize()) | |||
c := cipher.NewCFBDecrypter(ske.CipherFunc.new(key), iv) | |||
plaintextKey := make([]byte, len(ske.encryptedKey)) | |||
c.XORKeyStream(plaintextKey, ske.encryptedKey) | |||
cipherFunc := CipherFunction(plaintextKey[0]) | |||
if cipherFunc.blockSize() == 0 { | |||
return nil, ske.CipherFunc, errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(cipherFunc))) | |||
} | |||
plaintextKey = plaintextKey[1:] | |||
if l := len(plaintextKey); l == 0 || l%cipherFunc.blockSize() != 0 { | |||
return nil, cipherFunc, errors.StructuralError("length of decrypted key not a multiple of block size") | |||
} | |||
return plaintextKey, cipherFunc, nil | |||
} | |||
// SerializeSymmetricKeyEncrypted serializes a symmetric key packet to w. The | |||
// packet contains a random session key, encrypted by a key derived from the | |||
// given passphrase. The session key is returned and must be passed to | |||
// SerializeSymmetricallyEncrypted. | |||
// If config is nil, sensible defaults will be used. | |||
func SerializeSymmetricKeyEncrypted(w io.Writer, passphrase []byte, config *Config) (key []byte, err error) { | |||
cipherFunc := config.Cipher() | |||
keySize := cipherFunc.KeySize() | |||
if keySize == 0 { | |||
return nil, errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(cipherFunc))) | |||
} | |||
s2kBuf := new(bytes.Buffer) | |||
keyEncryptingKey := make([]byte, keySize) | |||
// s2k.Serialize salts and stretches the passphrase, and writes the | |||
// resulting key to keyEncryptingKey and the s2k descriptor to s2kBuf. | |||
err = s2k.Serialize(s2kBuf, keyEncryptingKey, config.Random(), passphrase, &s2k.Config{Hash: config.Hash(), S2KCount: config.PasswordHashIterations()}) | |||
if err != nil { | |||
return | |||
} | |||
s2kBytes := s2kBuf.Bytes() | |||
packetLength := 2 /* header */ + len(s2kBytes) + 1 /* cipher type */ + keySize | |||
err = serializeHeader(w, packetTypeSymmetricKeyEncrypted, packetLength) | |||
if err != nil { | |||
return | |||
} | |||
var buf [2]byte | |||
buf[0] = symmetricKeyEncryptedVersion | |||
buf[1] = byte(cipherFunc) | |||
_, err = w.Write(buf[:]) | |||
if err != nil { | |||
return | |||
} | |||
_, err = w.Write(s2kBytes) | |||
if err != nil { | |||
return | |||
} | |||
sessionKey := make([]byte, keySize) | |||
_, err = io.ReadFull(config.Random(), sessionKey) | |||
if err != nil { | |||
return | |||
} | |||
iv := make([]byte, cipherFunc.blockSize()) | |||
c := cipher.NewCFBEncrypter(cipherFunc.new(keyEncryptingKey), iv) | |||
encryptedCipherAndKey := make([]byte, keySize+1) | |||
c.XORKeyStream(encryptedCipherAndKey, buf[1:]) | |||
c.XORKeyStream(encryptedCipherAndKey[1:], sessionKey) | |||
_, err = w.Write(encryptedCipherAndKey) | |||
if err != nil { | |||
return | |||
} | |||
key = sessionKey | |||
return | |||
} |
@@ -0,0 +1,290 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"crypto/cipher" | |||
"crypto/sha1" | |||
"crypto/subtle" | |||
"golang.org/x/crypto/openpgp/errors" | |||
"hash" | |||
"io" | |||
"strconv" | |||
) | |||
// SymmetricallyEncrypted represents a symmetrically encrypted byte string. The | |||
// encrypted contents will consist of more OpenPGP packets. See RFC 4880, | |||
// sections 5.7 and 5.13. | |||
type SymmetricallyEncrypted struct { | |||
MDC bool // true iff this is a type 18 packet and thus has an embedded MAC. | |||
contents io.Reader | |||
prefix []byte | |||
} | |||
const symmetricallyEncryptedVersion = 1 | |||
func (se *SymmetricallyEncrypted) parse(r io.Reader) error { | |||
if se.MDC { | |||
// See RFC 4880, section 5.13. | |||
var buf [1]byte | |||
_, err := readFull(r, buf[:]) | |||
if err != nil { | |||
return err | |||
} | |||
if buf[0] != symmetricallyEncryptedVersion { | |||
return errors.UnsupportedError("unknown SymmetricallyEncrypted version") | |||
} | |||
} | |||
se.contents = r | |||
return nil | |||
} | |||
// Decrypt returns a ReadCloser, from which the decrypted contents of the | |||
// packet can be read. An incorrect key can, with high probability, be detected | |||
// immediately and this will result in a KeyIncorrect error being returned. | |||
func (se *SymmetricallyEncrypted) Decrypt(c CipherFunction, key []byte) (io.ReadCloser, error) { | |||
keySize := c.KeySize() | |||
if keySize == 0 { | |||
return nil, errors.UnsupportedError("unknown cipher: " + strconv.Itoa(int(c))) | |||
} | |||
if len(key) != keySize { | |||
return nil, errors.InvalidArgumentError("SymmetricallyEncrypted: incorrect key length") | |||
} | |||
if se.prefix == nil { | |||
se.prefix = make([]byte, c.blockSize()+2) | |||
_, err := readFull(se.contents, se.prefix) | |||
if err != nil { | |||
return nil, err | |||
} | |||
} else if len(se.prefix) != c.blockSize()+2 { | |||
return nil, errors.InvalidArgumentError("can't try ciphers with different block lengths") | |||
} | |||
ocfbResync := OCFBResync | |||
if se.MDC { | |||
// MDC packets use a different form of OCFB mode. | |||
ocfbResync = OCFBNoResync | |||
} | |||
s := NewOCFBDecrypter(c.new(key), se.prefix, ocfbResync) | |||
if s == nil { | |||
return nil, errors.ErrKeyIncorrect | |||
} | |||
plaintext := cipher.StreamReader{S: s, R: se.contents} | |||
if se.MDC { | |||
// MDC packets have an embedded hash that we need to check. | |||
h := sha1.New() | |||
h.Write(se.prefix) | |||
return &seMDCReader{in: plaintext, h: h}, nil | |||
} | |||
// Otherwise, we just need to wrap plaintext so that it's a valid ReadCloser. | |||
return seReader{plaintext}, nil | |||
} | |||
// seReader wraps an io.Reader with a no-op Close method. | |||
type seReader struct { | |||
in io.Reader | |||
} | |||
func (ser seReader) Read(buf []byte) (int, error) { | |||
return ser.in.Read(buf) | |||
} | |||
func (ser seReader) Close() error { | |||
return nil | |||
} | |||
const mdcTrailerSize = 1 /* tag byte */ + 1 /* length byte */ + sha1.Size | |||
// An seMDCReader wraps an io.Reader, maintains a running hash and keeps hold | |||
// of the most recent 22 bytes (mdcTrailerSize). Upon EOF, those bytes form an | |||
// MDC packet containing a hash of the previous contents which is checked | |||
// against the running hash. See RFC 4880, section 5.13. | |||
type seMDCReader struct { | |||
in io.Reader | |||
h hash.Hash | |||
trailer [mdcTrailerSize]byte | |||
scratch [mdcTrailerSize]byte | |||
trailerUsed int | |||
error bool | |||
eof bool | |||
} | |||
func (ser *seMDCReader) Read(buf []byte) (n int, err error) { | |||
if ser.error { | |||
err = io.ErrUnexpectedEOF | |||
return | |||
} | |||
if ser.eof { | |||
err = io.EOF | |||
return | |||
} | |||
// If we haven't yet filled the trailer buffer then we must do that | |||
// first. | |||
for ser.trailerUsed < mdcTrailerSize { | |||
n, err = ser.in.Read(ser.trailer[ser.trailerUsed:]) | |||
ser.trailerUsed += n | |||
if err == io.EOF { | |||
if ser.trailerUsed != mdcTrailerSize { | |||
n = 0 | |||
err = io.ErrUnexpectedEOF | |||
ser.error = true | |||
return | |||
} | |||
ser.eof = true | |||
n = 0 | |||
return | |||
} | |||
if err != nil { | |||
n = 0 | |||
return | |||
} | |||
} | |||
// If it's a short read then we read into a temporary buffer and shift | |||
// the data into the caller's buffer. | |||
if len(buf) <= mdcTrailerSize { | |||
n, err = readFull(ser.in, ser.scratch[:len(buf)]) | |||
copy(buf, ser.trailer[:n]) | |||
ser.h.Write(buf[:n]) | |||
copy(ser.trailer[:], ser.trailer[n:]) | |||
copy(ser.trailer[mdcTrailerSize-n:], ser.scratch[:]) | |||
if n < len(buf) { | |||
ser.eof = true | |||
err = io.EOF | |||
} | |||
return | |||
} | |||
n, err = ser.in.Read(buf[mdcTrailerSize:]) | |||
copy(buf, ser.trailer[:]) | |||
ser.h.Write(buf[:n]) | |||
copy(ser.trailer[:], buf[n:]) | |||
if err == io.EOF { | |||
ser.eof = true | |||
} | |||
return | |||
} | |||
// This is a new-format packet tag byte for a type 19 (MDC) packet. | |||
const mdcPacketTagByte = byte(0x80) | 0x40 | 19 | |||
func (ser *seMDCReader) Close() error { | |||
if ser.error { | |||
return errors.SignatureError("error during reading") | |||
} | |||
for !ser.eof { | |||
// We haven't seen EOF so we need to read to the end | |||
var buf [1024]byte | |||
_, err := ser.Read(buf[:]) | |||
if err == io.EOF { | |||
break | |||
} | |||
if err != nil { | |||
return errors.SignatureError("error during reading") | |||
} | |||
} | |||
if ser.trailer[0] != mdcPacketTagByte || ser.trailer[1] != sha1.Size { | |||
return errors.SignatureError("MDC packet not found") | |||
} | |||
ser.h.Write(ser.trailer[:2]) | |||
final := ser.h.Sum(nil) | |||
if subtle.ConstantTimeCompare(final, ser.trailer[2:]) != 1 { | |||
return errors.SignatureError("hash mismatch") | |||
} | |||
return nil | |||
} | |||
// An seMDCWriter writes through to an io.WriteCloser while maintains a running | |||
// hash of the data written. On close, it emits an MDC packet containing the | |||
// running hash. | |||
type seMDCWriter struct { | |||
w io.WriteCloser | |||
h hash.Hash | |||
} | |||
func (w *seMDCWriter) Write(buf []byte) (n int, err error) { | |||
w.h.Write(buf) | |||
return w.w.Write(buf) | |||
} | |||
func (w *seMDCWriter) Close() (err error) { | |||
var buf [mdcTrailerSize]byte | |||
buf[0] = mdcPacketTagByte | |||
buf[1] = sha1.Size | |||
w.h.Write(buf[:2]) | |||
digest := w.h.Sum(nil) | |||
copy(buf[2:], digest) | |||
_, err = w.w.Write(buf[:]) | |||
if err != nil { | |||
return | |||
} | |||
return w.w.Close() | |||
} | |||
// noOpCloser is like an ioutil.NopCloser, but for an io.Writer. | |||
type noOpCloser struct { | |||
w io.Writer | |||
} | |||
func (c noOpCloser) Write(data []byte) (n int, err error) { | |||
return c.w.Write(data) | |||
} | |||
func (c noOpCloser) Close() error { | |||
return nil | |||
} | |||
// SerializeSymmetricallyEncrypted serializes a symmetrically encrypted packet | |||
// to w and returns a WriteCloser to which the to-be-encrypted packets can be | |||
// written. | |||
// If config is nil, sensible defaults will be used. | |||
func SerializeSymmetricallyEncrypted(w io.Writer, c CipherFunction, key []byte, config *Config) (contents io.WriteCloser, err error) { | |||
if c.KeySize() != len(key) { | |||
return nil, errors.InvalidArgumentError("SymmetricallyEncrypted.Serialize: bad key length") | |||
} | |||
writeCloser := noOpCloser{w} | |||
ciphertext, err := serializeStreamHeader(writeCloser, packetTypeSymmetricallyEncryptedMDC) | |||
if err != nil { | |||
return | |||
} | |||
_, err = ciphertext.Write([]byte{symmetricallyEncryptedVersion}) | |||
if err != nil { | |||
return | |||
} | |||
block := c.new(key) | |||
blockSize := block.BlockSize() | |||
iv := make([]byte, blockSize) | |||
_, err = config.Random().Read(iv) | |||
if err != nil { | |||
return | |||
} | |||
s, prefix := NewOCFBEncrypter(block, iv, OCFBNoResync) | |||
_, err = ciphertext.Write(prefix) | |||
if err != nil { | |||
return | |||
} | |||
plaintext := cipher.StreamWriter{S: s, W: ciphertext} | |||
h := sha1.New() | |||
h.Write(iv) | |||
h.Write(iv[blockSize-2:]) | |||
contents = &seMDCWriter{w: plaintext, h: h} | |||
return | |||
} |
@@ -0,0 +1,91 @@ | |||
// Copyright 2013 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"bytes" | |||
"image" | |||
"image/jpeg" | |||
"io" | |||
"io/ioutil" | |||
) | |||
const UserAttrImageSubpacket = 1 | |||
// UserAttribute is capable of storing other types of data about a user | |||
// beyond name, email and a text comment. In practice, user attributes are typically used | |||
// to store a signed thumbnail photo JPEG image of the user. | |||
// See RFC 4880, section 5.12. | |||
type UserAttribute struct { | |||
Contents []*OpaqueSubpacket | |||
} | |||
// NewUserAttributePhoto creates a user attribute packet | |||
// containing the given images. | |||
func NewUserAttributePhoto(photos ...image.Image) (uat *UserAttribute, err error) { | |||
uat = new(UserAttribute) | |||
for _, photo := range photos { | |||
var buf bytes.Buffer | |||
// RFC 4880, Section 5.12.1. | |||
data := []byte{ | |||
0x10, 0x00, // Little-endian image header length (16 bytes) | |||
0x01, // Image header version 1 | |||
0x01, // JPEG | |||
0, 0, 0, 0, // 12 reserved octets, must be all zero. | |||
0, 0, 0, 0, | |||
0, 0, 0, 0} | |||
if _, err = buf.Write(data); err != nil { | |||
return | |||
} | |||
if err = jpeg.Encode(&buf, photo, nil); err != nil { | |||
return | |||
} | |||
uat.Contents = append(uat.Contents, &OpaqueSubpacket{ | |||
SubType: UserAttrImageSubpacket, | |||
Contents: buf.Bytes()}) | |||
} | |||
return | |||
} | |||
// NewUserAttribute creates a new user attribute packet containing the given subpackets. | |||
func NewUserAttribute(contents ...*OpaqueSubpacket) *UserAttribute { | |||
return &UserAttribute{Contents: contents} | |||
} | |||
func (uat *UserAttribute) parse(r io.Reader) (err error) { | |||
// RFC 4880, section 5.13 | |||
b, err := ioutil.ReadAll(r) | |||
if err != nil { | |||
return | |||
} | |||
uat.Contents, err = OpaqueSubpackets(b) | |||
return | |||
} | |||
// Serialize marshals the user attribute to w in the form of an OpenPGP packet, including | |||
// header. | |||
func (uat *UserAttribute) Serialize(w io.Writer) (err error) { | |||
var buf bytes.Buffer | |||
for _, sp := range uat.Contents { | |||
sp.Serialize(&buf) | |||
} | |||
if err = serializeHeader(w, packetTypeUserAttribute, buf.Len()); err != nil { | |||
return err | |||
} | |||
_, err = w.Write(buf.Bytes()) | |||
return | |||
} | |||
// ImageData returns zero or more byte slices, each containing | |||
// JPEG File Interchange Format (JFIF), for each photo in the | |||
// the user attribute packet. | |||
func (uat *UserAttribute) ImageData() (imageData [][]byte) { | |||
for _, sp := range uat.Contents { | |||
if sp.SubType == UserAttrImageSubpacket && len(sp.Contents) > 16 { | |||
imageData = append(imageData, sp.Contents[16:]) | |||
} | |||
} | |||
return | |||
} |
@@ -0,0 +1,160 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package packet | |||
import ( | |||
"io" | |||
"io/ioutil" | |||
"strings" | |||
) | |||
// UserId contains text that is intended to represent the name and email | |||
// address of the key holder. See RFC 4880, section 5.11. By convention, this | |||
// takes the form "Full Name (Comment) <email@example.com>" | |||
type UserId struct { | |||
Id string // By convention, this takes the form "Full Name (Comment) <email@example.com>" which is split out in the fields below. | |||
Name, Comment, Email string | |||
} | |||
func hasInvalidCharacters(s string) bool { | |||
for _, c := range s { | |||
switch c { | |||
case '(', ')', '<', '>', 0: | |||
return true | |||
} | |||
} | |||
return false | |||
} | |||
// NewUserId returns a UserId or nil if any of the arguments contain invalid | |||
// characters. The invalid characters are '\x00', '(', ')', '<' and '>' | |||
func NewUserId(name, comment, email string) *UserId { | |||
// RFC 4880 doesn't deal with the structure of userid strings; the | |||
// name, comment and email form is just a convention. However, there's | |||
// no convention about escaping the metacharacters and GPG just refuses | |||
// to create user ids where, say, the name contains a '('. We mirror | |||
// this behaviour. | |||
if hasInvalidCharacters(name) || hasInvalidCharacters(comment) || hasInvalidCharacters(email) { | |||
return nil | |||
} | |||
uid := new(UserId) | |||
uid.Name, uid.Comment, uid.Email = name, comment, email | |||
uid.Id = name | |||
if len(comment) > 0 { | |||
if len(uid.Id) > 0 { | |||
uid.Id += " " | |||
} | |||
uid.Id += "(" | |||
uid.Id += comment | |||
uid.Id += ")" | |||
} | |||
if len(email) > 0 { | |||
if len(uid.Id) > 0 { | |||
uid.Id += " " | |||
} | |||
uid.Id += "<" | |||
uid.Id += email | |||
uid.Id += ">" | |||
} | |||
return uid | |||
} | |||
func (uid *UserId) parse(r io.Reader) (err error) { | |||
// RFC 4880, section 5.11 | |||
b, err := ioutil.ReadAll(r) | |||
if err != nil { | |||
return | |||
} | |||
uid.Id = string(b) | |||
uid.Name, uid.Comment, uid.Email = parseUserId(uid.Id) | |||
return | |||
} | |||
// Serialize marshals uid to w in the form of an OpenPGP packet, including | |||
// header. | |||
func (uid *UserId) Serialize(w io.Writer) error { | |||
err := serializeHeader(w, packetTypeUserId, len(uid.Id)) | |||
if err != nil { | |||
return err | |||
} | |||
_, err = w.Write([]byte(uid.Id)) | |||
return err | |||
} | |||
// parseUserId extracts the name, comment and email from a user id string that | |||
// is formatted as "Full Name (Comment) <email@example.com>". | |||
func parseUserId(id string) (name, comment, email string) { | |||
var n, c, e struct { | |||
start, end int | |||
} | |||
var state int | |||
for offset, rune := range id { | |||
switch state { | |||
case 0: | |||
// Entering name | |||
n.start = offset | |||
state = 1 | |||
fallthrough | |||
case 1: | |||
// In name | |||
if rune == '(' { | |||
state = 2 | |||
n.end = offset | |||
} else if rune == '<' { | |||
state = 5 | |||
n.end = offset | |||
} | |||
case 2: | |||
// Entering comment | |||
c.start = offset | |||
state = 3 | |||
fallthrough | |||
case 3: | |||
// In comment | |||
if rune == ')' { | |||
state = 4 | |||
c.end = offset | |||
} | |||
case 4: | |||
// Between comment and email | |||
if rune == '<' { | |||
state = 5 | |||
} | |||
case 5: | |||
// Entering email | |||
e.start = offset | |||
state = 6 | |||
fallthrough | |||
case 6: | |||
// In email | |||
if rune == '>' { | |||
state = 7 | |||
e.end = offset | |||
} | |||
default: | |||
// After email | |||
} | |||
} | |||
switch state { | |||
case 1: | |||
// ended in the name | |||
n.end = len(id) | |||
case 3: | |||
// ended in comment | |||
c.end = len(id) | |||
case 6: | |||
// ended in email | |||
e.end = len(id) | |||
} | |||
name = strings.TrimSpace(id[n.start:n.end]) | |||
comment = strings.TrimSpace(id[c.start:c.end]) | |||
email = strings.TrimSpace(id[e.start:e.end]) | |||
return | |||
} |
@@ -0,0 +1,442 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
// Package openpgp implements high level operations on OpenPGP messages. | |||
package openpgp // import "golang.org/x/crypto/openpgp" | |||
import ( | |||
"crypto" | |||
_ "crypto/sha256" | |||
"hash" | |||
"io" | |||
"strconv" | |||
"golang.org/x/crypto/openpgp/armor" | |||
"golang.org/x/crypto/openpgp/errors" | |||
"golang.org/x/crypto/openpgp/packet" | |||
) | |||
// SignatureType is the armor type for a PGP signature. | |||
var SignatureType = "PGP SIGNATURE" | |||
// readArmored reads an armored block with the given type. | |||
func readArmored(r io.Reader, expectedType string) (body io.Reader, err error) { | |||
block, err := armor.Decode(r) | |||
if err != nil { | |||
return | |||
} | |||
if block.Type != expectedType { | |||
return nil, errors.InvalidArgumentError("expected '" + expectedType + "', got: " + block.Type) | |||
} | |||
return block.Body, nil | |||
} | |||
// MessageDetails contains the result of parsing an OpenPGP encrypted and/or | |||
// signed message. | |||
type MessageDetails struct { | |||
IsEncrypted bool // true if the message was encrypted. | |||
EncryptedToKeyIds []uint64 // the list of recipient key ids. | |||
IsSymmetricallyEncrypted bool // true if a passphrase could have decrypted the message. | |||
DecryptedWith Key // the private key used to decrypt the message, if any. | |||
IsSigned bool // true if the message is signed. | |||
SignedByKeyId uint64 // the key id of the signer, if any. | |||
SignedBy *Key // the key of the signer, if available. | |||
LiteralData *packet.LiteralData // the metadata of the contents | |||
UnverifiedBody io.Reader // the contents of the message. | |||
// If IsSigned is true and SignedBy is non-zero then the signature will | |||
// be verified as UnverifiedBody is read. The signature cannot be | |||
// checked until the whole of UnverifiedBody is read so UnverifiedBody | |||
// must be consumed until EOF before the data can be trusted. Even if a | |||
// message isn't signed (or the signer is unknown) the data may contain | |||
// an authentication code that is only checked once UnverifiedBody has | |||
// been consumed. Once EOF has been seen, the following fields are | |||
// valid. (An authentication code failure is reported as a | |||
// SignatureError error when reading from UnverifiedBody.) | |||
SignatureError error // nil if the signature is good. | |||
Signature *packet.Signature // the signature packet itself, if v4 (default) | |||
SignatureV3 *packet.SignatureV3 // the signature packet if it is a v2 or v3 signature | |||
decrypted io.ReadCloser | |||
} | |||
// A PromptFunction is used as a callback by functions that may need to decrypt | |||
// a private key, or prompt for a passphrase. It is called with a list of | |||
// acceptable, encrypted private keys and a boolean that indicates whether a | |||
// passphrase is usable. It should either decrypt a private key or return a | |||
// passphrase to try. If the decrypted private key or given passphrase isn't | |||
// correct, the function will be called again, forever. Any error returned will | |||
// be passed up. | |||
type PromptFunction func(keys []Key, symmetric bool) ([]byte, error) | |||
// A keyEnvelopePair is used to store a private key with the envelope that | |||
// contains a symmetric key, encrypted with that key. | |||
type keyEnvelopePair struct { | |||
key Key | |||
encryptedKey *packet.EncryptedKey | |||
} | |||
// ReadMessage parses an OpenPGP message that may be signed and/or encrypted. | |||
// The given KeyRing should contain both public keys (for signature | |||
// verification) and, possibly encrypted, private keys for decrypting. | |||
// If config is nil, sensible defaults will be used. | |||
func ReadMessage(r io.Reader, keyring KeyRing, prompt PromptFunction, config *packet.Config) (md *MessageDetails, err error) { | |||
var p packet.Packet | |||
var symKeys []*packet.SymmetricKeyEncrypted | |||
var pubKeys []keyEnvelopePair | |||
var se *packet.SymmetricallyEncrypted | |||
packets := packet.NewReader(r) | |||
md = new(MessageDetails) | |||
md.IsEncrypted = true | |||
// The message, if encrypted, starts with a number of packets | |||
// containing an encrypted decryption key. The decryption key is either | |||
// encrypted to a public key, or with a passphrase. This loop | |||
// collects these packets. | |||
ParsePackets: | |||
for { | |||
p, err = packets.Next() | |||
if err != nil { | |||
return nil, err | |||
} | |||
switch p := p.(type) { | |||
case *packet.SymmetricKeyEncrypted: | |||
// This packet contains the decryption key encrypted with a passphrase. | |||
md.IsSymmetricallyEncrypted = true | |||
symKeys = append(symKeys, p) | |||
case *packet.EncryptedKey: | |||
// This packet contains the decryption key encrypted to a public key. | |||
md.EncryptedToKeyIds = append(md.EncryptedToKeyIds, p.KeyId) | |||
switch p.Algo { | |||
case packet.PubKeyAlgoRSA, packet.PubKeyAlgoRSAEncryptOnly, packet.PubKeyAlgoElGamal: | |||
break | |||
default: | |||
continue | |||
} | |||
var keys []Key | |||
if p.KeyId == 0 { | |||
keys = keyring.DecryptionKeys() | |||
} else { | |||
keys = keyring.KeysById(p.KeyId) | |||
} | |||
for _, k := range keys { | |||
pubKeys = append(pubKeys, keyEnvelopePair{k, p}) | |||
} | |||
case *packet.SymmetricallyEncrypted: | |||
se = p | |||
break ParsePackets | |||
case *packet.Compressed, *packet.LiteralData, *packet.OnePassSignature: | |||
// This message isn't encrypted. | |||
if len(symKeys) != 0 || len(pubKeys) != 0 { | |||
return nil, errors.StructuralError("key material not followed by encrypted message") | |||
} | |||
packets.Unread(p) | |||
return readSignedMessage(packets, nil, keyring) | |||
} | |||
} | |||
var candidates []Key | |||
var decrypted io.ReadCloser | |||
// Now that we have the list of encrypted keys we need to decrypt at | |||
// least one of them or, if we cannot, we need to call the prompt | |||
// function so that it can decrypt a key or give us a passphrase. | |||
FindKey: | |||
for { | |||
// See if any of the keys already have a private key available | |||
candidates = candidates[:0] | |||
candidateFingerprints := make(map[string]bool) | |||
for _, pk := range pubKeys { | |||
if pk.key.PrivateKey == nil { | |||
continue | |||
} | |||
if !pk.key.PrivateKey.Encrypted { | |||
if len(pk.encryptedKey.Key) == 0 { | |||
pk.encryptedKey.Decrypt(pk.key.PrivateKey, config) | |||
} | |||
if len(pk.encryptedKey.Key) == 0 { | |||
continue | |||
} | |||
decrypted, err = se.Decrypt(pk.encryptedKey.CipherFunc, pk.encryptedKey.Key) | |||
if err != nil && err != errors.ErrKeyIncorrect { | |||
return nil, err | |||
} | |||
if decrypted != nil { | |||
md.DecryptedWith = pk.key | |||
break FindKey | |||
} | |||
} else { | |||
fpr := string(pk.key.PublicKey.Fingerprint[:]) | |||
if v := candidateFingerprints[fpr]; v { | |||
continue | |||
} | |||
candidates = append(candidates, pk.key) | |||
candidateFingerprints[fpr] = true | |||
} | |||
} | |||
if len(candidates) == 0 && len(symKeys) == 0 { | |||
return nil, errors.ErrKeyIncorrect | |||
} | |||
if prompt == nil { | |||
return nil, errors.ErrKeyIncorrect | |||
} | |||
passphrase, err := prompt(candidates, len(symKeys) != 0) | |||
if err != nil { | |||
return nil, err | |||
} | |||
// Try the symmetric passphrase first | |||
if len(symKeys) != 0 && passphrase != nil { | |||
for _, s := range symKeys { | |||
key, cipherFunc, err := s.Decrypt(passphrase) | |||
if err == nil { | |||
decrypted, err = se.Decrypt(cipherFunc, key) | |||
if err != nil && err != errors.ErrKeyIncorrect { | |||
return nil, err | |||
} | |||
if decrypted != nil { | |||
break FindKey | |||
} | |||
} | |||
} | |||
} | |||
} | |||
md.decrypted = decrypted | |||
if err := packets.Push(decrypted); err != nil { | |||
return nil, err | |||
} | |||
return readSignedMessage(packets, md, keyring) | |||
} | |||
// readSignedMessage reads a possibly signed message if mdin is non-zero then | |||
// that structure is updated and returned. Otherwise a fresh MessageDetails is | |||
// used. | |||
func readSignedMessage(packets *packet.Reader, mdin *MessageDetails, keyring KeyRing) (md *MessageDetails, err error) { | |||
if mdin == nil { | |||
mdin = new(MessageDetails) | |||
} | |||
md = mdin | |||
var p packet.Packet | |||
var h hash.Hash | |||
var wrappedHash hash.Hash | |||
FindLiteralData: | |||
for { | |||
p, err = packets.Next() | |||
if err != nil { | |||
return nil, err | |||
} | |||
switch p := p.(type) { | |||
case *packet.Compressed: | |||
if err := packets.Push(p.Body); err != nil { | |||
return nil, err | |||
} | |||
case *packet.OnePassSignature: | |||
if !p.IsLast { | |||
return nil, errors.UnsupportedError("nested signatures") | |||
} | |||
h, wrappedHash, err = hashForSignature(p.Hash, p.SigType) | |||
if err != nil { | |||
md = nil | |||
return | |||
} | |||
md.IsSigned = true | |||
md.SignedByKeyId = p.KeyId | |||
keys := keyring.KeysByIdUsage(p.KeyId, packet.KeyFlagSign) | |||
if len(keys) > 0 { | |||
md.SignedBy = &keys[0] | |||
} | |||
case *packet.LiteralData: | |||
md.LiteralData = p | |||
break FindLiteralData | |||
} | |||
} | |||
if md.SignedBy != nil { | |||
md.UnverifiedBody = &signatureCheckReader{packets, h, wrappedHash, md} | |||
} else if md.decrypted != nil { | |||
md.UnverifiedBody = checkReader{md} | |||
} else { | |||
md.UnverifiedBody = md.LiteralData.Body | |||
} | |||
return md, nil | |||
} | |||
// hashForSignature returns a pair of hashes that can be used to verify a | |||
// signature. The signature may specify that the contents of the signed message | |||
// should be preprocessed (i.e. to normalize line endings). Thus this function | |||
// returns two hashes. The second should be used to hash the message itself and | |||
// performs any needed preprocessing. | |||
func hashForSignature(hashId crypto.Hash, sigType packet.SignatureType) (hash.Hash, hash.Hash, error) { | |||
if !hashId.Available() { | |||
return nil, nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hashId))) | |||
} | |||
h := hashId.New() | |||
switch sigType { | |||
case packet.SigTypeBinary: | |||
return h, h, nil | |||
case packet.SigTypeText: | |||
return h, NewCanonicalTextHash(h), nil | |||
} | |||
return nil, nil, errors.UnsupportedError("unsupported signature type: " + strconv.Itoa(int(sigType))) | |||
} | |||
// checkReader wraps an io.Reader from a LiteralData packet. When it sees EOF | |||
// it closes the ReadCloser from any SymmetricallyEncrypted packet to trigger | |||
// MDC checks. | |||
type checkReader struct { | |||
md *MessageDetails | |||
} | |||
func (cr checkReader) Read(buf []byte) (n int, err error) { | |||
n, err = cr.md.LiteralData.Body.Read(buf) | |||
if err == io.EOF { | |||
mdcErr := cr.md.decrypted.Close() | |||
if mdcErr != nil { | |||
err = mdcErr | |||
} | |||
} | |||
return | |||
} | |||
// signatureCheckReader wraps an io.Reader from a LiteralData packet and hashes | |||
// the data as it is read. When it sees an EOF from the underlying io.Reader | |||
// it parses and checks a trailing Signature packet and triggers any MDC checks. | |||
type signatureCheckReader struct { | |||
packets *packet.Reader | |||
h, wrappedHash hash.Hash | |||
md *MessageDetails | |||
} | |||
func (scr *signatureCheckReader) Read(buf []byte) (n int, err error) { | |||
n, err = scr.md.LiteralData.Body.Read(buf) | |||
scr.wrappedHash.Write(buf[:n]) | |||
if err == io.EOF { | |||
var p packet.Packet | |||
p, scr.md.SignatureError = scr.packets.Next() | |||
if scr.md.SignatureError != nil { | |||
return | |||
} | |||
var ok bool | |||
if scr.md.Signature, ok = p.(*packet.Signature); ok { | |||
scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignature(scr.h, scr.md.Signature) | |||
} else if scr.md.SignatureV3, ok = p.(*packet.SignatureV3); ok { | |||
scr.md.SignatureError = scr.md.SignedBy.PublicKey.VerifySignatureV3(scr.h, scr.md.SignatureV3) | |||
} else { | |||
scr.md.SignatureError = errors.StructuralError("LiteralData not followed by Signature") | |||
return | |||
} | |||
// The SymmetricallyEncrypted packet, if any, might have an | |||
// unsigned hash of its own. In order to check this we need to | |||
// close that Reader. | |||
if scr.md.decrypted != nil { | |||
mdcErr := scr.md.decrypted.Close() | |||
if mdcErr != nil { | |||
err = mdcErr | |||
} | |||
} | |||
} | |||
return | |||
} | |||
// CheckDetachedSignature takes a signed file and a detached signature and | |||
// returns the signer if the signature is valid. If the signer isn't known, | |||
// ErrUnknownIssuer is returned. | |||
func CheckDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) { | |||
var issuerKeyId uint64 | |||
var hashFunc crypto.Hash | |||
var sigType packet.SignatureType | |||
var keys []Key | |||
var p packet.Packet | |||
packets := packet.NewReader(signature) | |||
for { | |||
p, err = packets.Next() | |||
if err == io.EOF { | |||
return nil, errors.ErrUnknownIssuer | |||
} | |||
if err != nil { | |||
return nil, err | |||
} | |||
switch sig := p.(type) { | |||
case *packet.Signature: | |||
if sig.IssuerKeyId == nil { | |||
return nil, errors.StructuralError("signature doesn't have an issuer") | |||
} | |||
issuerKeyId = *sig.IssuerKeyId | |||
hashFunc = sig.Hash | |||
sigType = sig.SigType | |||
case *packet.SignatureV3: | |||
issuerKeyId = sig.IssuerKeyId | |||
hashFunc = sig.Hash | |||
sigType = sig.SigType | |||
default: | |||
return nil, errors.StructuralError("non signature packet found") | |||
} | |||
keys = keyring.KeysByIdUsage(issuerKeyId, packet.KeyFlagSign) | |||
if len(keys) > 0 { | |||
break | |||
} | |||
} | |||
if len(keys) == 0 { | |||
panic("unreachable") | |||
} | |||
h, wrappedHash, err := hashForSignature(hashFunc, sigType) | |||
if err != nil { | |||
return nil, err | |||
} | |||
if _, err := io.Copy(wrappedHash, signed); err != nil && err != io.EOF { | |||
return nil, err | |||
} | |||
for _, key := range keys { | |||
switch sig := p.(type) { | |||
case *packet.Signature: | |||
err = key.PublicKey.VerifySignature(h, sig) | |||
case *packet.SignatureV3: | |||
err = key.PublicKey.VerifySignatureV3(h, sig) | |||
default: | |||
panic("unreachable") | |||
} | |||
if err == nil { | |||
return key.Entity, nil | |||
} | |||
} | |||
return nil, err | |||
} | |||
// CheckArmoredDetachedSignature performs the same actions as | |||
// CheckDetachedSignature but expects the signature to be armored. | |||
func CheckArmoredDetachedSignature(keyring KeyRing, signed, signature io.Reader) (signer *Entity, err error) { | |||
body, err := readArmored(signature, SignatureType) | |||
if err != nil { | |||
return | |||
} | |||
return CheckDetachedSignature(keyring, signed, body) | |||
} |
@@ -0,0 +1,273 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
// Package s2k implements the various OpenPGP string-to-key transforms as | |||
// specified in RFC 4800 section 3.7.1. | |||
package s2k // import "golang.org/x/crypto/openpgp/s2k" | |||
import ( | |||
"crypto" | |||
"hash" | |||
"io" | |||
"strconv" | |||
"golang.org/x/crypto/openpgp/errors" | |||
) | |||
// Config collects configuration parameters for s2k key-stretching | |||
// transformatioms. A nil *Config is valid and results in all default | |||
// values. Currently, Config is used only by the Serialize function in | |||
// this package. | |||
type Config struct { | |||
// Hash is the default hash function to be used. If | |||
// nil, SHA1 is used. | |||
Hash crypto.Hash | |||
// S2KCount is only used for symmetric encryption. It | |||
// determines the strength of the passphrase stretching when | |||
// the said passphrase is hashed to produce a key. S2KCount | |||
// should be between 1024 and 65011712, inclusive. If Config | |||
// is nil or S2KCount is 0, the value 65536 used. Not all | |||
// values in the above range can be represented. S2KCount will | |||
// be rounded up to the next representable value if it cannot | |||
// be encoded exactly. When set, it is strongly encrouraged to | |||
// use a value that is at least 65536. See RFC 4880 Section | |||
// 3.7.1.3. | |||
S2KCount int | |||
} | |||
func (c *Config) hash() crypto.Hash { | |||
if c == nil || uint(c.Hash) == 0 { | |||
// SHA1 is the historical default in this package. | |||
return crypto.SHA1 | |||
} | |||
return c.Hash | |||
} | |||
func (c *Config) encodedCount() uint8 { | |||
if c == nil || c.S2KCount == 0 { | |||
return 96 // The common case. Correspoding to 65536 | |||
} | |||
i := c.S2KCount | |||
switch { | |||
// Behave like GPG. Should we make 65536 the lowest value used? | |||
case i < 1024: | |||
i = 1024 | |||
case i > 65011712: | |||
i = 65011712 | |||
} | |||
return encodeCount(i) | |||
} | |||
// encodeCount converts an iterative "count" in the range 1024 to | |||
// 65011712, inclusive, to an encoded count. The return value is the | |||
// octet that is actually stored in the GPG file. encodeCount panics | |||
// if i is not in the above range (encodedCount above takes care to | |||
// pass i in the correct range). See RFC 4880 Section 3.7.7.1. | |||
func encodeCount(i int) uint8 { | |||
if i < 1024 || i > 65011712 { | |||
panic("count arg i outside the required range") | |||
} | |||
for encoded := 0; encoded < 256; encoded++ { | |||
count := decodeCount(uint8(encoded)) | |||
if count >= i { | |||
return uint8(encoded) | |||
} | |||
} | |||
return 255 | |||
} | |||
// decodeCount returns the s2k mode 3 iterative "count" corresponding to | |||
// the encoded octet c. | |||
func decodeCount(c uint8) int { | |||
return (16 + int(c&15)) << (uint32(c>>4) + 6) | |||
} | |||
// Simple writes to out the result of computing the Simple S2K function (RFC | |||
// 4880, section 3.7.1.1) using the given hash and input passphrase. | |||
func Simple(out []byte, h hash.Hash, in []byte) { | |||
Salted(out, h, in, nil) | |||
} | |||
var zero [1]byte | |||
// Salted writes to out the result of computing the Salted S2K function (RFC | |||
// 4880, section 3.7.1.2) using the given hash, input passphrase and salt. | |||
func Salted(out []byte, h hash.Hash, in []byte, salt []byte) { | |||
done := 0 | |||
var digest []byte | |||
for i := 0; done < len(out); i++ { | |||
h.Reset() | |||
for j := 0; j < i; j++ { | |||
h.Write(zero[:]) | |||
} | |||
h.Write(salt) | |||
h.Write(in) | |||
digest = h.Sum(digest[:0]) | |||
n := copy(out[done:], digest) | |||
done += n | |||
} | |||
} | |||
// Iterated writes to out the result of computing the Iterated and Salted S2K | |||
// function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase, | |||
// salt and iteration count. | |||
func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) { | |||
combined := make([]byte, len(in)+len(salt)) | |||
copy(combined, salt) | |||
copy(combined[len(salt):], in) | |||
if count < len(combined) { | |||
count = len(combined) | |||
} | |||
done := 0 | |||
var digest []byte | |||
for i := 0; done < len(out); i++ { | |||
h.Reset() | |||
for j := 0; j < i; j++ { | |||
h.Write(zero[:]) | |||
} | |||
written := 0 | |||
for written < count { | |||
if written+len(combined) > count { | |||
todo := count - written | |||
h.Write(combined[:todo]) | |||
written = count | |||
} else { | |||
h.Write(combined) | |||
written += len(combined) | |||
} | |||
} | |||
digest = h.Sum(digest[:0]) | |||
n := copy(out[done:], digest) | |||
done += n | |||
} | |||
} | |||
// Parse reads a binary specification for a string-to-key transformation from r | |||
// and returns a function which performs that transform. | |||
func Parse(r io.Reader) (f func(out, in []byte), err error) { | |||
var buf [9]byte | |||
_, err = io.ReadFull(r, buf[:2]) | |||
if err != nil { | |||
return | |||
} | |||
hash, ok := HashIdToHash(buf[1]) | |||
if !ok { | |||
return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(buf[1]))) | |||
} | |||
if !hash.Available() { | |||
return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hash))) | |||
} | |||
h := hash.New() | |||
switch buf[0] { | |||
case 0: | |||
f := func(out, in []byte) { | |||
Simple(out, h, in) | |||
} | |||
return f, nil | |||
case 1: | |||
_, err = io.ReadFull(r, buf[:8]) | |||
if err != nil { | |||
return | |||
} | |||
f := func(out, in []byte) { | |||
Salted(out, h, in, buf[:8]) | |||
} | |||
return f, nil | |||
case 3: | |||
_, err = io.ReadFull(r, buf[:9]) | |||
if err != nil { | |||
return | |||
} | |||
count := decodeCount(buf[8]) | |||
f := func(out, in []byte) { | |||
Iterated(out, h, in, buf[:8], count) | |||
} | |||
return f, nil | |||
} | |||
return nil, errors.UnsupportedError("S2K function") | |||
} | |||
// Serialize salts and stretches the given passphrase and writes the | |||
// resulting key into key. It also serializes an S2K descriptor to | |||
// w. The key stretching can be configured with c, which may be | |||
// nil. In that case, sensible defaults will be used. | |||
func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error { | |||
var buf [11]byte | |||
buf[0] = 3 /* iterated and salted */ | |||
buf[1], _ = HashToHashId(c.hash()) | |||
salt := buf[2:10] | |||
if _, err := io.ReadFull(rand, salt); err != nil { | |||
return err | |||
} | |||
encodedCount := c.encodedCount() | |||
count := decodeCount(encodedCount) | |||
buf[10] = encodedCount | |||
if _, err := w.Write(buf[:]); err != nil { | |||
return err | |||
} | |||
Iterated(key, c.hash().New(), passphrase, salt, count) | |||
return nil | |||
} | |||
// hashToHashIdMapping contains pairs relating OpenPGP's hash identifier with | |||
// Go's crypto.Hash type. See RFC 4880, section 9.4. | |||
var hashToHashIdMapping = []struct { | |||
id byte | |||
hash crypto.Hash | |||
name string | |||
}{ | |||
{1, crypto.MD5, "MD5"}, | |||
{2, crypto.SHA1, "SHA1"}, | |||
{3, crypto.RIPEMD160, "RIPEMD160"}, | |||
{8, crypto.SHA256, "SHA256"}, | |||
{9, crypto.SHA384, "SHA384"}, | |||
{10, crypto.SHA512, "SHA512"}, | |||
{11, crypto.SHA224, "SHA224"}, | |||
} | |||
// HashIdToHash returns a crypto.Hash which corresponds to the given OpenPGP | |||
// hash id. | |||
func HashIdToHash(id byte) (h crypto.Hash, ok bool) { | |||
for _, m := range hashToHashIdMapping { | |||
if m.id == id { | |||
return m.hash, true | |||
} | |||
} | |||
return 0, false | |||
} | |||
// HashIdToString returns the name of the hash function corresponding to the | |||
// given OpenPGP hash id. | |||
func HashIdToString(id byte) (name string, ok bool) { | |||
for _, m := range hashToHashIdMapping { | |||
if m.id == id { | |||
return m.name, true | |||
} | |||
} | |||
return "", false | |||
} | |||
// HashIdToHash returns an OpenPGP hash id which corresponds the given Hash. | |||
func HashToHashId(h crypto.Hash) (id byte, ok bool) { | |||
for _, m := range hashToHashIdMapping { | |||
if m.hash == h { | |||
return m.id, true | |||
} | |||
} | |||
return 0, false | |||
} |
@@ -0,0 +1,378 @@ | |||
// Copyright 2011 The Go Authors. All rights reserved. | |||
// Use of this source code is governed by a BSD-style | |||
// license that can be found in the LICENSE file. | |||
package openpgp | |||
import ( | |||
"crypto" | |||
"hash" | |||
"io" | |||
"strconv" | |||
"time" | |||
"golang.org/x/crypto/openpgp/armor" | |||
"golang.org/x/crypto/openpgp/errors" | |||
"golang.org/x/crypto/openpgp/packet" | |||
"golang.org/x/crypto/openpgp/s2k" | |||
) | |||
// DetachSign signs message with the private key from signer (which must | |||
// already have been decrypted) and writes the signature to w. | |||
// If config is nil, sensible defaults will be used. | |||
func DetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error { | |||
return detachSign(w, signer, message, packet.SigTypeBinary, config) | |||
} | |||
// ArmoredDetachSign signs message with the private key from signer (which | |||
// must already have been decrypted) and writes an armored signature to w. | |||
// If config is nil, sensible defaults will be used. | |||
func ArmoredDetachSign(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) (err error) { | |||
return armoredDetachSign(w, signer, message, packet.SigTypeBinary, config) | |||
} | |||
// DetachSignText signs message (after canonicalising the line endings) with | |||
// the private key from signer (which must already have been decrypted) and | |||
// writes the signature to w. | |||
// If config is nil, sensible defaults will be used. | |||
func DetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error { | |||
return detachSign(w, signer, message, packet.SigTypeText, config) | |||
} | |||
// ArmoredDetachSignText signs message (after canonicalising the line endings) | |||
// with the private key from signer (which must already have been decrypted) | |||
// and writes an armored signature to w. | |||
// If config is nil, sensible defaults will be used. | |||
func ArmoredDetachSignText(w io.Writer, signer *Entity, message io.Reader, config *packet.Config) error { | |||
return armoredDetachSign(w, signer, message, packet.SigTypeText, config) | |||
} | |||
func armoredDetachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) { | |||
out, err := armor.Encode(w, SignatureType, nil) | |||
if err != nil { | |||
return | |||
} | |||
err = detachSign(out, signer, message, sigType, config) | |||
if err != nil { | |||
return | |||
} | |||
return out.Close() | |||
} | |||
func detachSign(w io.Writer, signer *Entity, message io.Reader, sigType packet.SignatureType, config *packet.Config) (err error) { | |||
if signer.PrivateKey == nil { | |||
return errors.InvalidArgumentError("signing key doesn't have a private key") | |||
} | |||
if signer.PrivateKey.Encrypted { | |||
return errors.InvalidArgumentError("signing key is encrypted") | |||
} | |||
sig := new(packet.Signature) | |||
sig.SigType = sigType | |||
sig.PubKeyAlgo = signer.PrivateKey.PubKeyAlgo | |||
sig.Hash = config.Hash() | |||
sig.CreationTime = config.Now() | |||
sig.IssuerKeyId = &signer.PrivateKey.KeyId | |||
h, wrappedHash, err := hashForSignature(sig.Hash, sig.SigType) | |||
if err != nil { | |||
return | |||
} | |||
io.Copy(wrappedHash, message) | |||
err = sig.Sign(h, signer.PrivateKey, config) | |||
if err != nil { | |||
return | |||
} | |||
return sig.Serialize(w) | |||
} | |||
// FileHints contains metadata about encrypted files. This metadata is, itself, | |||
// encrypted. | |||
type FileHints struct { | |||
// IsBinary can be set to hint that the contents are binary data. | |||
IsBinary bool | |||
// FileName hints at the name of the file that should be written. It's | |||
// truncated to 255 bytes if longer. It may be empty to suggest that the | |||
// file should not be written to disk. It may be equal to "_CONSOLE" to | |||
// suggest the data should not be written to disk. | |||
FileName string | |||
// ModTime contains the modification time of the file, or the zero time if not applicable. | |||
ModTime time.Time | |||
} | |||
// SymmetricallyEncrypt acts like gpg -c: it encrypts a file with a passphrase. | |||
// The resulting WriteCloser must be closed after the contents of the file have | |||
// been written. | |||
// If config is nil, sensible defaults will be used. | |||
func SymmetricallyEncrypt(ciphertext io.Writer, passphrase []byte, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) { | |||
if hints == nil { | |||
hints = &FileHints{} | |||
} | |||
key, err := packet.SerializeSymmetricKeyEncrypted(ciphertext, passphrase, config) | |||
if err != nil { | |||
return | |||
} | |||
w, err := packet.SerializeSymmetricallyEncrypted(ciphertext, config.Cipher(), key, config) | |||
if err != nil { | |||
return | |||
} | |||
literaldata := w | |||
if algo := config.Compression(); algo != packet.CompressionNone { | |||
var compConfig *packet.CompressionConfig | |||
if config != nil { | |||
compConfig = config.CompressionConfig | |||
} | |||
literaldata, err = packet.SerializeCompressed(w, algo, compConfig) | |||
if err != nil { | |||
return | |||
} | |||
} | |||
var epochSeconds uint32 | |||
if !hints.ModTime.IsZero() { | |||
epochSeconds = uint32(hints.ModTime.Unix()) | |||
} | |||
return packet.SerializeLiteral(literaldata, hints.IsBinary, hints.FileName, epochSeconds) | |||
} | |||
// intersectPreferences mutates and returns a prefix of a that contains only | |||
// the values in the intersection of a and b. The order of a is preserved. | |||
func intersectPreferences(a []uint8, b []uint8) (intersection []uint8) { | |||
var j int | |||
for _, v := range a { | |||
for _, v2 := range b { | |||
if v == v2 { | |||
a[j] = v | |||
j++ | |||
break | |||
} | |||
} | |||
} | |||
return a[:j] | |||
} | |||
func hashToHashId(h crypto.Hash) uint8 { | |||
v, ok := s2k.HashToHashId(h) | |||
if !ok { | |||
panic("tried to convert unknown hash") | |||
} | |||
return v | |||
} | |||
// Encrypt encrypts a message to a number of recipients and, optionally, signs | |||
// it. hints contains optional information, that is also encrypted, that aids | |||
// the recipients in processing the message. The resulting WriteCloser must | |||
// be closed after the contents of the file have been written. | |||
// If config is nil, sensible defaults will be used. | |||
func Encrypt(ciphertext io.Writer, to []*Entity, signed *Entity, hints *FileHints, config *packet.Config) (plaintext io.WriteCloser, err error) { | |||
var signer *packet.PrivateKey | |||
if signed != nil { | |||
signKey, ok := signed.signingKey(config.Now()) | |||
if !ok { | |||
return nil, errors.InvalidArgumentError("no valid signing keys") | |||
} | |||
signer = signKey.PrivateKey | |||
if signer == nil { | |||
return nil, errors.InvalidArgumentError("no private key in signing key") | |||
} | |||
if signer.Encrypted { | |||
return nil, errors.InvalidArgumentError("signing key must be decrypted") | |||
} | |||
} | |||
// These are the possible ciphers that we'll use for the message. | |||
candidateCiphers := []uint8{ | |||
uint8(packet.CipherAES128), | |||
uint8(packet.CipherAES256), | |||
uint8(packet.CipherCAST5), | |||
} | |||
// These are the possible hash functions that we'll use for the signature. | |||
candidateHashes := []uint8{ | |||
hashToHashId(crypto.SHA256), | |||
hashToHashId(crypto.SHA512), | |||
hashToHashId(crypto.SHA1), | |||
hashToHashId(crypto.RIPEMD160), | |||
} | |||
// In the event that a recipient doesn't specify any supported ciphers | |||
// or hash functions, these are the ones that we assume that every | |||
// implementation supports. | |||
defaultCiphers := candidateCiphers[len(candidateCiphers)-1:] | |||
defaultHashes := candidateHashes[len(candidateHashes)-1:] | |||
encryptKeys := make([]Key, len(to)) | |||
for i := range to { | |||
var ok bool | |||
encryptKeys[i], ok = to[i].encryptionKey(config.Now()) | |||
if !ok { | |||
return nil, errors.InvalidArgumentError("cannot encrypt a message to key id " + strconv.FormatUint(to[i].PrimaryKey.KeyId, 16) + " because it has no encryption keys") | |||
} | |||
sig := to[i].primaryIdentity().SelfSignature | |||
preferredSymmetric := sig.PreferredSymmetric | |||
if len(preferredSymmetric) == 0 { | |||
preferredSymmetric = defaultCiphers | |||
} | |||
preferredHashes := sig.PreferredHash | |||
if len(preferredHashes) == 0 { | |||
preferredHashes = defaultHashes | |||
} | |||
candidateCiphers = intersectPreferences(candidateCiphers, preferredSymmetric) | |||
candidateHashes = intersectPreferences(candidateHashes, preferredHashes) | |||
} | |||
if len(candidateCiphers) == 0 || len(candidateHashes) == 0 { | |||
return nil, errors.InvalidArgumentError("cannot encrypt because recipient set shares no common algorithms") | |||
} | |||
cipher := packet.CipherFunction(candidateCiphers[0]) | |||
// If the cipher specified by config is a candidate, we'll use that. | |||
configuredCipher := config.Cipher() | |||
for _, c := range candidateCiphers { | |||
cipherFunc := packet.CipherFunction(c) | |||
if cipherFunc == configuredCipher { | |||
cipher = cipherFunc | |||
break | |||
} | |||
} | |||
var hash crypto.Hash | |||
for _, hashId := range candidateHashes { | |||
if h, ok := s2k.HashIdToHash(hashId); ok && h.Available() { | |||
hash = h | |||
break | |||
} | |||
} | |||
// If the hash specified by config is a candidate, we'll use that. | |||
if configuredHash := config.Hash(); configuredHash.Available() { | |||
for _, hashId := range candidateHashes { | |||
if h, ok := s2k.HashIdToHash(hashId); ok && h == configuredHash { | |||
hash = h | |||
break | |||
} | |||
} | |||
} | |||
if hash == 0 { | |||
hashId := candidateHashes[0] | |||
name, ok := s2k.HashIdToString(hashId) | |||
if !ok { | |||
name = "#" + strconv.Itoa(int(hashId)) | |||
} | |||
return nil, errors.InvalidArgumentError("cannot encrypt because no candidate hash functions are compiled in. (Wanted " + name + " in this case.)") | |||
} | |||
symKey := make([]byte, cipher.KeySize()) | |||
if _, err := io.ReadFull(config.Random(), symKey); err != nil { | |||
return nil, err | |||
} | |||
for _, key := range encryptKeys { | |||
if err := packet.SerializeEncryptedKey(ciphertext, key.PublicKey, cipher, symKey, config); err != nil { | |||
return nil, err | |||
} | |||
} | |||
encryptedData, err := packet.SerializeSymmetricallyEncrypted(ciphertext, cipher, symKey, config) | |||
if err != nil { | |||
return | |||
} | |||
if signer != nil { | |||
ops := &packet.OnePassSignature{ | |||
SigType: packet.SigTypeBinary, | |||
Hash: hash, | |||
PubKeyAlgo: signer.PubKeyAlgo, | |||
KeyId: signer.KeyId, | |||
IsLast: true, | |||
} | |||
if err := ops.Serialize(encryptedData); err != nil { | |||
return nil, err | |||
} | |||
} | |||
if hints == nil { | |||
hints = &FileHints{} | |||
} | |||
w := encryptedData | |||
if signer != nil { | |||
// If we need to write a signature packet after the literal | |||
// data then we need to stop literalData from closing | |||
// encryptedData. | |||
w = noOpCloser{encryptedData} | |||
} | |||
var epochSeconds uint32 | |||
if !hints.ModTime.IsZero() { | |||
epochSeconds = uint32(hints.ModTime.Unix()) | |||
} | |||
literalData, err := packet.SerializeLiteral(w, hints.IsBinary, hints.FileName, epochSeconds) | |||
if err != nil { | |||
return nil, err | |||
} | |||
if signer != nil { | |||
return signatureWriter{encryptedData, literalData, hash, hash.New(), signer, config}, nil | |||
} | |||
return literalData, nil | |||
} | |||
// signatureWriter hashes the contents of a message while passing it along to | |||
// literalData. When closed, it closes literalData, writes a signature packet | |||
// to encryptedData and then also closes encryptedData. | |||
type signatureWriter struct { | |||
encryptedData io.WriteCloser | |||
literalData io.WriteCloser | |||
hashType crypto.Hash | |||
h hash.Hash | |||
signer *packet.PrivateKey | |||
config *packet.Config | |||
} | |||
func (s signatureWriter) Write(data []byte) (int, error) { | |||
s.h.Write(data) | |||
return s.literalData.Write(data) | |||
} | |||
func (s signatureWriter) Close() error { | |||
sig := &packet.Signature{ | |||
SigType: packet.SigTypeBinary, | |||
PubKeyAlgo: s.signer.PubKeyAlgo, | |||
Hash: s.hashType, | |||
CreationTime: s.config.Now(), | |||
IssuerKeyId: &s.signer.KeyId, | |||
} | |||
if err := sig.Sign(s.h, s.signer, s.config); err != nil { | |||
return err | |||
} | |||
if err := s.literalData.Close(); err != nil { | |||
return err | |||
} | |||
if err := sig.Serialize(s.encryptedData); err != nil { | |||
return err | |||
} | |||
return s.encryptedData.Close() | |||
} | |||
// noOpCloser is like an ioutil.NopCloser, but for an io.Writer. | |||
// TODO: we have two of these in OpenPGP packages alone. This probably needs | |||
// to be promoted somewhere more common. | |||
type noOpCloser struct { | |||
w io.Writer | |||
} | |||
func (c noOpCloser) Write(data []byte) (n int, err error) { | |||
return c.w.Write(data) | |||
} | |||
func (c noOpCloser) Close() error { | |||
return nil | |||
} |
@@ -1157,6 +1157,12 @@ | |||
"revision": "d86a009f5e13f83df65d0d6cee9a2e3f1445f0da", | |||
"revisionTime": "2016-11-02T13:18:01Z" | |||
}, | |||
{ | |||
"checksumSHA1": "TT1rac6kpQp2vz24m5yDGUNQ/QQ=", | |||
"path": "golang.org/x/crypto/cast5", | |||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0", | |||
"revisionTime": "2017-01-13T19:21:00Z" | |||
}, | |||
{ | |||
"checksumSHA1": "dwOedwBJ1EIK9+S3t108Bx054Y8=", | |||
"path": "golang.org/x/crypto/curve25519", | |||
@@ -1181,6 +1187,42 @@ | |||
"revision": "ede567c8e044a5913dad1d1af3696d9da953104c", | |||
"revisionTime": "2016-11-04T19:41:44Z" | |||
}, | |||
{ | |||
"checksumSHA1": "IIhFTrLlmlc6lEFSitqi4aw2lw0=", | |||
"path": "golang.org/x/crypto/openpgp", | |||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0", | |||
"revisionTime": "2017-01-13T19:21:00Z" | |||
}, | |||
{ | |||
"checksumSHA1": "olOKkhrdkYQHZ0lf1orrFQPQrv4=", | |||
"path": "golang.org/x/crypto/openpgp/armor", | |||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0", | |||
"revisionTime": "2017-01-13T19:21:00Z" | |||
}, | |||
{ | |||
"checksumSHA1": "eo/KtdjieJQXH7Qy+faXFcF70ME=", | |||
"path": "golang.org/x/crypto/openpgp/elgamal", | |||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0", | |||
"revisionTime": "2017-01-13T19:21:00Z" | |||
}, | |||
{ | |||
"checksumSHA1": "rlxVSaGgqdAgwblsErxTxIfuGfg=", | |||
"path": "golang.org/x/crypto/openpgp/errors", | |||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0", | |||
"revisionTime": "2017-01-13T19:21:00Z" | |||
}, | |||
{ | |||
"checksumSHA1": "LWdaR8Q9yn6eBCcnGl0HvJRDUBE=", | |||
"path": "golang.org/x/crypto/openpgp/packet", | |||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0", | |||
"revisionTime": "2017-01-13T19:21:00Z" | |||
}, | |||
{ | |||
"checksumSHA1": "s2qT4UwvzBSkzXuiuMkowif1Olw=", | |||
"path": "golang.org/x/crypto/openpgp/s2k", | |||
"revision": "b8a2a83acfe6e6770b75de42d5ff4c67596675c0", | |||
"revisionTime": "2017-01-13T19:21:00Z" | |||
}, | |||
{ | |||
"checksumSHA1": "1MGpGDQqnUoRpv7VEcQrXOBydXE=", | |||
"path": "golang.org/x/crypto/pbkdf2", | |||