update go-mssqldb 2019-11-28 (1d7a30a10f73) -> 2020-04-28 (06a60b6afbbc)tags/v1.21.12.1
| @@ -26,7 +26,7 @@ require ( | |||
| github.com/cznic/b v0.0.0-20181122101859-a26611c4d92d // indirect | |||
| github.com/cznic/mathutil v0.0.0-20181122101859-297441e03548 // indirect | |||
| github.com/cznic/strutil v0.0.0-20181122101858-275e90344537 // indirect | |||
| github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73 | |||
| github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc | |||
| github.com/dgrijalva/jwt-go v3.2.0+incompatible | |||
| github.com/dustin/go-humanize v1.0.0 | |||
| github.com/editorconfig/editorconfig-core-go/v2 v2.1.1 | |||
| @@ -102,7 +102,7 @@ require ( | |||
| github.com/yohcop/openid-go v1.0.0 | |||
| github.com/yuin/goldmark v1.1.25 | |||
| github.com/yuin/goldmark-meta v0.0.0-20191126180153-f0638e958b60 | |||
| golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 | |||
| golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79 | |||
| golang.org/x/net v0.0.0-20200506145744-7e3656a0809f | |||
| golang.org/x/oauth2 v0.0.0-20200107190931-bf48bf16ab8d | |||
| golang.org/x/sys v0.0.0-20200509044756-6aff5f38e54f | |||
| @@ -147,8 +147,8 @@ github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSs | |||
| github.com/denisenkom/go-mssqldb v0.0.0-20190707035753-2be1aa521ff4/go.mod h1:zAg7JM8CkOJ43xKXIj7eRO9kmWm/TW578qo+oDO6tuM= | |||
| github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538 h1:bpWCJ5MddHsv4Xtl3azkK89mZzd/vvut32mvAnKbyUA= | |||
| github.com/denisenkom/go-mssqldb v0.0.0-20190924004331-208c0a498538/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU= | |||
| github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73 h1:OGNva6WhsKst5OZf7eZOklDztV3hwtTHovdrLHV+MsA= | |||
| github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU= | |||
| github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc h1:VRRKCwnzqk8QCaRC4os14xoKDdbHqqlJtJA0oc1ZAjg= | |||
| github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc/go.mod h1:xbL0rPBG9cCiLr28tMa8zpbdarY27NDyej4t/EjAShU= | |||
| github.com/dgrijalva/jwt-go v3.2.0+incompatible h1:7qlOGliEKZXTDg6OTjfoBKDXWrumCAMpl/TFQ4/5kLM= | |||
| github.com/dgrijalva/jwt-go v3.2.0+incompatible/go.mod h1:E3ru+11k8xSBh+hMPgOLZmtrrCbhqsmaPHjLKYnJCaQ= | |||
| github.com/dgryski/go-sip13 v0.0.0-20181026042036-e10d5fee7954/go.mod h1:vAd38F8PWV+bWy6jNmig1y/TA+kYO4g3RSRF0IAv0no= | |||
| @@ -683,6 +683,8 @@ golang.org/x/crypto v0.0.0-20190927123631-a832865fa7ad/go.mod h1:yigFU9vqHzYiE8U | |||
| golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI= | |||
| golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 h1:xMPOj6Pz6UipU1wXLkrtqpHbR0AVFnyPEQq/wRWz9lM= | |||
| golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= | |||
| golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79 h1:IaQbIIB2X/Mp/DKctl6ROxz1KyMlKp4uyvL6+kQ7C88= | |||
| golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto= | |||
| golang.org/x/exp v0.0.0-20190121172915-509febef88a4/go.mod h1:CJ0aWSM057203Lf6IL+f9T1iT9GByDxfZKAQTCR3kQA= | |||
| golang.org/x/exp v0.0.0-20190510132918-efd6b22b2522/go.mod h1:ZjyILWgesfNpC6sMxTJOJm9Kp84zZh5NQWvqDGG3Qr8= | |||
| golang.org/x/image v0.0.0-20190227222117-0694c2d4d067/go.mod h1:kZ7UVZpmo3dzQBMxlp+ypCbDeSB+sBbTgSJuh5dn5js= | |||
| @@ -18,7 +18,7 @@ Other supported formats are listed below. | |||
| ### Common parameters: | |||
| * `user id` - enter the SQL Server Authentication user id or the Windows Authentication user id in the DOMAIN\User format. On Windows, if user id is empty or missing Single-Sign-On is used. | |||
| * `user id` - enter the SQL Server Authentication user id or the Windows Authentication user id in the DOMAIN\User format. On Windows, if user id is empty or missing Single-Sign-On is used. The user domain sensitive to the case which is defined in the connection string. | |||
| * `password` | |||
| * `database` | |||
| * `connection timeout` - in seconds (default is 0 for no timeout), set to 0 for no timeout. Recommended to set to 0 and use context to manage query and connection timeouts. | |||
| @@ -106,6 +106,26 @@ Other supported formats are listed below. | |||
| * `odbc:server=localhost;user id=sa;password={foo{bar}` // Literal `{`, password is "foo{bar" | |||
| * `odbc:server=localhost;user id=sa;password={foo}}bar}` // Escaped `} with `}}`, password is "foo}bar" | |||
| ### Azure Active Directory authentication - preview | |||
| The configuration of functionality might change in the future. | |||
| Azure Active Directory (AAD) access tokens are relatively short lived and need to be | |||
| valid when a new connection is made. Authentication is supported using a callback func that | |||
| provides a fresh and valid token using a connector: | |||
| ``` golang | |||
| conn, err := mssql.NewAccessTokenConnector( | |||
| "Server=test.database.windows.net;Database=testdb", | |||
| tokenProvider) | |||
| if err != nil { | |||
| // handle errors in DSN | |||
| } | |||
| db := sql.OpenDB(conn) | |||
| ``` | |||
| Where `tokenProvider` is a function that returns a fresh access token or an error. None of these statements | |||
| actually trigger the retrieval of a token, this happens when the first statment is issued and a connection | |||
| is created. | |||
| ## Executing Stored Procedures | |||
| To run a stored procedure, set the query text to the procedure name: | |||
| @@ -0,0 +1,51 @@ | |||
| // +build go1.10 | |||
| package mssql | |||
| import ( | |||
| "context" | |||
| "database/sql/driver" | |||
| "errors" | |||
| "fmt" | |||
| ) | |||
| var _ driver.Connector = &accessTokenConnector{} | |||
| // accessTokenConnector wraps Connector and injects a | |||
| // fresh access token when connecting to the database | |||
| type accessTokenConnector struct { | |||
| Connector | |||
| accessTokenProvider func() (string, error) | |||
| } | |||
| // NewAccessTokenConnector creates a new connector from a DSN and a token provider. | |||
| // The token provider func will be called when a new connection is requested and should return a valid access token. | |||
| // The returned connector may be used with sql.OpenDB. | |||
| func NewAccessTokenConnector(dsn string, tokenProvider func() (string, error)) (driver.Connector, error) { | |||
| if tokenProvider == nil { | |||
| return nil, errors.New("mssql: tokenProvider cannot be nil") | |||
| } | |||
| conn, err := NewConnector(dsn) | |||
| if err != nil { | |||
| return nil, err | |||
| } | |||
| c := &accessTokenConnector{ | |||
| Connector: *conn, | |||
| accessTokenProvider: tokenProvider, | |||
| } | |||
| return c, nil | |||
| } | |||
| // Connect returns a new database connection | |||
| func (c *accessTokenConnector) Connect(ctx context.Context) (driver.Conn, error) { | |||
| var err error | |||
| c.Connector.params.fedAuthAccessToken, err = c.accessTokenProvider() | |||
| if err != nil { | |||
| return nil, fmt.Errorf("mssql: error retrieving access token: %+v", err) | |||
| } | |||
| return c.Connector.Connect(ctx) | |||
| } | |||
| @@ -37,6 +37,7 @@ type connectParams struct { | |||
| failOverPartner string | |||
| failOverPort uint64 | |||
| packetSize uint16 | |||
| fedAuthAccessToken string | |||
| } | |||
| func parseConnectParams(dsn string) (connectParams, error) { | |||
| @@ -397,7 +397,10 @@ func (s *Stmt) Close() error { | |||
| } | |||
| func (s *Stmt) SetQueryNotification(id, options string, timeout time.Duration) { | |||
| to := uint32(timeout / time.Second) | |||
| // 2.2.5.3.1 Query Notifications Header | |||
| // https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/e168d373-a7b7-41aa-b6ca-25985466a7e0 | |||
| // Timeout in milliseconds in TDS protocol. | |||
| to := uint32(timeout / time.Millisecond) | |||
| if to < 1 { | |||
| to = 1 | |||
| } | |||
| @@ -4,11 +4,14 @@ package mssql | |||
| import ( | |||
| "crypto/des" | |||
| "crypto/hmac" | |||
| "crypto/md5" | |||
| "crypto/rand" | |||
| "encoding/binary" | |||
| "errors" | |||
| "fmt" | |||
| "strings" | |||
| "time" | |||
| "unicode/utf16" | |||
| "golang.org/x/crypto/md4" | |||
| @@ -198,86 +201,204 @@ func ntlmSessionResponse(clientNonce [8]byte, serverChallenge [8]byte, password | |||
| return response(hash, passwordHash) | |||
| } | |||
| func (auth *ntlmAuth) NextBytes(bytes []byte) ([]byte, error) { | |||
| if string(bytes[0:8]) != "NTLMSSP\x00" { | |||
| return nil, errorNTLM | |||
| func ntlmHashNoPadding(val string) []byte { | |||
| hash := make([]byte, 16) | |||
| h := md4.New() | |||
| h.Write(utf16le(val)) | |||
| h.Sum(hash[:0]) | |||
| return hash | |||
| } | |||
| func hmacMD5(passwordHash, data []byte) []byte { | |||
| hmacEntity := hmac.New(md5.New, passwordHash) | |||
| hmacEntity.Write(data) | |||
| return hmacEntity.Sum(nil) | |||
| } | |||
| func getNTLMv2AndLMv2ResponsePayloads(userDomain, username, password string, challenge, nonce [8]byte, targetInfoFields []byte, timestamp time.Time) (ntlmV2Payload, lmV2Payload []byte) { | |||
| // NTLMv2 response payload: http://davenport.sourceforge.net/ntlm.html#theNtlmv2Response | |||
| ntlmHash := ntlmHashNoPadding(password) | |||
| usernameAndTargetBytes := utf16le(strings.ToUpper(username) + userDomain) | |||
| ntlmV2Hash := hmacMD5(ntlmHash, usernameAndTargetBytes) | |||
| targetInfoLength := len(targetInfoFields) | |||
| blob := make([]byte, 32+targetInfoLength) | |||
| binary.BigEndian.PutUint32(blob[:4], 0x01010000) | |||
| binary.BigEndian.PutUint32(blob[4:8], 0x00000000) | |||
| binary.BigEndian.PutUint64(blob[8:16], uint64(timestamp.UnixNano())) | |||
| copy(blob[16:24], nonce[:]) | |||
| binary.BigEndian.PutUint32(blob[24:28], 0x00000000) | |||
| copy(blob[28:], targetInfoFields) | |||
| binary.BigEndian.PutUint32(blob[28+targetInfoLength:], 0x00000000) | |||
| challengeLength := len(challenge) | |||
| blobLength := len(blob) | |||
| challengeAndBlob := make([]byte, challengeLength+blobLength) | |||
| copy(challengeAndBlob[:challengeLength], challenge[:]) | |||
| copy(challengeAndBlob[challengeLength:], blob) | |||
| hashedChallenge := hmacMD5(ntlmV2Hash, challengeAndBlob) | |||
| ntlmV2Payload = append(hashedChallenge, blob...) | |||
| // LMv2 response payload: http://davenport.sourceforge.net/ntlm.html#theLmv2Response | |||
| ntlmV2hash := hmacMD5(ntlmHash, usernameAndTargetBytes) | |||
| challengeAndNonce := make([]byte, 16) | |||
| copy(challengeAndNonce[:8], challenge[:]) | |||
| copy(challengeAndNonce[8:], nonce[:]) | |||
| hashedChallenge = hmacMD5(ntlmV2hash, challengeAndNonce) | |||
| lmV2Payload = append(hashedChallenge, nonce[:]...) | |||
| return | |||
| } | |||
| func negotiateExtendedSessionSecurity(flags uint32, message []byte, challenge [8]byte, username, password, userDom string) (lm, nt []byte, err error) { | |||
| nonce := clientChallenge() | |||
| // Official specification: https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/b38c36ed-2804-4868-a9ff-8dd3182128e4 | |||
| // Unofficial walk through referenced by https://www.freetds.org/userguide/domains.htm: http://davenport.sourceforge.net/ntlm.html | |||
| if (flags & _NEGOTIATE_TARGET_INFO) != 0 { | |||
| targetInfoFields, err := getNTLMv2TargetInfoFields(message) | |||
| if err != nil { | |||
| return lm, nt, err | |||
| } | |||
| nt, lm = getNTLMv2AndLMv2ResponsePayloads(userDom, username, password, challenge, nonce, targetInfoFields, time.Now()) | |||
| return lm, nt, nil | |||
| } | |||
| if binary.LittleEndian.Uint32(bytes[8:12]) != _CHALLENGE_MESSAGE { | |||
| return nil, errorNTLM | |||
| var lm_bytes [24]byte | |||
| copy(lm_bytes[:8], nonce[:]) | |||
| lm = lm_bytes[:] | |||
| nt_bytes := ntlmSessionResponse(nonce, challenge, password) | |||
| nt = nt_bytes[:] | |||
| return lm, nt, nil | |||
| } | |||
| func getNTLMv2TargetInfoFields(type2Message []byte) (info []byte, err error) { | |||
| type2MessageError := "mssql: while parsing NTLMv2 type 2 message, length %d too small for offset %d" | |||
| type2MessageLength := len(type2Message) | |||
| if type2MessageLength < 20 { | |||
| return nil, fmt.Errorf(type2MessageError, type2MessageLength, 20) | |||
| } | |||
| flags := binary.LittleEndian.Uint32(bytes[20:24]) | |||
| var challenge [8]byte | |||
| copy(challenge[:], bytes[24:32]) | |||
| var lm, nt []byte | |||
| if (flags & _NEGOTIATE_EXTENDED_SESSIONSECURITY) != 0 { | |||
| nonce := clientChallenge() | |||
| var lm_bytes [24]byte | |||
| copy(lm_bytes[:8], nonce[:]) | |||
| lm = lm_bytes[:] | |||
| nt_bytes := ntlmSessionResponse(nonce, challenge, auth.Password) | |||
| nt = nt_bytes[:] | |||
| } else { | |||
| lm_bytes := lmResponse(challenge, auth.Password) | |||
| lm = lm_bytes[:] | |||
| nt_bytes := ntResponse(challenge, auth.Password) | |||
| nt = nt_bytes[:] | |||
| targetNameAllocated := binary.LittleEndian.Uint16(type2Message[14:16]) | |||
| targetNameOffset := binary.LittleEndian.Uint32(type2Message[16:20]) | |||
| endOfOffset := int(targetNameOffset + uint32(targetNameAllocated)) | |||
| if type2MessageLength < endOfOffset { | |||
| return nil, fmt.Errorf(type2MessageError, type2MessageLength, endOfOffset) | |||
| } | |||
| targetInformationAllocated := binary.LittleEndian.Uint16(type2Message[42:44]) | |||
| targetInformationDataOffset := binary.LittleEndian.Uint32(type2Message[44:48]) | |||
| endOfOffset = int(targetInformationDataOffset + uint32(targetInformationAllocated)) | |||
| if type2MessageLength < endOfOffset { | |||
| return nil, fmt.Errorf(type2MessageError, type2MessageLength, endOfOffset) | |||
| } | |||
| targetInformationBytes := make([]byte, targetInformationAllocated) | |||
| copy(targetInformationBytes, type2Message[targetInformationDataOffset:targetInformationDataOffset+uint32(targetInformationAllocated)]) | |||
| return targetInformationBytes, nil | |||
| } | |||
| func buildNTLMResponsePayload(lm, nt []byte, flags uint32, domain, workstation, username string) ([]byte, error) { | |||
| lm_len := len(lm) | |||
| nt_len := len(nt) | |||
| domain16 := utf16le(auth.Domain) | |||
| domain16 := utf16le(domain) | |||
| domain_len := len(domain16) | |||
| user16 := utf16le(auth.UserName) | |||
| user16 := utf16le(username) | |||
| user_len := len(user16) | |||
| workstation16 := utf16le(auth.Workstation) | |||
| workstation16 := utf16le(workstation) | |||
| workstation_len := len(workstation16) | |||
| msg := make([]byte, 88+lm_len+nt_len+domain_len+user_len+workstation_len) | |||
| copy(msg, []byte("NTLMSSP\x00")) | |||
| binary.LittleEndian.PutUint32(msg[8:], _AUTHENTICATE_MESSAGE) | |||
| // Lm Challenge Response Fields | |||
| binary.LittleEndian.PutUint16(msg[12:], uint16(lm_len)) | |||
| binary.LittleEndian.PutUint16(msg[14:], uint16(lm_len)) | |||
| binary.LittleEndian.PutUint32(msg[16:], 88) | |||
| // Nt Challenge Response Fields | |||
| binary.LittleEndian.PutUint16(msg[20:], uint16(nt_len)) | |||
| binary.LittleEndian.PutUint16(msg[22:], uint16(nt_len)) | |||
| binary.LittleEndian.PutUint32(msg[24:], uint32(88+lm_len)) | |||
| // Domain Name Fields | |||
| binary.LittleEndian.PutUint16(msg[28:], uint16(domain_len)) | |||
| binary.LittleEndian.PutUint16(msg[30:], uint16(domain_len)) | |||
| binary.LittleEndian.PutUint32(msg[32:], uint32(88+lm_len+nt_len)) | |||
| // User Name Fields | |||
| binary.LittleEndian.PutUint16(msg[36:], uint16(user_len)) | |||
| binary.LittleEndian.PutUint16(msg[38:], uint16(user_len)) | |||
| binary.LittleEndian.PutUint32(msg[40:], uint32(88+lm_len+nt_len+domain_len)) | |||
| // Workstation Fields | |||
| binary.LittleEndian.PutUint16(msg[44:], uint16(workstation_len)) | |||
| binary.LittleEndian.PutUint16(msg[46:], uint16(workstation_len)) | |||
| binary.LittleEndian.PutUint32(msg[48:], uint32(88+lm_len+nt_len+domain_len+user_len)) | |||
| // Encrypted Random Session Key Fields | |||
| binary.LittleEndian.PutUint16(msg[52:], 0) | |||
| binary.LittleEndian.PutUint16(msg[54:], 0) | |||
| binary.LittleEndian.PutUint32(msg[56:], uint32(88+lm_len+nt_len+domain_len+user_len+workstation_len)) | |||
| // Negotiate Flags | |||
| binary.LittleEndian.PutUint32(msg[60:], flags) | |||
| // Version | |||
| binary.LittleEndian.PutUint32(msg[64:], 0) | |||
| binary.LittleEndian.PutUint32(msg[68:], 0) | |||
| // MIC | |||
| binary.LittleEndian.PutUint32(msg[72:], 0) | |||
| binary.LittleEndian.PutUint32(msg[76:], 0) | |||
| binary.LittleEndian.PutUint32(msg[88:], 0) | |||
| binary.LittleEndian.PutUint32(msg[84:], 0) | |||
| // Payload | |||
| copy(msg[88:], lm) | |||
| copy(msg[88+lm_len:], nt) | |||
| copy(msg[88+lm_len+nt_len:], domain16) | |||
| copy(msg[88+lm_len+nt_len+domain_len:], user16) | |||
| copy(msg[88+lm_len+nt_len+domain_len+user_len:], workstation16) | |||
| return msg, nil | |||
| } | |||
| func (auth *ntlmAuth) NextBytes(bytes []byte) ([]byte, error) { | |||
| signature := string(bytes[0:8]) | |||
| if signature != "NTLMSSP\x00" { | |||
| return nil, errorNTLM | |||
| } | |||
| messageTypeIndicator := binary.LittleEndian.Uint32(bytes[8:12]) | |||
| if messageTypeIndicator != _CHALLENGE_MESSAGE { | |||
| return nil, errorNTLM | |||
| } | |||
| var challenge [8]byte | |||
| copy(challenge[:], bytes[24:32]) | |||
| flags := binary.LittleEndian.Uint32(bytes[20:24]) | |||
| if (flags & _NEGOTIATE_EXTENDED_SESSIONSECURITY) != 0 { | |||
| lm, nt, err := negotiateExtendedSessionSecurity(flags, bytes, challenge, auth.UserName, auth.Password, auth.Domain) | |||
| if err != nil { | |||
| return nil, err | |||
| } | |||
| return buildNTLMResponsePayload(lm, nt, flags, auth.Domain, auth.Workstation, auth.UserName) | |||
| } | |||
| lm_bytes := lmResponse(challenge, auth.Password) | |||
| lm := lm_bytes[:] | |||
| nt_bytes := ntResponse(challenge, auth.Password) | |||
| nt := nt_bytes[:] | |||
| return buildNTLMResponsePayload(lm, nt, flags, auth.Domain, auth.Workstation, auth.UserName) | |||
| } | |||
| func (auth *ntlmAuth) Free() { | |||
| } | |||
| @@ -100,13 +100,15 @@ const ( | |||
| // prelogin fields | |||
| // http://msdn.microsoft.com/en-us/library/dd357559.aspx | |||
| const ( | |||
| preloginVERSION = 0 | |||
| preloginENCRYPTION = 1 | |||
| preloginINSTOPT = 2 | |||
| preloginTHREADID = 3 | |||
| preloginMARS = 4 | |||
| preloginTRACEID = 5 | |||
| preloginTERMINATOR = 0xff | |||
| preloginVERSION = 0 | |||
| preloginENCRYPTION = 1 | |||
| preloginINSTOPT = 2 | |||
| preloginTHREADID = 3 | |||
| preloginMARS = 4 | |||
| preloginTRACEID = 5 | |||
| preloginFEDAUTHREQUIRED = 6 | |||
| preloginNONCEOPT = 7 | |||
| preloginTERMINATOR = 0xff | |||
| ) | |||
| const ( | |||
| @@ -245,6 +247,12 @@ const ( | |||
| fReadOnlyIntent = 32 | |||
| ) | |||
| // OptionFlags3 | |||
| // https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/773a62b6-ee89-4c02-9e5e-344882630aac | |||
| const ( | |||
| fExtension = 0x10 | |||
| ) | |||
| type login struct { | |||
| TDSVersion uint32 | |||
| PacketSize uint32 | |||
| @@ -269,6 +277,89 @@ type login struct { | |||
| SSPI []byte | |||
| AtchDBFile string | |||
| ChangePassword string | |||
| FeatureExt featureExts | |||
| } | |||
| type featureExts struct { | |||
| features map[byte]featureExt | |||
| } | |||
| type featureExt interface { | |||
| featureID() byte | |||
| toBytes() []byte | |||
| } | |||
| func (e *featureExts) Add(f featureExt) error { | |||
| if f == nil { | |||
| return nil | |||
| } | |||
| id := f.featureID() | |||
| if _, exists := e.features[id]; exists { | |||
| f := "Login error: Feature with ID '%v' is already present in FeatureExt block." | |||
| return fmt.Errorf(f, id) | |||
| } | |||
| if e.features == nil { | |||
| e.features = make(map[byte]featureExt) | |||
| } | |||
| e.features[id] = f | |||
| return nil | |||
| } | |||
| func (e featureExts) toBytes() []byte { | |||
| if len(e.features) == 0 { | |||
| return nil | |||
| } | |||
| var d []byte | |||
| for featureID, f := range e.features { | |||
| featureData := f.toBytes() | |||
| hdr := make([]byte, 5) | |||
| hdr[0] = featureID // FedAuth feature extension BYTE | |||
| binary.LittleEndian.PutUint32(hdr[1:], uint32(len(featureData))) // FeatureDataLen DWORD | |||
| d = append(d, hdr...) | |||
| d = append(d, featureData...) // FeatureData *BYTE | |||
| } | |||
| if d != nil { | |||
| d = append(d, 0xff) // Terminator | |||
| } | |||
| return d | |||
| } | |||
| type featureExtFedAuthSTS struct { | |||
| FedAuthEcho bool | |||
| FedAuthToken string | |||
| Nonce []byte | |||
| } | |||
| func (e *featureExtFedAuthSTS) featureID() byte { | |||
| return 0x02 | |||
| } | |||
| func (e *featureExtFedAuthSTS) toBytes() []byte { | |||
| if e == nil { | |||
| return nil | |||
| } | |||
| options := byte(0x01) << 1 // 0x01 => STS bFedAuthLibrary 7BIT | |||
| if e.FedAuthEcho { | |||
| options |= 1 // fFedAuthEcho | |||
| } | |||
| d := make([]byte, 5) | |||
| d[0] = options | |||
| // looks like string in | |||
| // https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/f88b63bb-b479-49e1-a87b-deda521da508 | |||
| tokenBytes := str2ucs2(e.FedAuthToken) | |||
| binary.LittleEndian.PutUint32(d[1:], uint32(len(tokenBytes))) // Should be a signed int32, but since the length is relatively small, this should work | |||
| d = append(d, tokenBytes...) | |||
| if len(e.Nonce) == 32 { | |||
| d = append(d, e.Nonce...) | |||
| } | |||
| return d | |||
| } | |||
| type loginHeader struct { | |||
| @@ -295,7 +386,7 @@ type loginHeader struct { | |||
| ServerNameOffset uint16 | |||
| ServerNameLength uint16 | |||
| ExtensionOffset uint16 | |||
| ExtensionLenght uint16 | |||
| ExtensionLength uint16 | |||
| CtlIntNameOffset uint16 | |||
| CtlIntNameLength uint16 | |||
| LanguageOffset uint16 | |||
| @@ -357,6 +448,8 @@ func sendLogin(w *tdsBuffer, login login) error { | |||
| database := str2ucs2(login.Database) | |||
| atchdbfile := str2ucs2(login.AtchDBFile) | |||
| changepassword := str2ucs2(login.ChangePassword) | |||
| featureExt := login.FeatureExt.toBytes() | |||
| hdr := loginHeader{ | |||
| TDSVersion: login.TDSVersion, | |||
| PacketSize: login.PacketSize, | |||
| @@ -405,7 +498,18 @@ func sendLogin(w *tdsBuffer, login login) error { | |||
| offset += uint16(len(atchdbfile)) | |||
| hdr.ChangePasswordOffset = offset | |||
| offset += uint16(len(changepassword)) | |||
| hdr.Length = uint32(offset) | |||
| featureExtOffset := uint32(0) | |||
| featureExtLen := len(featureExt) | |||
| if featureExtLen > 0 { | |||
| hdr.OptionFlags3 |= fExtension | |||
| hdr.ExtensionOffset = offset | |||
| hdr.ExtensionLength = 4 | |||
| offset += hdr.ExtensionLength // DWORD | |||
| featureExtOffset = uint32(offset) | |||
| } | |||
| hdr.Length = uint32(offset) + uint32(featureExtLen) | |||
| var err error | |||
| err = binary.Write(w, binary.LittleEndian, &hdr) | |||
| if err != nil { | |||
| @@ -455,6 +559,16 @@ func sendLogin(w *tdsBuffer, login login) error { | |||
| if err != nil { | |||
| return err | |||
| } | |||
| if featureExtOffset > 0 { | |||
| err = binary.Write(w, binary.LittleEndian, featureExtOffset) | |||
| if err != nil { | |||
| return err | |||
| } | |||
| _, err = w.Write(featureExt) | |||
| if err != nil { | |||
| return err | |||
| } | |||
| } | |||
| return w.FinishPacket() | |||
| } | |||
| @@ -844,15 +958,23 @@ initiate_connection: | |||
| AppName: p.appname, | |||
| TypeFlags: p.typeFlags, | |||
| } | |||
| auth, auth_ok := getAuth(p.user, p.password, p.serverSPN, p.workstation) | |||
| if auth_ok { | |||
| auth, authOk := getAuth(p.user, p.password, p.serverSPN, p.workstation) | |||
| switch { | |||
| case p.fedAuthAccessToken != "": // accesstoken ignores user/password | |||
| featurext := &featureExtFedAuthSTS{ | |||
| FedAuthEcho: len(fields[preloginFEDAUTHREQUIRED]) > 0 && fields[preloginFEDAUTHREQUIRED][0] == 1, | |||
| FedAuthToken: p.fedAuthAccessToken, | |||
| Nonce: fields[preloginNONCEOPT], | |||
| } | |||
| login.FeatureExt.Add(featurext) | |||
| case authOk: | |||
| login.SSPI, err = auth.InitialBytes() | |||
| if err != nil { | |||
| return nil, err | |||
| } | |||
| login.OptionFlags2 |= fIntSecurity | |||
| defer auth.Free() | |||
| } else { | |||
| default: | |||
| login.UserName = p.user | |||
| login.Password = p.password | |||
| } | |||
| @@ -17,20 +17,21 @@ type token byte | |||
| // token ids | |||
| const ( | |||
| tokenReturnStatus token = 121 // 0x79 | |||
| tokenColMetadata token = 129 // 0x81 | |||
| tokenOrder token = 169 // 0xA9 | |||
| tokenError token = 170 // 0xAA | |||
| tokenInfo token = 171 // 0xAB | |||
| tokenReturnValue token = 0xAC | |||
| tokenLoginAck token = 173 // 0xad | |||
| tokenRow token = 209 // 0xd1 | |||
| tokenNbcRow token = 210 // 0xd2 | |||
| tokenEnvChange token = 227 // 0xE3 | |||
| tokenSSPI token = 237 // 0xED | |||
| tokenDone token = 253 // 0xFD | |||
| tokenDoneProc token = 254 | |||
| tokenDoneInProc token = 255 | |||
| tokenReturnStatus token = 121 // 0x79 | |||
| tokenColMetadata token = 129 // 0x81 | |||
| tokenOrder token = 169 // 0xA9 | |||
| tokenError token = 170 // 0xAA | |||
| tokenInfo token = 171 // 0xAB | |||
| tokenReturnValue token = 0xAC | |||
| tokenLoginAck token = 173 // 0xad | |||
| tokenFeatureExtAck token = 174 // 0xae | |||
| tokenRow token = 209 // 0xd1 | |||
| tokenNbcRow token = 210 // 0xd2 | |||
| tokenEnvChange token = 227 // 0xE3 | |||
| tokenSSPI token = 237 // 0xED | |||
| tokenDone token = 253 // 0xFD | |||
| tokenDoneProc token = 254 | |||
| tokenDoneInProc token = 255 | |||
| ) | |||
| // done flags | |||
| @@ -447,6 +448,22 @@ func parseLoginAck(r *tdsBuffer) loginAckStruct { | |||
| return res | |||
| } | |||
| // https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-tds/2eb82f8e-11f0-46dc-b42d-27302fa4701a | |||
| func parseFeatureExtAck(r *tdsBuffer) { | |||
| // at most 1 featureAck per feature in featureExt | |||
| // go-mssqldb will add at most 1 feature, the spec defines 7 different features | |||
| for i := 0; i < 8; i++ { | |||
| featureID := r.byte() // FeatureID | |||
| if featureID == 0xff { | |||
| return | |||
| } | |||
| size := r.uint32() // FeatureAckDataLen | |||
| d := make([]byte, size) | |||
| r.ReadFull(d) | |||
| } | |||
| panic("parsed more than 7 featureAck's, protocol implementation error?") | |||
| } | |||
| // http://msdn.microsoft.com/en-us/library/dd357363.aspx | |||
| func parseColMetadata72(r *tdsBuffer) (columns []columnStruct) { | |||
| count := r.uint16() | |||
| @@ -577,6 +594,8 @@ func processSingleResponse(sess *tdsSession, ch chan tokenStruct, outs map[strin | |||
| case tokenLoginAck: | |||
| loginAck := parseLoginAck(sess.buf) | |||
| ch <- loginAck | |||
| case tokenFeatureExtAck: | |||
| parseFeatureExtAck(sess.buf) | |||
| case tokenOrder: | |||
| order := parseOrder(sess.buf) | |||
| ch <- order | |||
| @@ -5,6 +5,8 @@ | |||
| // Package blake2b implements the BLAKE2b hash algorithm defined by RFC 7693 | |||
| // and the extendable output function (XOF) BLAKE2Xb. | |||
| // | |||
| // BLAKE2b is optimized for 64-bit platforms—including NEON-enabled ARMs—and | |||
| // produces digests of any size between 1 and 64 bytes. | |||
| // For a detailed specification of BLAKE2b see https://blake2.net/blake2.pdf | |||
| // and for BLAKE2Xb see https://blake2.net/blake2x.pdf | |||
| // | |||
| @@ -42,10 +42,14 @@ type Cipher struct { | |||
| // The last len bytes of buf are leftover key stream bytes from the previous | |||
| // XORKeyStream invocation. The size of buf depends on how many blocks are | |||
| // computed at a time. | |||
| // computed at a time by xorKeyStreamBlocks. | |||
| buf [bufSize]byte | |||
| len int | |||
| // overflow is set when the counter overflowed, no more blocks can be | |||
| // generated, and the next XORKeyStream call should panic. | |||
| overflow bool | |||
| // The counter-independent results of the first round are cached after they | |||
| // are computed the first time. | |||
| precompDone bool | |||
| @@ -89,6 +93,7 @@ func newUnauthenticatedCipher(c *Cipher, key, nonce []byte) (*Cipher, error) { | |||
| return nil, errors.New("chacha20: wrong nonce size") | |||
| } | |||
| key, nonce = key[:KeySize], nonce[:NonceSize] // bounds check elimination hint | |||
| c.key = [8]uint32{ | |||
| binary.LittleEndian.Uint32(key[0:4]), | |||
| binary.LittleEndian.Uint32(key[4:8]), | |||
| @@ -139,15 +144,18 @@ func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) { | |||
| // SetCounter sets the Cipher counter. The next invocation of XORKeyStream will | |||
| // behave as if (64 * counter) bytes had been encrypted so far. | |||
| // | |||
| // To prevent accidental counter reuse, SetCounter panics if counter is | |||
| // less than the current value. | |||
| // To prevent accidental counter reuse, SetCounter panics if counter is less | |||
| // than the current value. | |||
| // | |||
| // Note that the execution time of XORKeyStream is not independent of the | |||
| // counter value. | |||
| func (s *Cipher) SetCounter(counter uint32) { | |||
| // Internally, s may buffer multiple blocks, which complicates this | |||
| // implementation slightly. When checking whether the counter has rolled | |||
| // back, we must use both s.counter and s.len to determine how many blocks | |||
| // we have already output. | |||
| outputCounter := s.counter - uint32(s.len)/blockSize | |||
| if counter < outputCounter { | |||
| if s.overflow || counter < outputCounter { | |||
| panic("chacha20: SetCounter attempted to rollback counter") | |||
| } | |||
| @@ -196,34 +204,52 @@ func (s *Cipher) XORKeyStream(dst, src []byte) { | |||
| dst[i] = src[i] ^ b | |||
| } | |||
| s.len -= len(keyStream) | |||
| src = src[len(keyStream):] | |||
| dst = dst[len(keyStream):] | |||
| dst, src = dst[len(keyStream):], src[len(keyStream):] | |||
| } | |||
| if len(src) == 0 { | |||
| return | |||
| } | |||
| const blocksPerBuf = bufSize / blockSize | |||
| numBufs := (uint64(len(src)) + bufSize - 1) / bufSize | |||
| if uint64(s.counter)+numBufs*blocksPerBuf >= 1<<32 { | |||
| // If we'd need to let the counter overflow and keep generating output, | |||
| // panic immediately. If instead we'd only reach the last block, remember | |||
| // not to generate any more output after the buffer is drained. | |||
| numBlocks := (uint64(len(src)) + blockSize - 1) / blockSize | |||
| if s.overflow || uint64(s.counter)+numBlocks > 1<<32 { | |||
| panic("chacha20: counter overflow") | |||
| } else if uint64(s.counter)+numBlocks == 1<<32 { | |||
| s.overflow = true | |||
| } | |||
| // xorKeyStreamBlocks implementations expect input lengths that are a | |||
| // multiple of bufSize. Platform-specific ones process multiple blocks at a | |||
| // time, so have bufSizes that are a multiple of blockSize. | |||
| rem := len(src) % bufSize | |||
| full := len(src) - rem | |||
| full := len(src) - len(src)%bufSize | |||
| if full > 0 { | |||
| s.xorKeyStreamBlocks(dst[:full], src[:full]) | |||
| } | |||
| dst, src = dst[full:], src[full:] | |||
| // If using a multi-block xorKeyStreamBlocks would overflow, use the generic | |||
| // one that does one block at a time. | |||
| const blocksPerBuf = bufSize / blockSize | |||
| if uint64(s.counter)+blocksPerBuf > 1<<32 { | |||
| s.buf = [bufSize]byte{} | |||
| numBlocks := (len(src) + blockSize - 1) / blockSize | |||
| buf := s.buf[bufSize-numBlocks*blockSize:] | |||
| copy(buf, src) | |||
| s.xorKeyStreamBlocksGeneric(buf, buf) | |||
| s.len = len(buf) - copy(dst, buf) | |||
| return | |||
| } | |||
| // If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and | |||
| // keep the leftover keystream for the next XORKeyStream invocation. | |||
| if rem > 0 { | |||
| if len(src) > 0 { | |||
| s.buf = [bufSize]byte{} | |||
| copy(s.buf[:], src[full:]) | |||
| copy(s.buf[:], src) | |||
| s.xorKeyStreamBlocks(s.buf[:], s.buf[:]) | |||
| s.len = bufSize - copy(dst[full:], s.buf[:]) | |||
| s.len = bufSize - copy(dst, s.buf[:]) | |||
| } | |||
| } | |||
| @@ -260,7 +286,9 @@ func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) { | |||
| s.precompDone = true | |||
| } | |||
| for i := 0; i < len(src); i += blockSize { | |||
| // A condition of len(src) > 0 would be sufficient, but this also | |||
| // acts as a bounds check elimination hint. | |||
| for len(src) >= 64 && len(dst) >= 64 { | |||
| // The remainder of the first column round. | |||
| fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter) | |||
| @@ -285,49 +313,28 @@ func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) { | |||
| x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14) | |||
| } | |||
| // Finally, add back the initial state to generate the key stream. | |||
| x0 += c0 | |||
| x1 += c1 | |||
| x2 += c2 | |||
| x3 += c3 | |||
| x4 += c4 | |||
| x5 += c5 | |||
| x6 += c6 | |||
| x7 += c7 | |||
| x8 += c8 | |||
| x9 += c9 | |||
| x10 += c10 | |||
| x11 += c11 | |||
| x12 += s.counter | |||
| x13 += c13 | |||
| x14 += c14 | |||
| x15 += c15 | |||
| // Add back the initial state to generate the key stream, then | |||
| // XOR the key stream with the source and write out the result. | |||
| addXor(dst[0:4], src[0:4], x0, c0) | |||
| addXor(dst[4:8], src[4:8], x1, c1) | |||
| addXor(dst[8:12], src[8:12], x2, c2) | |||
| addXor(dst[12:16], src[12:16], x3, c3) | |||
| addXor(dst[16:20], src[16:20], x4, c4) | |||
| addXor(dst[20:24], src[20:24], x5, c5) | |||
| addXor(dst[24:28], src[24:28], x6, c6) | |||
| addXor(dst[28:32], src[28:32], x7, c7) | |||
| addXor(dst[32:36], src[32:36], x8, c8) | |||
| addXor(dst[36:40], src[36:40], x9, c9) | |||
| addXor(dst[40:44], src[40:44], x10, c10) | |||
| addXor(dst[44:48], src[44:48], x11, c11) | |||
| addXor(dst[48:52], src[48:52], x12, s.counter) | |||
| addXor(dst[52:56], src[52:56], x13, c13) | |||
| addXor(dst[56:60], src[56:60], x14, c14) | |||
| addXor(dst[60:64], src[60:64], x15, c15) | |||
| s.counter += 1 | |||
| if s.counter == 0 { | |||
| panic("chacha20: internal error: counter overflow") | |||
| } | |||
| in, out := src[i:], dst[i:] | |||
| in, out = in[:blockSize], out[:blockSize] // bounds check elimination hint | |||
| // XOR the key stream with the source and write out the result. | |||
| xor(out[0:], in[0:], x0) | |||
| xor(out[4:], in[4:], x1) | |||
| xor(out[8:], in[8:], x2) | |||
| xor(out[12:], in[12:], x3) | |||
| xor(out[16:], in[16:], x4) | |||
| xor(out[20:], in[20:], x5) | |||
| xor(out[24:], in[24:], x6) | |||
| xor(out[28:], in[28:], x7) | |||
| xor(out[32:], in[32:], x8) | |||
| xor(out[36:], in[36:], x9) | |||
| xor(out[40:], in[40:], x10) | |||
| xor(out[44:], in[44:], x11) | |||
| xor(out[48:], in[48:], x12) | |||
| xor(out[52:], in[52:], x13) | |||
| xor(out[56:], in[56:], x14) | |||
| xor(out[60:], in[60:], x15) | |||
| src, dst = src[blockSize:], dst[blockSize:] | |||
| } | |||
| } | |||
| @@ -13,10 +13,10 @@ const unaligned = runtime.GOARCH == "386" || | |||
| runtime.GOARCH == "ppc64le" || | |||
| runtime.GOARCH == "s390x" | |||
| // xor reads a little endian uint32 from src, XORs it with u and | |||
| // addXor reads a little endian uint32 from src, XORs it with (a + b) and | |||
| // places the result in little endian byte order in dst. | |||
| func xor(dst, src []byte, u uint32) { | |||
| _, _ = src[3], dst[3] // eliminate bounds checks | |||
| func addXor(dst, src []byte, a, b uint32) { | |||
| _, _ = src[3], dst[3] // bounds check elimination hint | |||
| if unaligned { | |||
| // The compiler should optimize this code into | |||
| // 32-bit unaligned little endian loads and stores. | |||
| @@ -27,15 +27,16 @@ func xor(dst, src []byte, u uint32) { | |||
| v |= uint32(src[1]) << 8 | |||
| v |= uint32(src[2]) << 16 | |||
| v |= uint32(src[3]) << 24 | |||
| v ^= u | |||
| v ^= a + b | |||
| dst[0] = byte(v) | |||
| dst[1] = byte(v >> 8) | |||
| dst[2] = byte(v >> 16) | |||
| dst[3] = byte(v >> 24) | |||
| } else { | |||
| dst[0] = src[0] ^ byte(u) | |||
| dst[1] = src[1] ^ byte(u>>8) | |||
| dst[2] = src[2] ^ byte(u>>16) | |||
| dst[3] = src[3] ^ byte(u>>24) | |||
| a += b | |||
| dst[0] = src[0] ^ byte(a) | |||
| dst[1] = src[1] ^ byte(a>>8) | |||
| dst[2] = src[2] ^ byte(a>>16) | |||
| dst[3] = src[3] ^ byte(a>>24) | |||
| } | |||
| } | |||
| @@ -2,10 +2,8 @@ | |||
| // Use of this source code is governed by a BSD-style | |||
| // license that can be found in the LICENSE file. | |||
| // +build !amd64,!ppc64le gccgo purego | |||
| // +build !amd64,!ppc64le,!s390x gccgo purego | |||
| package poly1305 | |||
| type mac struct{ macGeneric } | |||
| func newMAC(key *[32]byte) mac { return mac{newMACGeneric(key)} } | |||
| @@ -26,7 +26,9 @@ const TagSize = 16 | |||
| // 16-byte result into out. Authenticating two different messages with the same | |||
| // key allows an attacker to forge messages at will. | |||
| func Sum(out *[16]byte, m []byte, key *[32]byte) { | |||
| sum(out, m, key) | |||
| h := New(key) | |||
| h.Write(m) | |||
| h.Sum(out[:0]) | |||
| } | |||
| // Verify returns true if mac is a valid authenticator for m with the given key. | |||
| @@ -46,10 +48,9 @@ func Verify(mac *[16]byte, m []byte, key *[32]byte) bool { | |||
| // two different messages with the same key allows an attacker | |||
| // to forge messages at will. | |||
| func New(key *[32]byte) *MAC { | |||
| return &MAC{ | |||
| mac: newMAC(key), | |||
| finalized: false, | |||
| } | |||
| m := &MAC{} | |||
| initialize(key, &m.macState) | |||
| return m | |||
| } | |||
| // MAC is an io.Writer computing an authentication tag | |||
| @@ -58,7 +59,7 @@ func New(key *[32]byte) *MAC { | |||
| // MAC cannot be used like common hash.Hash implementations, | |||
| // because using a poly1305 key twice breaks its security. | |||
| // Therefore writing data to a running MAC after calling | |||
| // Sum causes it to panic. | |||
| // Sum or Verify causes it to panic. | |||
| type MAC struct { | |||
| mac // platform-dependent implementation | |||
| @@ -71,10 +72,10 @@ func (h *MAC) Size() int { return TagSize } | |||
| // Write adds more data to the running message authentication code. | |||
| // It never returns an error. | |||
| // | |||
| // It must not be called after the first call of Sum. | |||
| // It must not be called after the first call of Sum or Verify. | |||
| func (h *MAC) Write(p []byte) (n int, err error) { | |||
| if h.finalized { | |||
| panic("poly1305: write to MAC after Sum") | |||
| panic("poly1305: write to MAC after Sum or Verify") | |||
| } | |||
| return h.mac.Write(p) | |||
| } | |||
| @@ -87,3 +88,12 @@ func (h *MAC) Sum(b []byte) []byte { | |||
| h.finalized = true | |||
| return append(b, mac[:]...) | |||
| } | |||
| // Verify returns whether the authenticator of all data written to | |||
| // the message authentication code matches the expected value. | |||
| func (h *MAC) Verify(expected []byte) bool { | |||
| var mac [TagSize]byte | |||
| h.mac.Sum(&mac) | |||
| h.finalized = true | |||
| return subtle.ConstantTimeCompare(expected, mac[:]) == 1 | |||
| } | |||
| @@ -9,17 +9,6 @@ package poly1305 | |||
| //go:noescape | |||
| func update(state *macState, msg []byte) | |||
| func sum(out *[16]byte, m []byte, key *[32]byte) { | |||
| h := newMAC(key) | |||
| h.Write(m) | |||
| h.Sum(out) | |||
| } | |||
| func newMAC(key *[32]byte) (h mac) { | |||
| initialize(key, &h.r, &h.s) | |||
| return | |||
| } | |||
| // mac is a wrapper for macGeneric that redirects calls that would have gone to | |||
| // updateGeneric to update. | |||
| // | |||
| @@ -31,16 +31,18 @@ func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) { | |||
| h.Sum(out) | |||
| } | |||
| func newMACGeneric(key *[32]byte) (h macGeneric) { | |||
| initialize(key, &h.r, &h.s) | |||
| return | |||
| func newMACGeneric(key *[32]byte) macGeneric { | |||
| m := macGeneric{} | |||
| initialize(key, &m.macState) | |||
| return m | |||
| } | |||
| // macState holds numbers in saturated 64-bit little-endian limbs. That is, | |||
| // the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸. | |||
| type macState struct { | |||
| // h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but | |||
| // can grow larger during and after rounds. | |||
| // can grow larger during and after rounds. It must, however, remain below | |||
| // 2 * (2¹³⁰ - 5). | |||
| h [3]uint64 | |||
| // r and s are the private key components. | |||
| r [2]uint64 | |||
| @@ -97,11 +99,12 @@ const ( | |||
| rMask1 = 0x0FFFFFFC0FFFFFFC | |||
| ) | |||
| func initialize(key *[32]byte, r, s *[2]uint64) { | |||
| r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0 | |||
| r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1 | |||
| s[0] = binary.LittleEndian.Uint64(key[16:24]) | |||
| s[1] = binary.LittleEndian.Uint64(key[24:32]) | |||
| // initialize loads the 256-bit key into the two 128-bit secret values r and s. | |||
| func initialize(key *[32]byte, m *macState) { | |||
| m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0 | |||
| m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1 | |||
| m.s[0] = binary.LittleEndian.Uint64(key[16:24]) | |||
| m.s[1] = binary.LittleEndian.Uint64(key[24:32]) | |||
| } | |||
| // uint128 holds a 128-bit number as two 64-bit limbs, for use with the | |||
| @@ -1,13 +0,0 @@ | |||
| // Copyright 2018 The Go Authors. All rights reserved. | |||
| // Use of this source code is governed by a BSD-style | |||
| // license that can be found in the LICENSE file. | |||
| // +build s390x,!go1.11 !amd64,!s390x,!ppc64le gccgo purego | |||
| package poly1305 | |||
| func sum(out *[TagSize]byte, msg []byte, key *[32]byte) { | |||
| h := newMAC(key) | |||
| h.Write(msg) | |||
| h.Sum(out) | |||
| } | |||
| @@ -9,17 +9,6 @@ package poly1305 | |||
| //go:noescape | |||
| func update(state *macState, msg []byte) | |||
| func sum(out *[16]byte, m []byte, key *[32]byte) { | |||
| h := newMAC(key) | |||
| h.Write(m) | |||
| h.Sum(out) | |||
| } | |||
| func newMAC(key *[32]byte) (h mac) { | |||
| initialize(key, &h.r, &h.s) | |||
| return | |||
| } | |||
| // mac is a wrapper for macGeneric that redirects calls that would have gone to | |||
| // updateGeneric to update. | |||
| // | |||
| @@ -2,7 +2,7 @@ | |||
| // Use of this source code is governed by a BSD-style | |||
| // license that can be found in the LICENSE file. | |||
| // +build go1.11,!gccgo,!purego | |||
| // +build !gccgo,!purego | |||
| package poly1305 | |||
| @@ -10,30 +10,66 @@ import ( | |||
| "golang.org/x/sys/cpu" | |||
| ) | |||
| // poly1305vx is an assembly implementation of Poly1305 that uses vector | |||
| // updateVX is an assembly implementation of Poly1305 that uses vector | |||
| // instructions. It must only be called if the vector facility (vx) is | |||
| // available. | |||
| //go:noescape | |||
| func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]byte) | |||
| func updateVX(state *macState, msg []byte) | |||
| // poly1305vmsl is an assembly implementation of Poly1305 that uses vector | |||
| // instructions, including VMSL. It must only be called if the vector facility (vx) is | |||
| // available and if VMSL is supported. | |||
| //go:noescape | |||
| func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]byte) | |||
| // mac is a replacement for macGeneric that uses a larger buffer and redirects | |||
| // calls that would have gone to updateGeneric to updateVX if the vector | |||
| // facility is installed. | |||
| // | |||
| // A larger buffer is required for good performance because the vector | |||
| // implementation has a higher fixed cost per call than the generic | |||
| // implementation. | |||
| type mac struct { | |||
| macState | |||
| buffer [16 * TagSize]byte // size must be a multiple of block size (16) | |||
| offset int | |||
| } | |||
| func sum(out *[16]byte, m []byte, key *[32]byte) { | |||
| if cpu.S390X.HasVX { | |||
| var mPtr *byte | |||
| if len(m) > 0 { | |||
| mPtr = &m[0] | |||
| func (h *mac) Write(p []byte) (int, error) { | |||
| nn := len(p) | |||
| if h.offset > 0 { | |||
| n := copy(h.buffer[h.offset:], p) | |||
| if h.offset+n < len(h.buffer) { | |||
| h.offset += n | |||
| return nn, nil | |||
| } | |||
| if cpu.S390X.HasVXE && len(m) > 256 { | |||
| poly1305vmsl(out, mPtr, uint64(len(m)), key) | |||
| p = p[n:] | |||
| h.offset = 0 | |||
| if cpu.S390X.HasVX { | |||
| updateVX(&h.macState, h.buffer[:]) | |||
| } else { | |||
| poly1305vx(out, mPtr, uint64(len(m)), key) | |||
| updateGeneric(&h.macState, h.buffer[:]) | |||
| } | |||
| } else { | |||
| sumGeneric(out, m, key) | |||
| } | |||
| tail := len(p) % len(h.buffer) // number of bytes to copy into buffer | |||
| body := len(p) - tail // number of bytes to process now | |||
| if body > 0 { | |||
| if cpu.S390X.HasVX { | |||
| updateVX(&h.macState, p[:body]) | |||
| } else { | |||
| updateGeneric(&h.macState, p[:body]) | |||
| } | |||
| } | |||
| h.offset = copy(h.buffer[:], p[body:]) // copy tail bytes - can be 0 | |||
| return nn, nil | |||
| } | |||
| func (h *mac) Sum(out *[TagSize]byte) { | |||
| state := h.macState | |||
| remainder := h.buffer[:h.offset] | |||
| // Use the generic implementation if we have 2 or fewer blocks left | |||
| // to sum. The vector implementation has a higher startup time. | |||
| if cpu.S390X.HasVX && len(remainder) > 2*TagSize { | |||
| updateVX(&state, remainder) | |||
| } else if len(remainder) > 0 { | |||
| updateGeneric(&state, remainder) | |||
| } | |||
| finalize(out, &state.h, &state.s) | |||
| } | |||
| @@ -2,115 +2,187 @@ | |||
| // Use of this source code is governed by a BSD-style | |||
| // license that can be found in the LICENSE file. | |||
| // +build go1.11,!gccgo,!purego | |||
| // +build !gccgo,!purego | |||
| #include "textflag.h" | |||
| // Implementation of Poly1305 using the vector facility (vx). | |||
| // constants | |||
| #define MOD26 V0 | |||
| #define EX0 V1 | |||
| #define EX1 V2 | |||
| #define EX2 V3 | |||
| // temporaries | |||
| #define T_0 V4 | |||
| #define T_1 V5 | |||
| #define T_2 V6 | |||
| #define T_3 V7 | |||
| #define T_4 V8 | |||
| // key (r) | |||
| #define R_0 V9 | |||
| #define R_1 V10 | |||
| #define R_2 V11 | |||
| #define R_3 V12 | |||
| #define R_4 V13 | |||
| #define R5_1 V14 | |||
| #define R5_2 V15 | |||
| #define R5_3 V16 | |||
| #define R5_4 V17 | |||
| #define RSAVE_0 R5 | |||
| #define RSAVE_1 R6 | |||
| #define RSAVE_2 R7 | |||
| #define RSAVE_3 R8 | |||
| #define RSAVE_4 R9 | |||
| #define R5SAVE_1 V28 | |||
| #define R5SAVE_2 V29 | |||
| #define R5SAVE_3 V30 | |||
| #define R5SAVE_4 V31 | |||
| // message block | |||
| #define F_0 V18 | |||
| #define F_1 V19 | |||
| #define F_2 V20 | |||
| #define F_3 V21 | |||
| #define F_4 V22 | |||
| // accumulator | |||
| #define H_0 V23 | |||
| #define H_1 V24 | |||
| #define H_2 V25 | |||
| #define H_3 V26 | |||
| #define H_4 V27 | |||
| GLOBL ·keyMask<>(SB), RODATA, $16 | |||
| DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f | |||
| DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f | |||
| GLOBL ·bswapMask<>(SB), RODATA, $16 | |||
| DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908 | |||
| DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100 | |||
| GLOBL ·constants<>(SB), RODATA, $64 | |||
| // MOD26 | |||
| DATA ·constants<>+0(SB)/8, $0x3ffffff | |||
| DATA ·constants<>+8(SB)/8, $0x3ffffff | |||
| // This implementation of Poly1305 uses the vector facility (vx) | |||
| // to process up to 2 blocks (32 bytes) per iteration using an | |||
| // algorithm based on the one described in: | |||
| // | |||
| // NEON crypto, Daniel J. Bernstein & Peter Schwabe | |||
| // https://cryptojedi.org/papers/neoncrypto-20120320.pdf | |||
| // | |||
| // This algorithm uses 5 26-bit limbs to represent a 130-bit | |||
| // value. These limbs are, for the most part, zero extended and | |||
| // placed into 64-bit vector register elements. Each vector | |||
| // register is 128-bits wide and so holds 2 of these elements. | |||
| // Using 26-bit limbs allows us plenty of headroom to accomodate | |||
| // accumulations before and after multiplication without | |||
| // overflowing either 32-bits (before multiplication) or 64-bits | |||
| // (after multiplication). | |||
| // | |||
| // In order to parallelise the operations required to calculate | |||
| // the sum we use two separate accumulators and then sum those | |||
| // in an extra final step. For compatibility with the generic | |||
| // implementation we perform this summation at the end of every | |||
| // updateVX call. | |||
| // | |||
| // To use two accumulators we must multiply the message blocks | |||
| // by r² rather than r. Only the final message block should be | |||
| // multiplied by r. | |||
| // | |||
| // Example: | |||
| // | |||
| // We want to calculate the sum (h) for a 64 byte message (m): | |||
| // | |||
| // h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r | |||
| // | |||
| // To do this we split the calculation into the even indices | |||
| // and odd indices of the message. These form our SIMD 'lanes': | |||
| // | |||
| // h = m[ 0:16]r⁴ + m[32:48]r² + <- lane 0 | |||
| // m[16:32]r³ + m[48:64]r <- lane 1 | |||
| // | |||
| // To calculate this iteratively we refactor so that both lanes | |||
| // are written in terms of r² and r: | |||
| // | |||
| // h = (m[ 0:16]r² + m[32:48])r² + <- lane 0 | |||
| // (m[16:32]r² + m[48:64])r <- lane 1 | |||
| // ^ ^ | |||
| // | coefficients for second iteration | |||
| // coefficients for first iteration | |||
| // | |||
| // So in this case we would have two iterations. In the first | |||
| // both lanes are multiplied by r². In the second only the | |||
| // first lane is multiplied by r² and the second lane is | |||
| // instead multiplied by r. This gives use the odd and even | |||
| // powers of r that we need from the original equation. | |||
| // | |||
| // Notation: | |||
| // | |||
| // h - accumulator | |||
| // r - key | |||
| // m - message | |||
| // | |||
| // [a, b] - SIMD register holding two 64-bit values | |||
| // [a, b, c, d] - SIMD register holding four 32-bit values | |||
| // xᵢ[n] - limb n of variable x with bit width i | |||
| // | |||
| // Limbs are expressed in little endian order, so for 26-bit | |||
| // limbs x₂₆[4] will be the most significant limb and x₂₆[0] | |||
| // will be the least significant limb. | |||
| // masking constants | |||
| #define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits | |||
| #define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits | |||
| // expansion constants (see EXPAND macro) | |||
| #define EX0 V2 | |||
| #define EX1 V3 | |||
| #define EX2 V4 | |||
| // key (r², r or 1 depending on context) | |||
| #define R_0 V5 | |||
| #define R_1 V6 | |||
| #define R_2 V7 | |||
| #define R_3 V8 | |||
| #define R_4 V9 | |||
| // precalculated coefficients (5r², 5r or 0 depending on context) | |||
| #define R5_1 V10 | |||
| #define R5_2 V11 | |||
| #define R5_3 V12 | |||
| #define R5_4 V13 | |||
| // message block (m) | |||
| #define M_0 V14 | |||
| #define M_1 V15 | |||
| #define M_2 V16 | |||
| #define M_3 V17 | |||
| #define M_4 V18 | |||
| // accumulator (h) | |||
| #define H_0 V19 | |||
| #define H_1 V20 | |||
| #define H_2 V21 | |||
| #define H_3 V22 | |||
| #define H_4 V23 | |||
| // temporary registers (for short-lived values) | |||
| #define T_0 V24 | |||
| #define T_1 V25 | |||
| #define T_2 V26 | |||
| #define T_3 V27 | |||
| #define T_4 V28 | |||
| GLOBL ·constants<>(SB), RODATA, $0x30 | |||
| // EX0 | |||
| DATA ·constants<>+16(SB)/8, $0x0006050403020100 | |||
| DATA ·constants<>+24(SB)/8, $0x1016151413121110 | |||
| DATA ·constants<>+0x00(SB)/8, $0x0006050403020100 | |||
| DATA ·constants<>+0x08(SB)/8, $0x1016151413121110 | |||
| // EX1 | |||
| DATA ·constants<>+32(SB)/8, $0x060c0b0a09080706 | |||
| DATA ·constants<>+40(SB)/8, $0x161c1b1a19181716 | |||
| DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706 | |||
| DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716 | |||
| // EX2 | |||
| DATA ·constants<>+48(SB)/8, $0x0d0d0d0d0d0f0e0d | |||
| DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d | |||
| // h = (f*g) % (2**130-5) [partial reduction] | |||
| DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d | |||
| DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d | |||
| // MULTIPLY multiplies each lane of f and g, partially reduced | |||
| // modulo 2¹³⁰ - 5. The result, h, consists of partial products | |||
| // in each lane that need to be reduced further to produce the | |||
| // final result. | |||
| // | |||
| // h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰ | |||
| // | |||
| // Note that the multiplication by 5 of the high bits is | |||
| // achieved by precalculating the multiplication of four of the | |||
| // g coefficients by 5. These are g51-g54. | |||
| #define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \ | |||
| VMLOF f0, g0, h0 \ | |||
| VMLOF f0, g1, h1 \ | |||
| VMLOF f0, g2, h2 \ | |||
| VMLOF f0, g3, h3 \ | |||
| VMLOF f0, g1, h1 \ | |||
| VMLOF f0, g4, h4 \ | |||
| VMLOF f0, g2, h2 \ | |||
| VMLOF f1, g54, T_0 \ | |||
| VMLOF f1, g0, T_1 \ | |||
| VMLOF f1, g1, T_2 \ | |||
| VMLOF f1, g2, T_3 \ | |||
| VMLOF f1, g0, T_1 \ | |||
| VMLOF f1, g3, T_4 \ | |||
| VMLOF f1, g1, T_2 \ | |||
| VMALOF f2, g53, h0, h0 \ | |||
| VMALOF f2, g54, h1, h1 \ | |||
| VMALOF f2, g0, h2, h2 \ | |||
| VMALOF f2, g1, h3, h3 \ | |||
| VMALOF f2, g54, h1, h1 \ | |||
| VMALOF f2, g2, h4, h4 \ | |||
| VMALOF f2, g0, h2, h2 \ | |||
| VMALOF f3, g52, T_0, T_0 \ | |||
| VMALOF f3, g53, T_1, T_1 \ | |||
| VMALOF f3, g54, T_2, T_2 \ | |||
| VMALOF f3, g0, T_3, T_3 \ | |||
| VMALOF f3, g53, T_1, T_1 \ | |||
| VMALOF f3, g1, T_4, T_4 \ | |||
| VMALOF f3, g54, T_2, T_2 \ | |||
| VMALOF f4, g51, h0, h0 \ | |||
| VMALOF f4, g52, h1, h1 \ | |||
| VMALOF f4, g53, h2, h2 \ | |||
| VMALOF f4, g54, h3, h3 \ | |||
| VMALOF f4, g52, h1, h1 \ | |||
| VMALOF f4, g0, h4, h4 \ | |||
| VMALOF f4, g53, h2, h2 \ | |||
| VAG T_0, h0, h0 \ | |||
| VAG T_1, h1, h1 \ | |||
| VAG T_2, h2, h2 \ | |||
| VAG T_3, h3, h3 \ | |||
| VAG T_4, h4, h4 | |||
| // carry h0->h1 h3->h4, h1->h2 h4->h0, h0->h1 h2->h3, h3->h4 | |||
| VAG T_1, h1, h1 \ | |||
| VAG T_4, h4, h4 \ | |||
| VAG T_2, h2, h2 | |||
| // REDUCE performs the following carry operations in four | |||
| // stages, as specified in Bernstein & Schwabe: | |||
| // | |||
| // 1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4] | |||
| // 2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0] | |||
| // 3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3] | |||
| // 4: h₂₆[3]->h₂₆[4] | |||
| // | |||
| // The result is that all of the limbs are limited to 26-bits | |||
| // except for h₂₆[1] and h₂₆[4] which are limited to 27-bits. | |||
| // | |||
| // Note that although each limb is aligned at 26-bit intervals | |||
| // they may contain values that exceed 2²⁶ - 1, hence the need | |||
| // to carry the excess bits in each limb. | |||
| #define REDUCE(h0, h1, h2, h3, h4) \ | |||
| VESRLG $26, h0, T_0 \ | |||
| VESRLG $26, h3, T_1 \ | |||
| @@ -136,144 +208,155 @@ DATA ·constants<>+56(SB)/8, $0x1d1d1d1d1d1f1e1d | |||
| VN MOD26, h3, h3 \ | |||
| VAG T_2, h4, h4 | |||
| // expand in0 into d[0] and in1 into d[1] | |||
| // EXPAND splits the 128-bit little-endian values in0 and in1 | |||
| // into 26-bit big-endian limbs and places the results into | |||
| // the first and second lane of d₂₆[0:4] respectively. | |||
| // | |||
| // The EX0, EX1 and EX2 constants are arrays of byte indices | |||
| // for permutation. The permutation both reverses the bytes | |||
| // in the input and ensures the bytes are copied into the | |||
| // destination limb ready to be shifted into their final | |||
| // position. | |||
| #define EXPAND(in0, in1, d0, d1, d2, d3, d4) \ | |||
| VGBM $0x0707, d1 \ // d1=tmp | |||
| VPERM in0, in1, EX2, d4 \ | |||
| VPERM in0, in1, EX0, d0 \ | |||
| VPERM in0, in1, EX1, d2 \ | |||
| VN d1, d4, d4 \ | |||
| VPERM in0, in1, EX2, d4 \ | |||
| VESRLG $26, d0, d1 \ | |||
| VESRLG $30, d2, d3 \ | |||
| VESRLG $4, d2, d2 \ | |||
| VN MOD26, d0, d0 \ | |||
| VN MOD26, d1, d1 \ | |||
| VN MOD26, d2, d2 \ | |||
| VN MOD26, d3, d3 | |||
| // pack h4:h0 into h1:h0 (no carry) | |||
| #define PACK(h0, h1, h2, h3, h4) \ | |||
| VESLG $26, h1, h1 \ | |||
| VESLG $26, h3, h3 \ | |||
| VO h0, h1, h0 \ | |||
| VO h2, h3, h2 \ | |||
| VESLG $4, h2, h2 \ | |||
| VLEIB $7, $48, h1 \ | |||
| VSLB h1, h2, h2 \ | |||
| VO h0, h2, h0 \ | |||
| VLEIB $7, $104, h1 \ | |||
| VSLB h1, h4, h3 \ | |||
| VO h3, h0, h0 \ | |||
| VLEIB $7, $24, h1 \ | |||
| VSRLB h1, h4, h1 | |||
| // if h > 2**130-5 then h -= 2**130-5 | |||
| #define MOD(h0, h1, t0, t1, t2) \ | |||
| VZERO t0 \ | |||
| VLEIG $1, $5, t0 \ | |||
| VACCQ h0, t0, t1 \ | |||
| VAQ h0, t0, t0 \ | |||
| VONE t2 \ | |||
| VLEIG $1, $-4, t2 \ | |||
| VAQ t2, t1, t1 \ | |||
| VACCQ h1, t1, t1 \ | |||
| VONE t2 \ | |||
| VAQ t2, t1, t1 \ | |||
| VN h0, t1, t2 \ | |||
| VNC t0, t1, t1 \ | |||
| VO t1, t2, h0 | |||
| // func poly1305vx(out *[16]byte, m *byte, mlen uint64, key *[32]key) | |||
| TEXT ·poly1305vx(SB), $0-32 | |||
| // This code processes up to 2 blocks (32 bytes) per iteration | |||
| // using the algorithm described in: | |||
| // NEON crypto, Daniel J. Bernstein & Peter Schwabe | |||
| // https://cryptojedi.org/papers/neoncrypto-20120320.pdf | |||
| LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key | |||
| // load MOD26, EX0, EX1 and EX2 | |||
| VN MOD26, d0, d0 \ // [in0₂₆[0], in1₂₆[0]] | |||
| VN MOD26, d3, d3 \ // [in0₂₆[3], in1₂₆[3]] | |||
| VN MOD26, d1, d1 \ // [in0₂₆[1], in1₂₆[1]] | |||
| VN MOD24, d4, d4 \ // [in0₂₆[4], in1₂₆[4]] | |||
| VN MOD26, d2, d2 // [in0₂₆[2], in1₂₆[2]] | |||
| // func updateVX(state *macState, msg []byte) | |||
| TEXT ·updateVX(SB), NOSPLIT, $0 | |||
| MOVD state+0(FP), R1 | |||
| LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len | |||
| // load EX0, EX1 and EX2 | |||
| MOVD $·constants<>(SB), R5 | |||
| VLM (R5), MOD26, EX2 | |||
| // setup r | |||
| VL (R4), T_0 | |||
| MOVD $·keyMask<>(SB), R6 | |||
| VL (R6), T_1 | |||
| VN T_0, T_1, T_0 | |||
| EXPAND(T_0, T_0, R_0, R_1, R_2, R_3, R_4) | |||
| // setup r*5 | |||
| VLEIG $0, $5, T_0 | |||
| VLEIG $1, $5, T_0 | |||
| // store r (for final block) | |||
| VMLOF T_0, R_1, R5SAVE_1 | |||
| VMLOF T_0, R_2, R5SAVE_2 | |||
| VMLOF T_0, R_3, R5SAVE_3 | |||
| VMLOF T_0, R_4, R5SAVE_4 | |||
| VLGVG $0, R_0, RSAVE_0 | |||
| VLGVG $0, R_1, RSAVE_1 | |||
| VLGVG $0, R_2, RSAVE_2 | |||
| VLGVG $0, R_3, RSAVE_3 | |||
| VLGVG $0, R_4, RSAVE_4 | |||
| // skip r**2 calculation | |||
| VLM (R5), EX0, EX2 | |||
| // generate masks | |||
| VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff] | |||
| VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff] | |||
| // load h (accumulator) and r (key) from state | |||
| VZERO T_1 // [0, 0] | |||
| VL 0(R1), T_0 // [h₆₄[0], h₆₄[1]] | |||
| VLEG $0, 16(R1), T_1 // [h₆₄[2], 0] | |||
| VL 24(R1), T_2 // [r₆₄[0], r₆₄[1]] | |||
| VPDI $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]] | |||
| VPDI $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]] | |||
| // unpack h and r into 26-bit limbs | |||
| // note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value | |||
| VN MOD26, T_3, H_0 // [h₂₆[0], r₂₆[0]] | |||
| VZERO H_1 // [0, 0] | |||
| VZERO H_3 // [0, 0] | |||
| VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out | |||
| VESLG $24, T_1, T_1 // [h₆₄[2]<<24, 0] | |||
| VERIMG $-26&63, T_3, MOD26, H_1 // [h₂₆[1], r₂₆[1]] | |||
| VESRLG $+52&63, T_3, H_2 // [h₂₆[2], r₂₆[2]] - low 12 bits only | |||
| VERIMG $-14&63, T_4, MOD26, H_3 // [h₂₆[1], r₂₆[1]] | |||
| VESRLG $40, T_4, H_4 // [h₂₆[4], r₂₆[4]] - low 24 bits only | |||
| VERIMG $+12&63, T_4, T_0, H_2 // [h₂₆[2], r₂₆[2]] - complete | |||
| VO T_1, H_4, H_4 // [h₂₆[4], r₂₆[4]] - complete | |||
| // replicate r across all 4 vector elements | |||
| VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]] | |||
| VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]] | |||
| VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]] | |||
| VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]] | |||
| VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]] | |||
| // zero out lane 1 of h | |||
| VLEIG $1, $0, H_0 // [h₂₆[0], 0] | |||
| VLEIG $1, $0, H_1 // [h₂₆[1], 0] | |||
| VLEIG $1, $0, H_2 // [h₂₆[2], 0] | |||
| VLEIG $1, $0, H_3 // [h₂₆[3], 0] | |||
| VLEIG $1, $0, H_4 // [h₂₆[4], 0] | |||
| // calculate 5r (ignore least significant limb) | |||
| VREPIF $5, T_0 | |||
| VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]] | |||
| VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]] | |||
| VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]] | |||
| VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]] | |||
| // skip r² calculation if we are only calculating one block | |||
| CMPBLE R3, $16, skip | |||
| // calculate r**2 | |||
| MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5SAVE_1, R5SAVE_2, R5SAVE_3, R5SAVE_4, H_0, H_1, H_2, H_3, H_4) | |||
| REDUCE(H_0, H_1, H_2, H_3, H_4) | |||
| VLEIG $0, $5, T_0 | |||
| VLEIG $1, $5, T_0 | |||
| VMLOF T_0, H_1, R5_1 | |||
| VMLOF T_0, H_2, R5_2 | |||
| VMLOF T_0, H_3, R5_3 | |||
| VMLOF T_0, H_4, R5_4 | |||
| VLR H_0, R_0 | |||
| VLR H_1, R_1 | |||
| VLR H_2, R_2 | |||
| VLR H_3, R_3 | |||
| VLR H_4, R_4 | |||
| // initialize h | |||
| VZERO H_0 | |||
| VZERO H_1 | |||
| VZERO H_2 | |||
| VZERO H_3 | |||
| VZERO H_4 | |||
| // calculate r² | |||
| MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4) | |||
| REDUCE(M_0, M_1, M_2, M_3, M_4) | |||
| VGBM $0x0f0f, T_0 | |||
| VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]] | |||
| VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]] | |||
| VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]] | |||
| VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]] | |||
| VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]] | |||
| // calculate 5r² (ignore least significant limb) | |||
| VREPIF $5, T_0 | |||
| VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]] | |||
| VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]] | |||
| VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]] | |||
| VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]] | |||
| loop: | |||
| CMPBLE R3, $32, b2 | |||
| VLM (R2), T_0, T_1 | |||
| SUB $32, R3 | |||
| MOVD $32(R2), R2 | |||
| EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) | |||
| VLEIB $4, $1, F_4 | |||
| VLEIB $12, $1, F_4 | |||
| CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients | |||
| // load next 2 blocks from message | |||
| VLM (R2), T_0, T_1 | |||
| // update message slice | |||
| SUB $32, R3 | |||
| MOVD $32(R2), R2 | |||
| // unpack message blocks into 26-bit big-endian limbs | |||
| EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) | |||
| // add 2¹²⁸ to each message block value | |||
| VLEIB $4, $1, M_4 | |||
| VLEIB $12, $1, M_4 | |||
| multiply: | |||
| VAG H_0, F_0, F_0 | |||
| VAG H_1, F_1, F_1 | |||
| VAG H_2, F_2, F_2 | |||
| VAG H_3, F_3, F_3 | |||
| VAG H_4, F_4, F_4 | |||
| MULTIPLY(F_0, F_1, F_2, F_3, F_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4) | |||
| // accumulate the incoming message | |||
| VAG H_0, M_0, M_0 | |||
| VAG H_3, M_3, M_3 | |||
| VAG H_1, M_1, M_1 | |||
| VAG H_4, M_4, M_4 | |||
| VAG H_2, M_2, M_2 | |||
| // multiply the accumulator by the key coefficient | |||
| MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4) | |||
| // carry and partially reduce the partial products | |||
| REDUCE(H_0, H_1, H_2, H_3, H_4) | |||
| CMPBNE R3, $0, loop | |||
| finish: | |||
| // sum vectors | |||
| // sum lane 0 and lane 1 and put the result in lane 1 | |||
| VZERO T_0 | |||
| VSUMQG H_0, T_0, H_0 | |||
| VSUMQG H_1, T_0, H_1 | |||
| VSUMQG H_2, T_0, H_2 | |||
| VSUMQG H_3, T_0, H_3 | |||
| VSUMQG H_1, T_0, H_1 | |||
| VSUMQG H_4, T_0, H_4 | |||
| VSUMQG H_2, T_0, H_2 | |||
| // h may be >= 2*(2**130-5) so we need to reduce it again | |||
| // reduce again after summation | |||
| // TODO(mundaym): there might be a more efficient way to do this | |||
| // now that we only have 1 active lane. For example, we could | |||
| // simultaneously pack the values as we reduce them. | |||
| REDUCE(H_0, H_1, H_2, H_3, H_4) | |||
| // carry h1->h4 | |||
| // carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1 | |||
| // TODO(mundaym): in testing this final carry was unnecessary. | |||
| // Needs a proof before it can be removed though. | |||
| VESRLG $26, H_1, T_1 | |||
| VN MOD26, H_1, H_1 | |||
| VAQ T_1, H_2, H_2 | |||
| @@ -284,95 +367,137 @@ finish: | |||
| VN MOD26, H_3, H_3 | |||
| VAQ T_3, H_4, H_4 | |||
| // h is now < 2*(2**130-5) | |||
| // pack h into h1 (hi) and h0 (lo) | |||
| PACK(H_0, H_1, H_2, H_3, H_4) | |||
| // if h > 2**130-5 then h -= 2**130-5 | |||
| MOD(H_0, H_1, T_0, T_1, T_2) | |||
| // h += s | |||
| MOVD $·bswapMask<>(SB), R5 | |||
| VL (R5), T_1 | |||
| VL 16(R4), T_0 | |||
| VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big) | |||
| VAQ T_0, H_0, H_0 | |||
| VPERM H_0, H_0, T_1, H_0 // reverse bytes (to little) | |||
| VST H_0, (R1) | |||
| // h is now < 2(2¹³⁰ - 5) | |||
| // Pack each lane in h₂₆[0:4] into h₁₂₈[0:1]. | |||
| VESLG $26, H_1, H_1 | |||
| VESLG $26, H_3, H_3 | |||
| VO H_0, H_1, H_0 | |||
| VO H_2, H_3, H_2 | |||
| VESLG $4, H_2, H_2 | |||
| VLEIB $7, $48, H_1 | |||
| VSLB H_1, H_2, H_2 | |||
| VO H_0, H_2, H_0 | |||
| VLEIB $7, $104, H_1 | |||
| VSLB H_1, H_4, H_3 | |||
| VO H_3, H_0, H_0 | |||
| VLEIB $7, $24, H_1 | |||
| VSRLB H_1, H_4, H_1 | |||
| // update state | |||
| VSTEG $1, H_0, 0(R1) | |||
| VSTEG $0, H_0, 8(R1) | |||
| VSTEG $1, H_1, 16(R1) | |||
| RET | |||
| b2: | |||
| b2: // 2 or fewer blocks remaining | |||
| CMPBLE R3, $16, b1 | |||
| // 2 blocks remaining | |||
| SUB $17, R3 | |||
| VL (R2), T_0 | |||
| VLL R3, 16(R2), T_1 | |||
| ADD $1, R3 | |||
| // Load the 2 remaining blocks (17-32 bytes remaining). | |||
| MOVD $-17(R3), R0 // index of final byte to load modulo 16 | |||
| VL (R2), T_0 // load full 16 byte block | |||
| VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes | |||
| // The Poly1305 algorithm requires that a 1 bit be appended to | |||
| // each message block. If the final block is less than 16 bytes | |||
| // long then it is easiest to insert the 1 before the message | |||
| // block is split into 26-bit limbs. If, on the other hand, the | |||
| // final message block is 16 bytes long then we append the 1 bit | |||
| // after expansion as normal. | |||
| MOVBZ $1, R0 | |||
| CMPBEQ R3, $16, 2(PC) | |||
| VLVGB R3, R0, T_1 | |||
| EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) | |||
| MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16) | |||
| CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long | |||
| VLVGB R3, R0, T_1 // insert 1 into the byte at index R3 | |||
| // Split both blocks into 26-bit limbs in the appropriate lanes. | |||
| EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) | |||
| // Append a 1 byte to the end of the second to last block. | |||
| VLEIB $4, $1, M_4 | |||
| // Append a 1 byte to the end of the last block only if it is a | |||
| // full 16 byte block. | |||
| CMPBNE R3, $16, 2(PC) | |||
| VLEIB $12, $1, F_4 | |||
| VLEIB $4, $1, F_4 | |||
| // setup [r²,r] | |||
| VLVGG $1, RSAVE_0, R_0 | |||
| VLVGG $1, RSAVE_1, R_1 | |||
| VLVGG $1, RSAVE_2, R_2 | |||
| VLVGG $1, RSAVE_3, R_3 | |||
| VLVGG $1, RSAVE_4, R_4 | |||
| VPDI $0, R5_1, R5SAVE_1, R5_1 | |||
| VPDI $0, R5_2, R5SAVE_2, R5_2 | |||
| VPDI $0, R5_3, R5SAVE_3, R5_3 | |||
| VPDI $0, R5_4, R5SAVE_4, R5_4 | |||
| VLEIB $12, $1, M_4 | |||
| // Finally, set up the coefficients for the final multiplication. | |||
| // We have previously saved r and 5r in the 32-bit even indexes | |||
| // of the R_[0-4] and R5_[1-4] coefficient registers. | |||
| // | |||
| // We want lane 0 to be multiplied by r² so that can be kept the | |||
| // same. We want lane 1 to be multiplied by r so we need to move | |||
| // the saved r value into the 32-bit odd index in lane 1 by | |||
| // rotating the 64-bit lane by 32. | |||
| VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only | |||
| VERIMG $32, R_0, T_0, R_0 // [_, r²₂₆[0], _, r₂₆[0]] | |||
| VERIMG $32, R_1, T_0, R_1 // [_, r²₂₆[1], _, r₂₆[1]] | |||
| VERIMG $32, R_2, T_0, R_2 // [_, r²₂₆[2], _, r₂₆[2]] | |||
| VERIMG $32, R_3, T_0, R_3 // [_, r²₂₆[3], _, r₂₆[3]] | |||
| VERIMG $32, R_4, T_0, R_4 // [_, r²₂₆[4], _, r₂₆[4]] | |||
| VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]] | |||
| VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]] | |||
| VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]] | |||
| VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]] | |||
| MOVD $0, R3 | |||
| BR multiply | |||
| skip: | |||
| VZERO H_0 | |||
| VZERO H_1 | |||
| VZERO H_2 | |||
| VZERO H_3 | |||
| VZERO H_4 | |||
| CMPBEQ R3, $0, finish | |||
| b1: | |||
| // 1 block remaining | |||
| SUB $1, R3 | |||
| VLL R3, (R2), T_0 | |||
| ADD $1, R3 | |||
| b1: // 1 block remaining | |||
| // Load the final block (1-16 bytes). This will be placed into | |||
| // lane 0. | |||
| MOVD $-1(R3), R0 | |||
| VLL R0, (R2), T_0 // pad to 16 bytes with zeros | |||
| // The Poly1305 algorithm requires that a 1 bit be appended to | |||
| // each message block. If the final block is less than 16 bytes | |||
| // long then it is easiest to insert the 1 before the message | |||
| // block is split into 26-bit limbs. If, on the other hand, the | |||
| // final message block is 16 bytes long then we append the 1 bit | |||
| // after expansion as normal. | |||
| MOVBZ $1, R0 | |||
| CMPBEQ R3, $16, 2(PC) | |||
| VLVGB R3, R0, T_0 | |||
| VZERO T_1 | |||
| EXPAND(T_0, T_1, F_0, F_1, F_2, F_3, F_4) | |||
| // Set the message block in lane 1 to the value 0 so that it | |||
| // can be accumulated without affecting the final result. | |||
| VZERO T_1 | |||
| // Split the final message block into 26-bit limbs in lane 0. | |||
| // Lane 1 will be contain 0. | |||
| EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4) | |||
| // Append a 1 byte to the end of the last block only if it is a | |||
| // full 16 byte block. | |||
| CMPBNE R3, $16, 2(PC) | |||
| VLEIB $4, $1, F_4 | |||
| VLEIG $1, $1, R_0 | |||
| VZERO R_1 | |||
| VZERO R_2 | |||
| VZERO R_3 | |||
| VZERO R_4 | |||
| VZERO R5_1 | |||
| VZERO R5_2 | |||
| VZERO R5_3 | |||
| VZERO R5_4 | |||
| // setup [r, 1] | |||
| VLVGG $0, RSAVE_0, R_0 | |||
| VLVGG $0, RSAVE_1, R_1 | |||
| VLVGG $0, RSAVE_2, R_2 | |||
| VLVGG $0, RSAVE_3, R_3 | |||
| VLVGG $0, RSAVE_4, R_4 | |||
| VPDI $0, R5SAVE_1, R5_1, R5_1 | |||
| VPDI $0, R5SAVE_2, R5_2, R5_2 | |||
| VPDI $0, R5SAVE_3, R5_3, R5_3 | |||
| VPDI $0, R5SAVE_4, R5_4, R5_4 | |||
| VLEIB $4, $1, M_4 | |||
| // We have previously saved r and 5r in the 32-bit even indexes | |||
| // of the R_[0-4] and R5_[1-4] coefficient registers. | |||
| // | |||
| // We want lane 0 to be multiplied by r so we need to move the | |||
| // saved r value into the 32-bit odd index in lane 0. We want | |||
| // lane 1 to be set to the value 1. This makes multiplication | |||
| // a no-op. We do this by setting lane 1 in every register to 0 | |||
| // and then just setting the 32-bit index 3 in R_0 to 1. | |||
| VZERO T_0 | |||
| MOVD $0, R0 | |||
| MOVD $0x10111213, R12 | |||
| VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000] | |||
| VPERM T_0, R_0, T_1, R_0 // [_, r₂₆[0], _, 0] | |||
| VPERM T_0, R_1, T_1, R_1 // [_, r₂₆[1], _, 0] | |||
| VPERM T_0, R_2, T_1, R_2 // [_, r₂₆[2], _, 0] | |||
| VPERM T_0, R_3, T_1, R_3 // [_, r₂₆[3], _, 0] | |||
| VPERM T_0, R_4, T_1, R_4 // [_, r₂₆[4], _, 0] | |||
| VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0] | |||
| VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0] | |||
| VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0] | |||
| VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0] | |||
| // Set the value of lane 1 to be 1. | |||
| VLEIF $3, $1, R_0 // [_, r₂₆[0], _, 1] | |||
| MOVD $0, R3 | |||
| BR multiply | |||
| @@ -1,909 +0,0 @@ | |||
| // Copyright 2018 The Go Authors. All rights reserved. | |||
| // Use of this source code is governed by a BSD-style | |||
| // license that can be found in the LICENSE file. | |||
| // +build go1.11,!gccgo,!purego | |||
| #include "textflag.h" | |||
| // Implementation of Poly1305 using the vector facility (vx) and the VMSL instruction. | |||
| // constants | |||
| #define EX0 V1 | |||
| #define EX1 V2 | |||
| #define EX2 V3 | |||
| // temporaries | |||
| #define T_0 V4 | |||
| #define T_1 V5 | |||
| #define T_2 V6 | |||
| #define T_3 V7 | |||
| #define T_4 V8 | |||
| #define T_5 V9 | |||
| #define T_6 V10 | |||
| #define T_7 V11 | |||
| #define T_8 V12 | |||
| #define T_9 V13 | |||
| #define T_10 V14 | |||
| // r**2 & r**4 | |||
| #define R_0 V15 | |||
| #define R_1 V16 | |||
| #define R_2 V17 | |||
| #define R5_1 V18 | |||
| #define R5_2 V19 | |||
| // key (r) | |||
| #define RSAVE_0 R7 | |||
| #define RSAVE_1 R8 | |||
| #define RSAVE_2 R9 | |||
| #define R5SAVE_1 R10 | |||
| #define R5SAVE_2 R11 | |||
| // message block | |||
| #define M0 V20 | |||
| #define M1 V21 | |||
| #define M2 V22 | |||
| #define M3 V23 | |||
| #define M4 V24 | |||
| #define M5 V25 | |||
| // accumulator | |||
| #define H0_0 V26 | |||
| #define H1_0 V27 | |||
| #define H2_0 V28 | |||
| #define H0_1 V29 | |||
| #define H1_1 V30 | |||
| #define H2_1 V31 | |||
| GLOBL ·keyMask<>(SB), RODATA, $16 | |||
| DATA ·keyMask<>+0(SB)/8, $0xffffff0ffcffff0f | |||
| DATA ·keyMask<>+8(SB)/8, $0xfcffff0ffcffff0f | |||
| GLOBL ·bswapMask<>(SB), RODATA, $16 | |||
| DATA ·bswapMask<>+0(SB)/8, $0x0f0e0d0c0b0a0908 | |||
| DATA ·bswapMask<>+8(SB)/8, $0x0706050403020100 | |||
| GLOBL ·constants<>(SB), RODATA, $48 | |||
| // EX0 | |||
| DATA ·constants<>+0(SB)/8, $0x18191a1b1c1d1e1f | |||
| DATA ·constants<>+8(SB)/8, $0x0000050403020100 | |||
| // EX1 | |||
| DATA ·constants<>+16(SB)/8, $0x18191a1b1c1d1e1f | |||
| DATA ·constants<>+24(SB)/8, $0x00000a0908070605 | |||
| // EX2 | |||
| DATA ·constants<>+32(SB)/8, $0x18191a1b1c1d1e1f | |||
| DATA ·constants<>+40(SB)/8, $0x0000000f0e0d0c0b | |||
| GLOBL ·c<>(SB), RODATA, $48 | |||
| // EX0 | |||
| DATA ·c<>+0(SB)/8, $0x0000050403020100 | |||
| DATA ·c<>+8(SB)/8, $0x0000151413121110 | |||
| // EX1 | |||
| DATA ·c<>+16(SB)/8, $0x00000a0908070605 | |||
| DATA ·c<>+24(SB)/8, $0x00001a1918171615 | |||
| // EX2 | |||
| DATA ·c<>+32(SB)/8, $0x0000000f0e0d0c0b | |||
| DATA ·c<>+40(SB)/8, $0x0000001f1e1d1c1b | |||
| GLOBL ·reduce<>(SB), RODATA, $32 | |||
| // 44 bit | |||
| DATA ·reduce<>+0(SB)/8, $0x0 | |||
| DATA ·reduce<>+8(SB)/8, $0xfffffffffff | |||
| // 42 bit | |||
| DATA ·reduce<>+16(SB)/8, $0x0 | |||
| DATA ·reduce<>+24(SB)/8, $0x3ffffffffff | |||
| // h = (f*g) % (2**130-5) [partial reduction] | |||
| // uses T_0...T_9 temporary registers | |||
| // input: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2 | |||
| // temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9 | |||
| // output: m02_0, m02_1, m02_2, m13_0, m13_1, m13_2 | |||
| #define MULTIPLY(m02_0, m02_1, m02_2, m13_0, m13_1, m13_2, r_0, r_1, r_2, r5_1, r5_2, m4_0, m4_1, m4_2, m5_0, m5_1, m5_2, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) \ | |||
| \ // Eliminate the dependency for the last 2 VMSLs | |||
| VMSLG m02_0, r_2, m4_2, m4_2 \ | |||
| VMSLG m13_0, r_2, m5_2, m5_2 \ // 8 VMSLs pipelined | |||
| VMSLG m02_0, r_0, m4_0, m4_0 \ | |||
| VMSLG m02_1, r5_2, V0, T_0 \ | |||
| VMSLG m02_0, r_1, m4_1, m4_1 \ | |||
| VMSLG m02_1, r_0, V0, T_1 \ | |||
| VMSLG m02_1, r_1, V0, T_2 \ | |||
| VMSLG m02_2, r5_1, V0, T_3 \ | |||
| VMSLG m02_2, r5_2, V0, T_4 \ | |||
| VMSLG m13_0, r_0, m5_0, m5_0 \ | |||
| VMSLG m13_1, r5_2, V0, T_5 \ | |||
| VMSLG m13_0, r_1, m5_1, m5_1 \ | |||
| VMSLG m13_1, r_0, V0, T_6 \ | |||
| VMSLG m13_1, r_1, V0, T_7 \ | |||
| VMSLG m13_2, r5_1, V0, T_8 \ | |||
| VMSLG m13_2, r5_2, V0, T_9 \ | |||
| VMSLG m02_2, r_0, m4_2, m4_2 \ | |||
| VMSLG m13_2, r_0, m5_2, m5_2 \ | |||
| VAQ m4_0, T_0, m02_0 \ | |||
| VAQ m4_1, T_1, m02_1 \ | |||
| VAQ m5_0, T_5, m13_0 \ | |||
| VAQ m5_1, T_6, m13_1 \ | |||
| VAQ m02_0, T_3, m02_0 \ | |||
| VAQ m02_1, T_4, m02_1 \ | |||
| VAQ m13_0, T_8, m13_0 \ | |||
| VAQ m13_1, T_9, m13_1 \ | |||
| VAQ m4_2, T_2, m02_2 \ | |||
| VAQ m5_2, T_7, m13_2 \ | |||
| // SQUARE uses three limbs of r and r_2*5 to output square of r | |||
| // uses T_1, T_5 and T_7 temporary registers | |||
| // input: r_0, r_1, r_2, r5_2 | |||
| // temp: TEMP0, TEMP1, TEMP2 | |||
| // output: p0, p1, p2 | |||
| #define SQUARE(r_0, r_1, r_2, r5_2, p0, p1, p2, TEMP0, TEMP1, TEMP2) \ | |||
| VMSLG r_0, r_0, p0, p0 \ | |||
| VMSLG r_1, r5_2, V0, TEMP0 \ | |||
| VMSLG r_2, r5_2, p1, p1 \ | |||
| VMSLG r_0, r_1, V0, TEMP1 \ | |||
| VMSLG r_1, r_1, p2, p2 \ | |||
| VMSLG r_0, r_2, V0, TEMP2 \ | |||
| VAQ TEMP0, p0, p0 \ | |||
| VAQ TEMP1, p1, p1 \ | |||
| VAQ TEMP2, p2, p2 \ | |||
| VAQ TEMP0, p0, p0 \ | |||
| VAQ TEMP1, p1, p1 \ | |||
| VAQ TEMP2, p2, p2 \ | |||
| // carry h0->h1->h2->h0 || h3->h4->h5->h3 | |||
| // uses T_2, T_4, T_5, T_7, T_8, T_9 | |||
| // t6, t7, t8, t9, t10, t11 | |||
| // input: h0, h1, h2, h3, h4, h5 | |||
| // temp: t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11 | |||
| // output: h0, h1, h2, h3, h4, h5 | |||
| #define REDUCE(h0, h1, h2, h3, h4, h5, t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11) \ | |||
| VLM (R12), t6, t7 \ // 44 and 42 bit clear mask | |||
| VLEIB $7, $0x28, t10 \ // 5 byte shift mask | |||
| VREPIB $4, t8 \ // 4 bit shift mask | |||
| VREPIB $2, t11 \ // 2 bit shift mask | |||
| VSRLB t10, h0, t0 \ // h0 byte shift | |||
| VSRLB t10, h1, t1 \ // h1 byte shift | |||
| VSRLB t10, h2, t2 \ // h2 byte shift | |||
| VSRLB t10, h3, t3 \ // h3 byte shift | |||
| VSRLB t10, h4, t4 \ // h4 byte shift | |||
| VSRLB t10, h5, t5 \ // h5 byte shift | |||
| VSRL t8, t0, t0 \ // h0 bit shift | |||
| VSRL t8, t1, t1 \ // h2 bit shift | |||
| VSRL t11, t2, t2 \ // h2 bit shift | |||
| VSRL t8, t3, t3 \ // h3 bit shift | |||
| VSRL t8, t4, t4 \ // h4 bit shift | |||
| VESLG $2, t2, t9 \ // h2 carry x5 | |||
| VSRL t11, t5, t5 \ // h5 bit shift | |||
| VN t6, h0, h0 \ // h0 clear carry | |||
| VAQ t2, t9, t2 \ // h2 carry x5 | |||
| VESLG $2, t5, t9 \ // h5 carry x5 | |||
| VN t6, h1, h1 \ // h1 clear carry | |||
| VN t7, h2, h2 \ // h2 clear carry | |||
| VAQ t5, t9, t5 \ // h5 carry x5 | |||
| VN t6, h3, h3 \ // h3 clear carry | |||
| VN t6, h4, h4 \ // h4 clear carry | |||
| VN t7, h5, h5 \ // h5 clear carry | |||
| VAQ t0, h1, h1 \ // h0->h1 | |||
| VAQ t3, h4, h4 \ // h3->h4 | |||
| VAQ t1, h2, h2 \ // h1->h2 | |||
| VAQ t4, h5, h5 \ // h4->h5 | |||
| VAQ t2, h0, h0 \ // h2->h0 | |||
| VAQ t5, h3, h3 \ // h5->h3 | |||
| VREPG $1, t6, t6 \ // 44 and 42 bit masks across both halves | |||
| VREPG $1, t7, t7 \ | |||
| VSLDB $8, h0, h0, h0 \ // set up [h0/1/2, h3/4/5] | |||
| VSLDB $8, h1, h1, h1 \ | |||
| VSLDB $8, h2, h2, h2 \ | |||
| VO h0, h3, h3 \ | |||
| VO h1, h4, h4 \ | |||
| VO h2, h5, h5 \ | |||
| VESRLG $44, h3, t0 \ // 44 bit shift right | |||
| VESRLG $44, h4, t1 \ | |||
| VESRLG $42, h5, t2 \ | |||
| VN t6, h3, h3 \ // clear carry bits | |||
| VN t6, h4, h4 \ | |||
| VN t7, h5, h5 \ | |||
| VESLG $2, t2, t9 \ // multiply carry by 5 | |||
| VAQ t9, t2, t2 \ | |||
| VAQ t0, h4, h4 \ | |||
| VAQ t1, h5, h5 \ | |||
| VAQ t2, h3, h3 \ | |||
| // carry h0->h1->h2->h0 | |||
| // input: h0, h1, h2 | |||
| // temp: t0, t1, t2, t3, t4, t5, t6, t7, t8 | |||
| // output: h0, h1, h2 | |||
| #define REDUCE2(h0, h1, h2, t0, t1, t2, t3, t4, t5, t6, t7, t8) \ | |||
| VLEIB $7, $0x28, t3 \ // 5 byte shift mask | |||
| VREPIB $4, t4 \ // 4 bit shift mask | |||
| VREPIB $2, t7 \ // 2 bit shift mask | |||
| VGBM $0x003F, t5 \ // mask to clear carry bits | |||
| VSRLB t3, h0, t0 \ | |||
| VSRLB t3, h1, t1 \ | |||
| VSRLB t3, h2, t2 \ | |||
| VESRLG $4, t5, t5 \ // 44 bit clear mask | |||
| VSRL t4, t0, t0 \ | |||
| VSRL t4, t1, t1 \ | |||
| VSRL t7, t2, t2 \ | |||
| VESRLG $2, t5, t6 \ // 42 bit clear mask | |||
| VESLG $2, t2, t8 \ | |||
| VAQ t8, t2, t2 \ | |||
| VN t5, h0, h0 \ | |||
| VN t5, h1, h1 \ | |||
| VN t6, h2, h2 \ | |||
| VAQ t0, h1, h1 \ | |||
| VAQ t1, h2, h2 \ | |||
| VAQ t2, h0, h0 \ | |||
| VSRLB t3, h0, t0 \ | |||
| VSRLB t3, h1, t1 \ | |||
| VSRLB t3, h2, t2 \ | |||
| VSRL t4, t0, t0 \ | |||
| VSRL t4, t1, t1 \ | |||
| VSRL t7, t2, t2 \ | |||
| VN t5, h0, h0 \ | |||
| VN t5, h1, h1 \ | |||
| VESLG $2, t2, t8 \ | |||
| VN t6, h2, h2 \ | |||
| VAQ t0, h1, h1 \ | |||
| VAQ t8, t2, t2 \ | |||
| VAQ t1, h2, h2 \ | |||
| VAQ t2, h0, h0 \ | |||
| // expands two message blocks into the lower halfs of the d registers | |||
| // moves the contents of the d registers into upper halfs | |||
| // input: in1, in2, d0, d1, d2, d3, d4, d5 | |||
| // temp: TEMP0, TEMP1, TEMP2, TEMP3 | |||
| // output: d0, d1, d2, d3, d4, d5 | |||
| #define EXPACC(in1, in2, d0, d1, d2, d3, d4, d5, TEMP0, TEMP1, TEMP2, TEMP3) \ | |||
| VGBM $0xff3f, TEMP0 \ | |||
| VGBM $0xff1f, TEMP1 \ | |||
| VESLG $4, d1, TEMP2 \ | |||
| VESLG $4, d4, TEMP3 \ | |||
| VESRLG $4, TEMP0, TEMP0 \ | |||
| VPERM in1, d0, EX0, d0 \ | |||
| VPERM in2, d3, EX0, d3 \ | |||
| VPERM in1, d2, EX2, d2 \ | |||
| VPERM in2, d5, EX2, d5 \ | |||
| VPERM in1, TEMP2, EX1, d1 \ | |||
| VPERM in2, TEMP3, EX1, d4 \ | |||
| VN TEMP0, d0, d0 \ | |||
| VN TEMP0, d3, d3 \ | |||
| VESRLG $4, d1, d1 \ | |||
| VESRLG $4, d4, d4 \ | |||
| VN TEMP1, d2, d2 \ | |||
| VN TEMP1, d5, d5 \ | |||
| VN TEMP0, d1, d1 \ | |||
| VN TEMP0, d4, d4 \ | |||
| // expands one message block into the lower halfs of the d registers | |||
| // moves the contents of the d registers into upper halfs | |||
| // input: in, d0, d1, d2 | |||
| // temp: TEMP0, TEMP1, TEMP2 | |||
| // output: d0, d1, d2 | |||
| #define EXPACC2(in, d0, d1, d2, TEMP0, TEMP1, TEMP2) \ | |||
| VGBM $0xff3f, TEMP0 \ | |||
| VESLG $4, d1, TEMP2 \ | |||
| VGBM $0xff1f, TEMP1 \ | |||
| VPERM in, d0, EX0, d0 \ | |||
| VESRLG $4, TEMP0, TEMP0 \ | |||
| VPERM in, d2, EX2, d2 \ | |||
| VPERM in, TEMP2, EX1, d1 \ | |||
| VN TEMP0, d0, d0 \ | |||
| VN TEMP1, d2, d2 \ | |||
| VESRLG $4, d1, d1 \ | |||
| VN TEMP0, d1, d1 \ | |||
| // pack h2:h0 into h1:h0 (no carry) | |||
| // input: h0, h1, h2 | |||
| // output: h0, h1, h2 | |||
| #define PACK(h0, h1, h2) \ | |||
| VMRLG h1, h2, h2 \ // copy h1 to upper half h2 | |||
| VESLG $44, h1, h1 \ // shift limb 1 44 bits, leaving 20 | |||
| VO h0, h1, h0 \ // combine h0 with 20 bits from limb 1 | |||
| VESRLG $20, h2, h1 \ // put top 24 bits of limb 1 into h1 | |||
| VLEIG $1, $0, h1 \ // clear h2 stuff from lower half of h1 | |||
| VO h0, h1, h0 \ // h0 now has 88 bits (limb 0 and 1) | |||
| VLEIG $0, $0, h2 \ // clear upper half of h2 | |||
| VESRLG $40, h2, h1 \ // h1 now has upper two bits of result | |||
| VLEIB $7, $88, h1 \ // for byte shift (11 bytes) | |||
| VSLB h1, h2, h2 \ // shift h2 11 bytes to the left | |||
| VO h0, h2, h0 \ // combine h0 with 20 bits from limb 1 | |||
| VLEIG $0, $0, h1 \ // clear upper half of h1 | |||
| // if h > 2**130-5 then h -= 2**130-5 | |||
| // input: h0, h1 | |||
| // temp: t0, t1, t2 | |||
| // output: h0 | |||
| #define MOD(h0, h1, t0, t1, t2) \ | |||
| VZERO t0 \ | |||
| VLEIG $1, $5, t0 \ | |||
| VACCQ h0, t0, t1 \ | |||
| VAQ h0, t0, t0 \ | |||
| VONE t2 \ | |||
| VLEIG $1, $-4, t2 \ | |||
| VAQ t2, t1, t1 \ | |||
| VACCQ h1, t1, t1 \ | |||
| VONE t2 \ | |||
| VAQ t2, t1, t1 \ | |||
| VN h0, t1, t2 \ | |||
| VNC t0, t1, t1 \ | |||
| VO t1, t2, h0 \ | |||
| // func poly1305vmsl(out *[16]byte, m *byte, mlen uint64, key *[32]key) | |||
| TEXT ·poly1305vmsl(SB), $0-32 | |||
| // This code processes 6 + up to 4 blocks (32 bytes) per iteration | |||
| // using the algorithm described in: | |||
| // NEON crypto, Daniel J. Bernstein & Peter Schwabe | |||
| // https://cryptojedi.org/papers/neoncrypto-20120320.pdf | |||
| // And as moddified for VMSL as described in | |||
| // Accelerating Poly1305 Cryptographic Message Authentication on the z14 | |||
| // O'Farrell et al, CASCON 2017, p48-55 | |||
| // https://ibm.ent.box.com/s/jf9gedj0e9d2vjctfyh186shaztavnht | |||
| LMG out+0(FP), R1, R4 // R1=out, R2=m, R3=mlen, R4=key | |||
| VZERO V0 // c | |||
| // load EX0, EX1 and EX2 | |||
| MOVD $·constants<>(SB), R5 | |||
| VLM (R5), EX0, EX2 // c | |||
| // setup r | |||
| VL (R4), T_0 | |||
| MOVD $·keyMask<>(SB), R6 | |||
| VL (R6), T_1 | |||
| VN T_0, T_1, T_0 | |||
| VZERO T_2 // limbs for r | |||
| VZERO T_3 | |||
| VZERO T_4 | |||
| EXPACC2(T_0, T_2, T_3, T_4, T_1, T_5, T_7) | |||
| // T_2, T_3, T_4: [0, r] | |||
| // setup r*20 | |||
| VLEIG $0, $0, T_0 | |||
| VLEIG $1, $20, T_0 // T_0: [0, 20] | |||
| VZERO T_5 | |||
| VZERO T_6 | |||
| VMSLG T_0, T_3, T_5, T_5 | |||
| VMSLG T_0, T_4, T_6, T_6 | |||
| // store r for final block in GR | |||
| VLGVG $1, T_2, RSAVE_0 // c | |||
| VLGVG $1, T_3, RSAVE_1 // c | |||
| VLGVG $1, T_4, RSAVE_2 // c | |||
| VLGVG $1, T_5, R5SAVE_1 // c | |||
| VLGVG $1, T_6, R5SAVE_2 // c | |||
| // initialize h | |||
| VZERO H0_0 | |||
| VZERO H1_0 | |||
| VZERO H2_0 | |||
| VZERO H0_1 | |||
| VZERO H1_1 | |||
| VZERO H2_1 | |||
| // initialize pointer for reduce constants | |||
| MOVD $·reduce<>(SB), R12 | |||
| // calculate r**2 and 20*(r**2) | |||
| VZERO R_0 | |||
| VZERO R_1 | |||
| VZERO R_2 | |||
| SQUARE(T_2, T_3, T_4, T_6, R_0, R_1, R_2, T_1, T_5, T_7) | |||
| REDUCE2(R_0, R_1, R_2, M0, M1, M2, M3, M4, R5_1, R5_2, M5, T_1) | |||
| VZERO R5_1 | |||
| VZERO R5_2 | |||
| VMSLG T_0, R_1, R5_1, R5_1 | |||
| VMSLG T_0, R_2, R5_2, R5_2 | |||
| // skip r**4 calculation if 3 blocks or less | |||
| CMPBLE R3, $48, b4 | |||
| // calculate r**4 and 20*(r**4) | |||
| VZERO T_8 | |||
| VZERO T_9 | |||
| VZERO T_10 | |||
| SQUARE(R_0, R_1, R_2, R5_2, T_8, T_9, T_10, T_1, T_5, T_7) | |||
| REDUCE2(T_8, T_9, T_10, M0, M1, M2, M3, M4, T_2, T_3, M5, T_1) | |||
| VZERO T_2 | |||
| VZERO T_3 | |||
| VMSLG T_0, T_9, T_2, T_2 | |||
| VMSLG T_0, T_10, T_3, T_3 | |||
| // put r**2 to the right and r**4 to the left of R_0, R_1, R_2 | |||
| VSLDB $8, T_8, T_8, T_8 | |||
| VSLDB $8, T_9, T_9, T_9 | |||
| VSLDB $8, T_10, T_10, T_10 | |||
| VSLDB $8, T_2, T_2, T_2 | |||
| VSLDB $8, T_3, T_3, T_3 | |||
| VO T_8, R_0, R_0 | |||
| VO T_9, R_1, R_1 | |||
| VO T_10, R_2, R_2 | |||
| VO T_2, R5_1, R5_1 | |||
| VO T_3, R5_2, R5_2 | |||
| CMPBLE R3, $80, load // less than or equal to 5 blocks in message | |||
| // 6(or 5+1) blocks | |||
| SUB $81, R3 | |||
| VLM (R2), M0, M4 | |||
| VLL R3, 80(R2), M5 | |||
| ADD $1, R3 | |||
| MOVBZ $1, R0 | |||
| CMPBGE R3, $16, 2(PC) | |||
| VLVGB R3, R0, M5 | |||
| MOVD $96(R2), R2 | |||
| EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) | |||
| EXPACC(M2, M3, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) | |||
| VLEIB $2, $1, H2_0 | |||
| VLEIB $2, $1, H2_1 | |||
| VLEIB $10, $1, H2_0 | |||
| VLEIB $10, $1, H2_1 | |||
| VZERO M0 | |||
| VZERO M1 | |||
| VZERO M2 | |||
| VZERO M3 | |||
| VZERO T_4 | |||
| VZERO T_10 | |||
| EXPACC(M4, M5, M0, M1, M2, M3, T_4, T_10, T_0, T_1, T_2, T_3) | |||
| VLR T_4, M4 | |||
| VLEIB $10, $1, M2 | |||
| CMPBLT R3, $16, 2(PC) | |||
| VLEIB $10, $1, T_10 | |||
| MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||
| REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9) | |||
| VMRHG V0, H0_1, H0_0 | |||
| VMRHG V0, H1_1, H1_0 | |||
| VMRHG V0, H2_1, H2_0 | |||
| VMRLG V0, H0_1, H0_1 | |||
| VMRLG V0, H1_1, H1_1 | |||
| VMRLG V0, H2_1, H2_1 | |||
| SUB $16, R3 | |||
| CMPBLE R3, $0, square | |||
| load: | |||
| // load EX0, EX1 and EX2 | |||
| MOVD $·c<>(SB), R5 | |||
| VLM (R5), EX0, EX2 | |||
| loop: | |||
| CMPBLE R3, $64, add // b4 // last 4 or less blocks left | |||
| // next 4 full blocks | |||
| VLM (R2), M2, M5 | |||
| SUB $64, R3 | |||
| MOVD $64(R2), R2 | |||
| REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, T_0, T_1, T_3, T_4, T_5, T_2, T_7, T_8, T_9) | |||
| // expacc in-lined to create [m2, m3] limbs | |||
| VGBM $0x3f3f, T_0 // 44 bit clear mask | |||
| VGBM $0x1f1f, T_1 // 40 bit clear mask | |||
| VPERM M2, M3, EX0, T_3 | |||
| VESRLG $4, T_0, T_0 // 44 bit clear mask ready | |||
| VPERM M2, M3, EX1, T_4 | |||
| VPERM M2, M3, EX2, T_5 | |||
| VN T_0, T_3, T_3 | |||
| VESRLG $4, T_4, T_4 | |||
| VN T_1, T_5, T_5 | |||
| VN T_0, T_4, T_4 | |||
| VMRHG H0_1, T_3, H0_0 | |||
| VMRHG H1_1, T_4, H1_0 | |||
| VMRHG H2_1, T_5, H2_0 | |||
| VMRLG H0_1, T_3, H0_1 | |||
| VMRLG H1_1, T_4, H1_1 | |||
| VMRLG H2_1, T_5, H2_1 | |||
| VLEIB $10, $1, H2_0 | |||
| VLEIB $10, $1, H2_1 | |||
| VPERM M4, M5, EX0, T_3 | |||
| VPERM M4, M5, EX1, T_4 | |||
| VPERM M4, M5, EX2, T_5 | |||
| VN T_0, T_3, T_3 | |||
| VESRLG $4, T_4, T_4 | |||
| VN T_1, T_5, T_5 | |||
| VN T_0, T_4, T_4 | |||
| VMRHG V0, T_3, M0 | |||
| VMRHG V0, T_4, M1 | |||
| VMRHG V0, T_5, M2 | |||
| VMRLG V0, T_3, M3 | |||
| VMRLG V0, T_4, M4 | |||
| VMRLG V0, T_5, M5 | |||
| VLEIB $10, $1, M2 | |||
| VLEIB $10, $1, M5 | |||
| MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||
| CMPBNE R3, $0, loop | |||
| REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) | |||
| VMRHG V0, H0_1, H0_0 | |||
| VMRHG V0, H1_1, H1_0 | |||
| VMRHG V0, H2_1, H2_0 | |||
| VMRLG V0, H0_1, H0_1 | |||
| VMRLG V0, H1_1, H1_1 | |||
| VMRLG V0, H2_1, H2_1 | |||
| // load EX0, EX1, EX2 | |||
| MOVD $·constants<>(SB), R5 | |||
| VLM (R5), EX0, EX2 | |||
| // sum vectors | |||
| VAQ H0_0, H0_1, H0_0 | |||
| VAQ H1_0, H1_1, H1_0 | |||
| VAQ H2_0, H2_1, H2_0 | |||
| // h may be >= 2*(2**130-5) so we need to reduce it again | |||
| // M0...M4 are used as temps here | |||
| REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) | |||
| next: // carry h1->h2 | |||
| VLEIB $7, $0x28, T_1 | |||
| VREPIB $4, T_2 | |||
| VGBM $0x003F, T_3 | |||
| VESRLG $4, T_3 | |||
| // byte shift | |||
| VSRLB T_1, H1_0, T_4 | |||
| // bit shift | |||
| VSRL T_2, T_4, T_4 | |||
| // clear h1 carry bits | |||
| VN T_3, H1_0, H1_0 | |||
| // add carry | |||
| VAQ T_4, H2_0, H2_0 | |||
| // h is now < 2*(2**130-5) | |||
| // pack h into h1 (hi) and h0 (lo) | |||
| PACK(H0_0, H1_0, H2_0) | |||
| // if h > 2**130-5 then h -= 2**130-5 | |||
| MOD(H0_0, H1_0, T_0, T_1, T_2) | |||
| // h += s | |||
| MOVD $·bswapMask<>(SB), R5 | |||
| VL (R5), T_1 | |||
| VL 16(R4), T_0 | |||
| VPERM T_0, T_0, T_1, T_0 // reverse bytes (to big) | |||
| VAQ T_0, H0_0, H0_0 | |||
| VPERM H0_0, H0_0, T_1, H0_0 // reverse bytes (to little) | |||
| VST H0_0, (R1) | |||
| RET | |||
| add: | |||
| // load EX0, EX1, EX2 | |||
| MOVD $·constants<>(SB), R5 | |||
| VLM (R5), EX0, EX2 | |||
| REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) | |||
| VMRHG V0, H0_1, H0_0 | |||
| VMRHG V0, H1_1, H1_0 | |||
| VMRHG V0, H2_1, H2_0 | |||
| VMRLG V0, H0_1, H0_1 | |||
| VMRLG V0, H1_1, H1_1 | |||
| VMRLG V0, H2_1, H2_1 | |||
| CMPBLE R3, $64, b4 | |||
| b4: | |||
| CMPBLE R3, $48, b3 // 3 blocks or less | |||
| // 4(3+1) blocks remaining | |||
| SUB $49, R3 | |||
| VLM (R2), M0, M2 | |||
| VLL R3, 48(R2), M3 | |||
| ADD $1, R3 | |||
| MOVBZ $1, R0 | |||
| CMPBEQ R3, $16, 2(PC) | |||
| VLVGB R3, R0, M3 | |||
| MOVD $64(R2), R2 | |||
| EXPACC(M0, M1, H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_0, T_1, T_2, T_3) | |||
| VLEIB $10, $1, H2_0 | |||
| VLEIB $10, $1, H2_1 | |||
| VZERO M0 | |||
| VZERO M1 | |||
| VZERO M4 | |||
| VZERO M5 | |||
| VZERO T_4 | |||
| VZERO T_10 | |||
| EXPACC(M2, M3, M0, M1, M4, M5, T_4, T_10, T_0, T_1, T_2, T_3) | |||
| VLR T_4, M2 | |||
| VLEIB $10, $1, M4 | |||
| CMPBNE R3, $16, 2(PC) | |||
| VLEIB $10, $1, T_10 | |||
| MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M4, M5, M2, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||
| REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M3, M4, M5, T_4, T_5, T_2, T_7, T_8, T_9) | |||
| VMRHG V0, H0_1, H0_0 | |||
| VMRHG V0, H1_1, H1_0 | |||
| VMRHG V0, H2_1, H2_0 | |||
| VMRLG V0, H0_1, H0_1 | |||
| VMRLG V0, H1_1, H1_1 | |||
| VMRLG V0, H2_1, H2_1 | |||
| SUB $16, R3 | |||
| CMPBLE R3, $0, square // this condition must always hold true! | |||
| b3: | |||
| CMPBLE R3, $32, b2 | |||
| // 3 blocks remaining | |||
| // setup [r²,r] | |||
| VSLDB $8, R_0, R_0, R_0 | |||
| VSLDB $8, R_1, R_1, R_1 | |||
| VSLDB $8, R_2, R_2, R_2 | |||
| VSLDB $8, R5_1, R5_1, R5_1 | |||
| VSLDB $8, R5_2, R5_2, R5_2 | |||
| VLVGG $1, RSAVE_0, R_0 | |||
| VLVGG $1, RSAVE_1, R_1 | |||
| VLVGG $1, RSAVE_2, R_2 | |||
| VLVGG $1, R5SAVE_1, R5_1 | |||
| VLVGG $1, R5SAVE_2, R5_2 | |||
| // setup [h0, h1] | |||
| VSLDB $8, H0_0, H0_0, H0_0 | |||
| VSLDB $8, H1_0, H1_0, H1_0 | |||
| VSLDB $8, H2_0, H2_0, H2_0 | |||
| VO H0_1, H0_0, H0_0 | |||
| VO H1_1, H1_0, H1_0 | |||
| VO H2_1, H2_0, H2_0 | |||
| VZERO H0_1 | |||
| VZERO H1_1 | |||
| VZERO H2_1 | |||
| VZERO M0 | |||
| VZERO M1 | |||
| VZERO M2 | |||
| VZERO M3 | |||
| VZERO M4 | |||
| VZERO M5 | |||
| // H*[r**2, r] | |||
| MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||
| REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, T_10, M5) | |||
| SUB $33, R3 | |||
| VLM (R2), M0, M1 | |||
| VLL R3, 32(R2), M2 | |||
| ADD $1, R3 | |||
| MOVBZ $1, R0 | |||
| CMPBEQ R3, $16, 2(PC) | |||
| VLVGB R3, R0, M2 | |||
| // H += m0 | |||
| VZERO T_1 | |||
| VZERO T_2 | |||
| VZERO T_3 | |||
| EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6) | |||
| VLEIB $10, $1, T_3 | |||
| VAG H0_0, T_1, H0_0 | |||
| VAG H1_0, T_2, H1_0 | |||
| VAG H2_0, T_3, H2_0 | |||
| VZERO M0 | |||
| VZERO M3 | |||
| VZERO M4 | |||
| VZERO M5 | |||
| VZERO T_10 | |||
| // (H+m0)*r | |||
| MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M3, M4, M5, V0, T_10, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||
| REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_10, H0_1, H1_1, H2_1, T_9) | |||
| // H += m1 | |||
| VZERO V0 | |||
| VZERO T_1 | |||
| VZERO T_2 | |||
| VZERO T_3 | |||
| EXPACC2(M1, T_1, T_2, T_3, T_4, T_5, T_6) | |||
| VLEIB $10, $1, T_3 | |||
| VAQ H0_0, T_1, H0_0 | |||
| VAQ H1_0, T_2, H1_0 | |||
| VAQ H2_0, T_3, H2_0 | |||
| REDUCE2(H0_0, H1_0, H2_0, M0, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10) | |||
| // [H, m2] * [r**2, r] | |||
| EXPACC2(M2, H0_0, H1_0, H2_0, T_1, T_2, T_3) | |||
| CMPBNE R3, $16, 2(PC) | |||
| VLEIB $10, $1, H2_0 | |||
| VZERO M0 | |||
| VZERO M1 | |||
| VZERO M2 | |||
| VZERO M3 | |||
| VZERO M4 | |||
| VZERO M5 | |||
| MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||
| REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, H0_1, H1_1, M5, T_10) | |||
| SUB $16, R3 | |||
| CMPBLE R3, $0, next // this condition must always hold true! | |||
| b2: | |||
| CMPBLE R3, $16, b1 | |||
| // 2 blocks remaining | |||
| // setup [r²,r] | |||
| VSLDB $8, R_0, R_0, R_0 | |||
| VSLDB $8, R_1, R_1, R_1 | |||
| VSLDB $8, R_2, R_2, R_2 | |||
| VSLDB $8, R5_1, R5_1, R5_1 | |||
| VSLDB $8, R5_2, R5_2, R5_2 | |||
| VLVGG $1, RSAVE_0, R_0 | |||
| VLVGG $1, RSAVE_1, R_1 | |||
| VLVGG $1, RSAVE_2, R_2 | |||
| VLVGG $1, R5SAVE_1, R5_1 | |||
| VLVGG $1, R5SAVE_2, R5_2 | |||
| // setup [h0, h1] | |||
| VSLDB $8, H0_0, H0_0, H0_0 | |||
| VSLDB $8, H1_0, H1_0, H1_0 | |||
| VSLDB $8, H2_0, H2_0, H2_0 | |||
| VO H0_1, H0_0, H0_0 | |||
| VO H1_1, H1_0, H1_0 | |||
| VO H2_1, H2_0, H2_0 | |||
| VZERO H0_1 | |||
| VZERO H1_1 | |||
| VZERO H2_1 | |||
| VZERO M0 | |||
| VZERO M1 | |||
| VZERO M2 | |||
| VZERO M3 | |||
| VZERO M4 | |||
| VZERO M5 | |||
| // H*[r**2, r] | |||
| MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||
| REDUCE(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, T_10, M0, M1, M2, M3, M4, T_4, T_5, T_2, T_7, T_8, T_9) | |||
| VMRHG V0, H0_1, H0_0 | |||
| VMRHG V0, H1_1, H1_0 | |||
| VMRHG V0, H2_1, H2_0 | |||
| VMRLG V0, H0_1, H0_1 | |||
| VMRLG V0, H1_1, H1_1 | |||
| VMRLG V0, H2_1, H2_1 | |||
| // move h to the left and 0s at the right | |||
| VSLDB $8, H0_0, H0_0, H0_0 | |||
| VSLDB $8, H1_0, H1_0, H1_0 | |||
| VSLDB $8, H2_0, H2_0, H2_0 | |||
| // get message blocks and append 1 to start | |||
| SUB $17, R3 | |||
| VL (R2), M0 | |||
| VLL R3, 16(R2), M1 | |||
| ADD $1, R3 | |||
| MOVBZ $1, R0 | |||
| CMPBEQ R3, $16, 2(PC) | |||
| VLVGB R3, R0, M1 | |||
| VZERO T_6 | |||
| VZERO T_7 | |||
| VZERO T_8 | |||
| EXPACC2(M0, T_6, T_7, T_8, T_1, T_2, T_3) | |||
| EXPACC2(M1, T_6, T_7, T_8, T_1, T_2, T_3) | |||
| VLEIB $2, $1, T_8 | |||
| CMPBNE R3, $16, 2(PC) | |||
| VLEIB $10, $1, T_8 | |||
| // add [m0, m1] to h | |||
| VAG H0_0, T_6, H0_0 | |||
| VAG H1_0, T_7, H1_0 | |||
| VAG H2_0, T_8, H2_0 | |||
| VZERO M2 | |||
| VZERO M3 | |||
| VZERO M4 | |||
| VZERO M5 | |||
| VZERO T_10 | |||
| VZERO M0 | |||
| // at this point R_0 .. R5_2 look like [r**2, r] | |||
| MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M2, M3, M4, M5, T_10, M0, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||
| REDUCE2(H0_0, H1_0, H2_0, M2, M3, M4, M5, T_9, H0_1, H1_1, H2_1, T_10) | |||
| SUB $16, R3, R3 | |||
| CMPBLE R3, $0, next | |||
| b1: | |||
| CMPBLE R3, $0, next | |||
| // 1 block remaining | |||
| // setup [r²,r] | |||
| VSLDB $8, R_0, R_0, R_0 | |||
| VSLDB $8, R_1, R_1, R_1 | |||
| VSLDB $8, R_2, R_2, R_2 | |||
| VSLDB $8, R5_1, R5_1, R5_1 | |||
| VSLDB $8, R5_2, R5_2, R5_2 | |||
| VLVGG $1, RSAVE_0, R_0 | |||
| VLVGG $1, RSAVE_1, R_1 | |||
| VLVGG $1, RSAVE_2, R_2 | |||
| VLVGG $1, R5SAVE_1, R5_1 | |||
| VLVGG $1, R5SAVE_2, R5_2 | |||
| // setup [h0, h1] | |||
| VSLDB $8, H0_0, H0_0, H0_0 | |||
| VSLDB $8, H1_0, H1_0, H1_0 | |||
| VSLDB $8, H2_0, H2_0, H2_0 | |||
| VO H0_1, H0_0, H0_0 | |||
| VO H1_1, H1_0, H1_0 | |||
| VO H2_1, H2_0, H2_0 | |||
| VZERO H0_1 | |||
| VZERO H1_1 | |||
| VZERO H2_1 | |||
| VZERO M0 | |||
| VZERO M1 | |||
| VZERO M2 | |||
| VZERO M3 | |||
| VZERO M4 | |||
| VZERO M5 | |||
| // H*[r**2, r] | |||
| MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||
| REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) | |||
| // set up [0, m0] limbs | |||
| SUB $1, R3 | |||
| VLL R3, (R2), M0 | |||
| ADD $1, R3 | |||
| MOVBZ $1, R0 | |||
| CMPBEQ R3, $16, 2(PC) | |||
| VLVGB R3, R0, M0 | |||
| VZERO T_1 | |||
| VZERO T_2 | |||
| VZERO T_3 | |||
| EXPACC2(M0, T_1, T_2, T_3, T_4, T_5, T_6)// limbs: [0, m] | |||
| CMPBNE R3, $16, 2(PC) | |||
| VLEIB $10, $1, T_3 | |||
| // h+m0 | |||
| VAQ H0_0, T_1, H0_0 | |||
| VAQ H1_0, T_2, H1_0 | |||
| VAQ H2_0, T_3, H2_0 | |||
| VZERO M0 | |||
| VZERO M1 | |||
| VZERO M2 | |||
| VZERO M3 | |||
| VZERO M4 | |||
| VZERO M5 | |||
| MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||
| REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) | |||
| BR next | |||
| square: | |||
| // setup [r²,r] | |||
| VSLDB $8, R_0, R_0, R_0 | |||
| VSLDB $8, R_1, R_1, R_1 | |||
| VSLDB $8, R_2, R_2, R_2 | |||
| VSLDB $8, R5_1, R5_1, R5_1 | |||
| VSLDB $8, R5_2, R5_2, R5_2 | |||
| VLVGG $1, RSAVE_0, R_0 | |||
| VLVGG $1, RSAVE_1, R_1 | |||
| VLVGG $1, RSAVE_2, R_2 | |||
| VLVGG $1, R5SAVE_1, R5_1 | |||
| VLVGG $1, R5SAVE_2, R5_2 | |||
| // setup [h0, h1] | |||
| VSLDB $8, H0_0, H0_0, H0_0 | |||
| VSLDB $8, H1_0, H1_0, H1_0 | |||
| VSLDB $8, H2_0, H2_0, H2_0 | |||
| VO H0_1, H0_0, H0_0 | |||
| VO H1_1, H1_0, H1_0 | |||
| VO H2_1, H2_0, H2_0 | |||
| VZERO H0_1 | |||
| VZERO H1_1 | |||
| VZERO H2_1 | |||
| VZERO M0 | |||
| VZERO M1 | |||
| VZERO M2 | |||
| VZERO M3 | |||
| VZERO M4 | |||
| VZERO M5 | |||
| // (h0*r**2) + (h1*r) | |||
| MULTIPLY(H0_0, H1_0, H2_0, H0_1, H1_1, H2_1, R_0, R_1, R_2, R5_1, R5_2, M0, M1, M2, M3, M4, M5, T_0, T_1, T_2, T_3, T_4, T_5, T_6, T_7, T_8, T_9) | |||
| REDUCE2(H0_0, H1_0, H2_0, M0, M1, M2, M3, M4, T_9, T_10, H0_1, M5) | |||
| BR next | |||
| @@ -102,8 +102,9 @@ type ConstraintExtension struct { | |||
| // AddedKey describes an SSH key to be added to an Agent. | |||
| type AddedKey struct { | |||
| // PrivateKey must be a *rsa.PrivateKey, *dsa.PrivateKey or | |||
| // *ecdsa.PrivateKey, which will be inserted into the agent. | |||
| // PrivateKey must be a *rsa.PrivateKey, *dsa.PrivateKey, | |||
| // ed25519.PrivateKey or *ecdsa.PrivateKey, which will be inserted into the | |||
| // agent. | |||
| PrivateKey interface{} | |||
| // Certificate, if not nil, is communicated to the agent and will be | |||
| // stored with the key. | |||
| @@ -566,6 +567,17 @@ func (c *client) insertKey(s interface{}, comment string, constraints []byte) er | |||
| Comments: comment, | |||
| Constraints: constraints, | |||
| }) | |||
| case ed25519.PrivateKey: | |||
| req = ssh.Marshal(ed25519KeyMsg{ | |||
| Type: ssh.KeyAlgoED25519, | |||
| Pub: []byte(k)[32:], | |||
| Priv: []byte(k), | |||
| Comments: comment, | |||
| Constraints: constraints, | |||
| }) | |||
| // This function originally supported only *ed25519.PrivateKey, however the | |||
| // general idiom is to pass ed25519.PrivateKey by value, not by pointer. | |||
| // We still support the pointer variant for backwards compatibility. | |||
| case *ed25519.PrivateKey: | |||
| req = ssh.Marshal(ed25519KeyMsg{ | |||
| Type: ssh.KeyAlgoED25519, | |||
| @@ -683,6 +695,18 @@ func (c *client) insertCert(s interface{}, cert *ssh.Certificate, comment string | |||
| Comments: comment, | |||
| Constraints: constraints, | |||
| }) | |||
| case ed25519.PrivateKey: | |||
| req = ssh.Marshal(ed25519CertMsg{ | |||
| Type: cert.Type(), | |||
| CertBytes: cert.Marshal(), | |||
| Pub: []byte(k)[32:], | |||
| Priv: []byte(k), | |||
| Comments: comment, | |||
| Constraints: constraints, | |||
| }) | |||
| // This function originally supported only *ed25519.PrivateKey, however the | |||
| // general idiom is to pass ed25519.PrivateKey by value, not by pointer. | |||
| // We still support the pointer variant for backwards compatibility. | |||
| case *ed25519.PrivateKey: | |||
| req = ssh.Marshal(ed25519CertMsg{ | |||
| Type: cert.Type(), | |||
| @@ -414,8 +414,8 @@ func (c *CertChecker) CheckCert(principal string, cert *Certificate) error { | |||
| return nil | |||
| } | |||
| // SignCert sets c.SignatureKey to the authority's public key and stores a | |||
| // Signature, by authority, in the certificate. | |||
| // SignCert signs the certificate with an authority, setting the Nonce, | |||
| // SignatureKey, and Signature fields. | |||
| func (c *Certificate) SignCert(rand io.Reader, authority Signer) error { | |||
| c.Nonce = make([]byte, 32) | |||
| if _, err := io.ReadFull(rand, c.Nonce); err != nil { | |||
| @@ -119,7 +119,7 @@ var cipherModes = map[string]*cipherMode{ | |||
| chacha20Poly1305ID: {64, 0, newChaCha20Cipher}, | |||
| // CBC mode is insecure and so is not included in the default config. | |||
| // (See http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf). If absolutely | |||
| // (See https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf). If absolutely | |||
| // needed, it's possible to specify a custom Config to enable it. | |||
| // You should expect that an active attacker can recover plaintext if | |||
| // you do. | |||
| @@ -572,7 +572,7 @@ func (gex *dhGEXSHA) diffieHellman(theirPublic, myPrivate *big.Int) (*big.Int, e | |||
| return new(big.Int).Exp(theirPublic, myPrivate, gex.p), nil | |||
| } | |||
| func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) { | |||
| func (gex dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshakeMagics) (*kexResult, error) { | |||
| // Send GexRequest | |||
| kexDHGexRequest := kexDHGexRequestMsg{ | |||
| MinBits: dhGroupExchangeMinimumBits, | |||
| @@ -677,7 +677,7 @@ func (gex *dhGEXSHA) Client(c packetConn, randSource io.Reader, magics *handshak | |||
| // Server half implementation of the Diffie Hellman Key Exchange with SHA1 and SHA256. | |||
| // | |||
| // This is a minimal implementation to satisfy the automated tests. | |||
| func (gex *dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) { | |||
| func (gex dhGEXSHA) Server(c packetConn, randSource io.Reader, magics *handshakeMagics, priv Signer) (result *kexResult, err error) { | |||
| // Receive GexRequest | |||
| packet, err := c.readPacket() | |||
| if err != nil { | |||
| @@ -1246,15 +1246,23 @@ func passphraseProtectedOpenSSHKey(passphrase []byte) openSSHDecryptFunc { | |||
| } | |||
| key, iv := k[:32], k[32:] | |||
| if cipherName != "aes256-ctr" { | |||
| return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q", cipherName, "aes256-ctr") | |||
| } | |||
| c, err := aes.NewCipher(key) | |||
| if err != nil { | |||
| return nil, err | |||
| } | |||
| ctr := cipher.NewCTR(c, iv) | |||
| ctr.XORKeyStream(privKeyBlock, privKeyBlock) | |||
| switch cipherName { | |||
| case "aes256-ctr": | |||
| ctr := cipher.NewCTR(c, iv) | |||
| ctr.XORKeyStream(privKeyBlock, privKeyBlock) | |||
| case "aes256-cbc": | |||
| if len(privKeyBlock)%c.BlockSize() != 0 { | |||
| return nil, fmt.Errorf("ssh: invalid encrypted private key length, not a multiple of the block size") | |||
| } | |||
| cbc := cipher.NewCBCDecrypter(c, iv) | |||
| cbc.CryptBlocks(privKeyBlock, privKeyBlock) | |||
| default: | |||
| return nil, fmt.Errorf("ssh: unknown cipher %q, only supports %q or %q", cipherName, "aes256-ctr", "aes256-cbc") | |||
| } | |||
| return privKeyBlock, nil | |||
| } | |||
| @@ -158,7 +158,7 @@ github.com/couchbaselabs/go-couchbase | |||
| ## explicit | |||
| # github.com/davecgh/go-spew v1.1.1 | |||
| github.com/davecgh/go-spew/spew | |||
| # github.com/denisenkom/go-mssqldb v0.0.0-20191128021309-1d7a30a10f73 | |||
| # github.com/denisenkom/go-mssqldb v0.0.0-20200428022330-06a60b6afbbc | |||
| ## explicit | |||
| github.com/denisenkom/go-mssqldb | |||
| github.com/denisenkom/go-mssqldb/internal/cp | |||
| @@ -670,7 +670,7 @@ go.mongodb.org/mongo-driver/bson/bsonrw | |||
| go.mongodb.org/mongo-driver/bson/bsontype | |||
| go.mongodb.org/mongo-driver/bson/primitive | |||
| go.mongodb.org/mongo-driver/x/bsonx/bsoncore | |||
| # golang.org/x/crypto v0.0.0-20200302210943-78000ba7a073 | |||
| # golang.org/x/crypto v0.0.0-20200429183012-4b2356b1ed79 | |||
| ## explicit | |||
| golang.org/x/crypto/acme | |||
| golang.org/x/crypto/acme/autocert | |||