|
|
@@ -0,0 +1,192 @@ |
|
|
|
package cache |
|
|
|
|
|
|
|
import ( |
|
|
|
"crypto/rand" |
|
|
|
"math" |
|
|
|
"math/big" |
|
|
|
insecurerand "math/rand" |
|
|
|
"os" |
|
|
|
"runtime" |
|
|
|
"time" |
|
|
|
) |
|
|
|
|
|
|
|
// This is an experimental and unexported (for now) attempt at making a cache |
|
|
|
// with better algorithmic complexity than the standard one, namely by |
|
|
|
// preventing write locks of the entire cache when an item is added. As of the |
|
|
|
// time of writing, the overhead of selecting buckets results in cache |
|
|
|
// operations being about twice as slow as for the standard cache with small |
|
|
|
// total cache sizes, and faster for larger ones. |
|
|
|
// |
|
|
|
// See cache_test.go for a few benchmarks. |
|
|
|
|
|
|
|
type unexportedShardedCache struct { |
|
|
|
*shardedCache |
|
|
|
} |
|
|
|
|
|
|
|
type shardedCache struct { |
|
|
|
seed uint32 |
|
|
|
m uint32 |
|
|
|
cs []*cache |
|
|
|
janitor *shardedJanitor |
|
|
|
} |
|
|
|
|
|
|
|
// djb2 with better shuffling. 5x faster than FNV with the hash.Hash overhead. |
|
|
|
func djb33(seed uint32, k string) uint32 { |
|
|
|
var ( |
|
|
|
l = uint32(len(k)) |
|
|
|
d = 5381 + seed + l |
|
|
|
i = uint32(0) |
|
|
|
) |
|
|
|
// Why is all this 5x faster than a for loop? |
|
|
|
if l >= 4 { |
|
|
|
for i < l-4 { |
|
|
|
d = (d * 33) ^ uint32(k[i]) |
|
|
|
d = (d * 33) ^ uint32(k[i+1]) |
|
|
|
d = (d * 33) ^ uint32(k[i+2]) |
|
|
|
d = (d * 33) ^ uint32(k[i+3]) |
|
|
|
i += 4 |
|
|
|
} |
|
|
|
} |
|
|
|
switch l - i { |
|
|
|
case 1: |
|
|
|
case 2: |
|
|
|
d = (d * 33) ^ uint32(k[i]) |
|
|
|
case 3: |
|
|
|
d = (d * 33) ^ uint32(k[i]) |
|
|
|
d = (d * 33) ^ uint32(k[i+1]) |
|
|
|
case 4: |
|
|
|
d = (d * 33) ^ uint32(k[i]) |
|
|
|
d = (d * 33) ^ uint32(k[i+1]) |
|
|
|
d = (d * 33) ^ uint32(k[i+2]) |
|
|
|
} |
|
|
|
return d ^ (d >> 16) |
|
|
|
} |
|
|
|
|
|
|
|
func (sc *shardedCache) bucket(k string) *cache { |
|
|
|
return sc.cs[djb33(sc.seed, k)%sc.m] |
|
|
|
} |
|
|
|
|
|
|
|
func (sc *shardedCache) Set(k string, x interface{}, d time.Duration) { |
|
|
|
sc.bucket(k).Set(k, x, d) |
|
|
|
} |
|
|
|
|
|
|
|
func (sc *shardedCache) Add(k string, x interface{}, d time.Duration) error { |
|
|
|
return sc.bucket(k).Add(k, x, d) |
|
|
|
} |
|
|
|
|
|
|
|
func (sc *shardedCache) Replace(k string, x interface{}, d time.Duration) error { |
|
|
|
return sc.bucket(k).Replace(k, x, d) |
|
|
|
} |
|
|
|
|
|
|
|
func (sc *shardedCache) Get(k string) (interface{}, bool) { |
|
|
|
return sc.bucket(k).Get(k) |
|
|
|
} |
|
|
|
|
|
|
|
func (sc *shardedCache) Increment(k string, n int64) error { |
|
|
|
return sc.bucket(k).Increment(k, n) |
|
|
|
} |
|
|
|
|
|
|
|
func (sc *shardedCache) IncrementFloat(k string, n float64) error { |
|
|
|
return sc.bucket(k).IncrementFloat(k, n) |
|
|
|
} |
|
|
|
|
|
|
|
func (sc *shardedCache) Decrement(k string, n int64) error { |
|
|
|
return sc.bucket(k).Decrement(k, n) |
|
|
|
} |
|
|
|
|
|
|
|
func (sc *shardedCache) Delete(k string) { |
|
|
|
sc.bucket(k).Delete(k) |
|
|
|
} |
|
|
|
|
|
|
|
func (sc *shardedCache) DeleteExpired() { |
|
|
|
for _, v := range sc.cs { |
|
|
|
v.DeleteExpired() |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
// Returns the items in the cache. This may include items that have expired, |
|
|
|
// but have not yet been cleaned up. If this is significant, the Expiration |
|
|
|
// fields of the items should be checked. Note that explicit synchronization |
|
|
|
// is needed to use a cache and its corresponding Items() return values at |
|
|
|
// the same time, as the maps are shared. |
|
|
|
func (sc *shardedCache) Items() []map[string]Item { |
|
|
|
res := make([]map[string]Item, len(sc.cs)) |
|
|
|
for i, v := range sc.cs { |
|
|
|
res[i] = v.Items() |
|
|
|
} |
|
|
|
return res |
|
|
|
} |
|
|
|
|
|
|
|
func (sc *shardedCache) Flush() { |
|
|
|
for _, v := range sc.cs { |
|
|
|
v.Flush() |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
type shardedJanitor struct { |
|
|
|
Interval time.Duration |
|
|
|
stop chan bool |
|
|
|
} |
|
|
|
|
|
|
|
func (j *shardedJanitor) Run(sc *shardedCache) { |
|
|
|
j.stop = make(chan bool) |
|
|
|
tick := time.Tick(j.Interval) |
|
|
|
for { |
|
|
|
select { |
|
|
|
case <-tick: |
|
|
|
sc.DeleteExpired() |
|
|
|
case <-j.stop: |
|
|
|
return |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
func stopShardedJanitor(sc *unexportedShardedCache) { |
|
|
|
sc.janitor.stop <- true |
|
|
|
} |
|
|
|
|
|
|
|
func runShardedJanitor(sc *shardedCache, ci time.Duration) { |
|
|
|
j := &shardedJanitor{ |
|
|
|
Interval: ci, |
|
|
|
} |
|
|
|
sc.janitor = j |
|
|
|
go j.Run(sc) |
|
|
|
} |
|
|
|
|
|
|
|
func newShardedCache(n int, de time.Duration) *shardedCache { |
|
|
|
max := big.NewInt(0).SetUint64(uint64(math.MaxUint32)) |
|
|
|
rnd, err := rand.Int(rand.Reader, max) |
|
|
|
var seed uint32 |
|
|
|
if err != nil { |
|
|
|
os.Stderr.Write([]byte("WARNING: go-cache's newShardedCache failed to read from the system CSPRNG (/dev/urandom or equivalent.) Your system's security may be compromised. Continuing with an insecure seed.\n")) |
|
|
|
seed = insecurerand.Uint32() |
|
|
|
} else { |
|
|
|
seed = uint32(rnd.Uint64()) |
|
|
|
} |
|
|
|
sc := &shardedCache{ |
|
|
|
seed: seed, |
|
|
|
m: uint32(n), |
|
|
|
cs: make([]*cache, n), |
|
|
|
} |
|
|
|
for i := 0; i < n; i++ { |
|
|
|
c := &cache{ |
|
|
|
defaultExpiration: de, |
|
|
|
items: map[string]Item{}, |
|
|
|
} |
|
|
|
sc.cs[i] = c |
|
|
|
} |
|
|
|
return sc |
|
|
|
} |
|
|
|
|
|
|
|
func unexportedNewSharded(defaultExpiration, cleanupInterval time.Duration, shards int) *unexportedShardedCache { |
|
|
|
if defaultExpiration == 0 { |
|
|
|
defaultExpiration = -1 |
|
|
|
} |
|
|
|
sc := newShardedCache(shards, defaultExpiration) |
|
|
|
SC := &unexportedShardedCache{sc} |
|
|
|
if cleanupInterval > 0 { |
|
|
|
runShardedJanitor(sc, cleanupInterval) |
|
|
|
runtime.SetFinalizer(SC, stopShardedJanitor) |
|
|
|
} |
|
|
|
return SC |
|
|
|
} |