import glob import os import random import torch from torch.utils.data import Dataset, DataLoader import pytorch_lightning as pl from PIL import Image from torchvision import transforms class DataModule(pl.LightningDataModule): def __init__(self, batch_size, num_workers, k_fold, kth_fold, dataset_path, config=None): super().__init__() self.batch_size = batch_size self.num_workers = num_workers self.config = config self.k_fold = k_fold self.kth_fold = kth_fold self.dataset_path = dataset_path def setup(self, stage=None) -> None: k_fold_dataset_list = self.get_k_fold_dataset_list() if stage == 'fit' or stage is None: dataset_train, dataset_val = self.get_fit_dataset_lists(k_fold_dataset_list) self.train_dataset = CustomDataset(self.dataset_path, dataset_train, 'train', self.config,) self.val_dataset = CustomDataset(self.dataset_path, dataset_val, 'val', self.config,) if stage == 'test' or stage is None: dataset_test = self.get_test_dataset_lists(k_fold_dataset_list) self.test_dataset = CustomDataset(self.dataset_path, dataset_test, 'test', self.config,) def get_k_fold_dataset_list(self): # 得到用于K折分割的数据的list, 并生成文件夹进行保存 if not os.path.exists(self.dataset_path + '/k_fold_dataset_list.txt'): # 获得用于k折分割的数据的list dataset = glob.glob(self.dataset_path + '/train/image/*.png') random.shuffle(dataset) written = dataset with open(self.dataset_path + '/k_fold_dataset_list.txt', 'w', encoding='utf-8') as f: for line in written: f.write(line.replace('\\', '/') + '\n') print('已生成新的k折数据list') else: dataset = open(self.dataset_path + '/k_fold_dataset_list.txt').readlines() dataset = [item.strip('\n') for item in dataset] return dataset def get_fit_dataset_lists(self, dataset_list: list): # 得到一个fold的数据量和不够组成一个fold的剩余数据的数据量 num_1fold, remainder = divmod(len(dataset_list), self.k_fold) # 分割全部数据, 得到训练集, 验证集, 测试集 dataset_val = dataset_list[num_1fold * self.kth_fold:(num_1fold * (self.kth_fold + 1) + remainder)] del (dataset_list[num_1fold * self.kth_fold:(num_1fold * (self.kth_fold + 1) + remainder)]) dataset_train = dataset_list return dataset_train, dataset_val def get_test_dataset_lists(self, dataset_list): dataset = glob.glob(self.dataset_path + '/test/image/*.png') return dataset def train_dataloader(self): return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, pin_memory=True) def val_dataloader(self): return DataLoader(self.val_dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.num_workers, pin_memory=True) def test_dataloader(self): return DataLoader(self.test_dataset, batch_size=1, shuffle=False, num_workers=self.num_workers, pin_memory=True) class CustomDataset(Dataset): def __init__(self, dataset_path, dataset, stage, config, ): super().__init__() self.dataset = dataset # 此处的均值和方差来源于ImageNet normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if stage == 'train': self.trans = transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(config['dim_in'], 4), transforms.ToTensor(), normalize, ]) elif stage == 'val': stage = 'train' self.trans = transforms.Compose([ transforms.ToTensor(), normalize, ]) else: self.trans = transforms.Compose([ transforms.ToTensor(), normalize, ]) self.labels = open(dataset_path + '/' + stage + '/label.txt').readlines() def __getitem__(self, idx): # 注意: 为了满足初始化权重算法的要求, 需要输入参数的均值为0. 可以使用transforms.Normalize() image_path = self.dataset[idx] image_name = os.path.basename(image_path) image = Image.open(image_path) image = self.trans(image) label = torch.Tensor([int(self.labels[int(image_name.strip('.png'))].strip('\n'))]) return image_name, image, label.long() def __len__(self): return len(self.dataset)