from save_checkpoint import SaveCheckpoint from data_module import DataModule from pytorch_lightning import loggers as pl_loggers import pytorch_lightning as pl from train_model import TrainModule def main(stage, num_workers, max_epochs, batch_size, precision, seed, dataset_path=None, gpus=None, tpu_cores=None, load_checkpoint_path=None, save_name=None, path_final_save=None, every_n_epochs=1, save_top_k=1,): """ 框架的入口函数. 包含设置超参数, 划分数据集, 选择训练或测试等流程 该函数的参数为训练过程中需要经常改动的参数 :param stage: 表示处于训练阶段还是测试阶段, fit表示训练, test表示测试 :param num_workers: :param max_epochs: :param batch_size: :param precision: 训练精度, 正常精度为32, 半精度为16, 也可以是64. 精度代表每个参数的类型所占的位数 :param seed: :param dataset_path: 数据集地址, 其目录下包含数据集, 标签, 全部数据的命名list :param gpus: :param tpu_cores: :param load_checkpoint_path: :param save_name: :param path_final_save: :param every_n_epochs: :param save_top_k: """ # config存放确定模型后不常改动的非通用的参数, 通用参数且不经常带动的直接进行声明 if False: config = {'dataset_path': dataset_path, 'dim_in': 2, 'dim': 10, 'res_coef': 0.5, 'dropout_p': 0.1, 'n_layers': 2, 'flag': True} else: config = {'dataset_path': dataset_path, 'dim_in': 62, 'dim': 32, 'res_coef': 0.5, 'dropout_p': 0.1, 'n_layers': 20, 'flag': False} # TODO 获得最优的batch size # TODO 自动获取CPU核心数并设置num workers precision = 32 if (gpus is None and tpu_cores is None) else precision dm = DataModule(batch_size=batch_size, num_workers=num_workers, config=config) logger = pl_loggers.TensorBoardLogger('logs/') if stage == 'fit': training_module = TrainModule(config=config) save_checkpoint = SaveCheckpoint(seed=seed, max_epochs=max_epochs, save_name=save_name, path_final_save=path_final_save, every_n_epochs=every_n_epochs, verbose=True, monitor='Validation acc', save_top_k=save_top_k, mode='max') if load_checkpoint_path is None: print('进行初始训练') trainer = pl.Trainer(max_epochs=max_epochs, gpus=gpus, tpu_cores=tpu_cores, logger=logger, precision=precision, callbacks=[save_checkpoint]) training_module.load_pretrain_parameters() else: print('进行重载训练') trainer = pl.Trainer(max_epochs=max_epochs, gpus=gpus, tpu_cores=tpu_cores, resume_from_checkpoint='./logs/default' + load_checkpoint_path, logger=logger, precision=precision, callbacks=[save_checkpoint]) trainer.fit(training_module, datamodule=dm) if stage == 'test': if load_checkpoint_path is None: print('未载入权重信息,不能测试') else: print('进行测试') training_module = TrainModule.load_from_checkpoint( checkpoint_path='./logs/default' + load_checkpoint_path, **{'config': config}) trainer = pl.Trainer(gpus=gpus, tpu_cores=tpu_cores, logger=logger, precision=precision) trainer.test(training_module, datamodule=dm) # 在cmd中使用tensorboard --logdir logs命令可以查看结果,在Jupyter格式下需要加%前缀 if __name__ == "__main__": main('fit', num_workers=8, max_epochs=5, batch_size=32, precision=16, seed=1234, # gpus=1, # load_checkpoint_path='/version_5/checkpoints/epoch=149-step=7949.ckpt', )