You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

main.py 5.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106
  1. from save_checkpoint import SaveCheckpoint
  2. from data_module import DataModule
  3. from pytorch_lightning import loggers as pl_loggers
  4. import pytorch_lightning as pl
  5. from train_model import TrainModule
  6. from multiprocessing import cpu_count
  7. from utils import get_ckpt_path
  8. def main(stage,
  9. max_epochs,
  10. batch_size,
  11. precision,
  12. seed,
  13. dataset_path,
  14. gpus=None,
  15. tpu_cores=None,
  16. version_nth=None,
  17. path_final_save=None,
  18. every_n_epochs=1,
  19. save_top_k=1,
  20. k_fold=5,
  21. kth_fold_start=0):
  22. """
  23. 框架的入口函数. 包含设置超参数, 划分数据集, 选择训练或测试等流程
  24. 该函数的参数为训练过程中需要经常改动的参数
  25. :param stage: 表示处于训练阶段还是测试阶段, fit表示训练, test表示测试
  26. :param max_epochs:
  27. :param batch_size:
  28. :param precision: 训练精度, 正常精度为32, 半精度为16, 也可以是64. 精度代表每个参数的类型所占的位数
  29. :param seed:
  30. :param dataset_path: 数据集地址, 其目录下包含数据集, 标签, 全部数据的命名list
  31. :param gpus:
  32. :param tpu_cores:
  33. :param version_nth: 该folds的第一个版本的版本号
  34. :param path_final_save:
  35. :param every_n_epochs:
  36. :param save_top_k:
  37. :param kth_fold_start: 从第几个fold开始, 若使用重载训练, 则kth_fold_start为重载第几个fold, 第一个值为0
  38. :param k_fold:
  39. """
  40. # 经常改动的 参数 作为main的输入参数
  41. # 不常改动的 非通用参数 存放在config
  42. # 不常改动的 通用参数 直接进行声明
  43. # 通用参数指的是所有网络中共有的参数, 如time_sum等
  44. # 处理输入数据
  45. precision = 32 if (gpus is None and tpu_cores is None) else precision
  46. # 获得通用参数
  47. # TODO 获得最优的batch size
  48. num_workers = cpu_count()
  49. # 获得非通用参数
  50. config = {'dim_in': 2,
  51. 'dim': 10,
  52. 'res_coef': 0.5,
  53. 'dropout_p': 0.1,
  54. 'n_layers': 2,
  55. 'dataset_len': 100000}
  56. # for kth_fold in range(kth_fold_start, k_fold):
  57. for kth_fold in range(kth_fold_start, kth_fold_start+1):
  58. load_checkpoint_path = get_ckpt_path(f'version_{version_nth+kth_fold}')
  59. logger = pl_loggers.TensorBoardLogger('logs/')
  60. dm = DataModule(batch_size=batch_size, num_workers=num_workers, k_fold=k_fold, kth_fold=kth_fold,
  61. dataset_path=dataset_path, config=config)
  62. if stage == 'fit':
  63. # SaveCheckpoint的创建需要在TrainModule之前, 以保证网络参数初始化的确定性
  64. save_checkpoint = SaveCheckpoint(seed=seed, max_epochs=max_epochs,
  65. path_final_save=path_final_save,
  66. every_n_epochs=every_n_epochs, verbose=True,
  67. monitor='Validation loss', save_top_k=save_top_k,
  68. mode='min')
  69. training_module = TrainModule(config=config)
  70. if kth_fold != kth_fold_start or load_checkpoint_path is None:
  71. print('进行初始训练')
  72. trainer = pl.Trainer(max_epochs=max_epochs, gpus=gpus, tpu_cores=tpu_cores,
  73. logger=logger, precision=precision, callbacks=[save_checkpoint])
  74. training_module.load_pretrain_parameters()
  75. else:
  76. print('进行重载训练')
  77. trainer = pl.Trainer(max_epochs=max_epochs, gpus=gpus, tpu_cores=tpu_cores,
  78. resume_from_checkpoint='./logs/default' + load_checkpoint_path,
  79. logger=logger, precision=precision, callbacks=[save_checkpoint])
  80. print('训练过程中请注意gpu利用率等情况')
  81. trainer.fit(training_module, datamodule=dm)
  82. if stage == 'test':
  83. if load_checkpoint_path is None:
  84. print('未载入权重信息,不能测试')
  85. else:
  86. print('进行测试')
  87. training_module = TrainModule.load_from_checkpoint(
  88. checkpoint_path='./logs/default' + load_checkpoint_path,
  89. **{'config': config})
  90. trainer = pl.Trainer(gpus=gpus, tpu_cores=tpu_cores, logger=logger, precision=precision)
  91. trainer.test(training_module, datamodule=dm)
  92. # 在cmd中使用tensorboard --logdir logs命令可以查看结果,在Jupyter格式下需要加%前缀
  93. if __name__ == "__main__":
  94. main('fit', max_epochs=2, batch_size=32, precision=16, seed=1234, dataset_path='./dataset', k_fold=5
  95. # gpus=1,
  96. # version_nth=8, # 该folds的第一个版本的版本号
  97. # kth_fold_start=0 # 如果需要重载训练, 则指定重载的版本和其位于k_fold的fold数
  98. )

基于pytorch lightning的机器学习模板, 用于对机器学习算法进行训练, 验证, 测试等, 目前实现了神经网路, 深度学习, k折交叉, 自动保存训练信息等.

Contributors (1)