You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

save_checkpoint.py 5.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. import os
  2. import numpy.random
  3. from pytorch_lightning.callbacks import ModelCheckpoint
  4. import pytorch_lightning as pl
  5. import shutil
  6. from pytorch_lightning.utilities import rank_zero_info
  7. from utils import zip_dir
  8. class SaveCheckpoint(ModelCheckpoint):
  9. def __init__(self,
  10. max_epochs,
  11. seed=None,
  12. every_n_epochs=None,
  13. path_final_save=None,
  14. monitor=None,
  15. save_top_k=None,
  16. verbose=False,
  17. mode='min',
  18. no_save_before_epoch=0):
  19. """
  20. 通过回调实现checkpoint的保存逻辑, 同时具有回调函数中定义on_validation_end等功能.
  21. :param max_epochs:
  22. :param seed:
  23. :param every_n_epochs:
  24. :param path_final_save:
  25. :param monitor:
  26. :param save_top_k:
  27. :param verbose:
  28. :param mode:
  29. :param no_save_before_epoch:
  30. """
  31. super().__init__(every_n_epochs=every_n_epochs, verbose=verbose, mode=mode)
  32. self.mode = mode
  33. numpy.random.seed(seed)
  34. self.seeds = numpy.random.randint(0, 2000, max_epochs)
  35. pl.seed_everything(seed)
  36. self.path_final_save = path_final_save
  37. self.monitor = monitor
  38. self.save_top_k = save_top_k
  39. self.flag_sanity_check = 0
  40. self.no_save_before_epoch = no_save_before_epoch
  41. def on_validation_end(self, trainer: 'pl.Trainer', pl_module: 'pl.LightningModule') -> None:
  42. """
  43. 修改随机数逻辑,网络的随机种子给定,取样本的随机种子由给定的随机种子生成,保证即使重载训练每个epoch具有不同的抽样序列.
  44. 同时保存checkpoint.
  45. :param trainer:
  46. :param pl_module:
  47. :return:
  48. """
  49. # 第一个epoch使用原始输入seed作为种子, 后续的epoch使用seeds中的第epoch-1个作为种子
  50. if self.flag_sanity_check == 0:
  51. self.flag_sanity_check = 1
  52. else:
  53. pl.seed_everything(self.seeds[trainer.current_epoch])
  54. super().on_validation_end(trainer, pl_module)
  55. def _save_top_k_checkpoint(self, trainer: 'pl.Trainer', monitor_candidates) -> None:
  56. epoch = monitor_candidates.get("epoch")
  57. if self.monitor is None or self.save_top_k == 0 or epoch < self.no_save_before_epoch:
  58. return
  59. current = monitor_candidates.get(self.monitor)
  60. if self.check_monitor_top_k(trainer, current):
  61. self._update_best_and_save(current, trainer, monitor_candidates)
  62. if self.mode=='max':
  63. best_model_value = max([float(item) for item in list(self.best_k_models.values())])
  64. else:
  65. best_model_value = min([float(item) for item in list(self.best_k_models.values())])
  66. version_name = 'version_unkown'
  67. for item in self.dirpath.split('\\'):
  68. if 'version_' in item:
  69. version_name = item
  70. # 保存版本信息(准确率等)到txt中
  71. if not os.path.exists('./logs/default/version_info.txt'):
  72. with open('./logs/default/version_info.txt', 'w', encoding='utf-8') as f:
  73. f.write(version_name + ' ' + str(best_model_value) + '\n')
  74. else:
  75. with open('./logs/default/version_info.txt', 'r', encoding='utf-8') as f:
  76. info_list = f.readlines()
  77. info_list = [item.strip('\n').split(' ') for item in info_list]
  78. # 对list进行转置, 现在行为版本号和其数据, 列为不同的版本
  79. info_list = list(map(list, zip(*info_list)))
  80. if version_name in info_list[0]:
  81. for cou in range(len(info_list[0])):
  82. if version_name == info_list[0][cou]:
  83. info_list[1][cou] = str(best_model_value)
  84. else:
  85. info_list[0].append(version_name)
  86. info_list[1].append(str(best_model_value))
  87. # 对list进行转置
  88. info_list = list(map(list, zip(*info_list)))
  89. with open('./logs/default/version_info.txt', 'w', encoding='utf-8') as f:
  90. for line in info_list:
  91. line = " ".join(line)
  92. f.write(line + '\n')
  93. # 每次更新ckpt文件后, 将其存放到另一个位置
  94. if self.path_final_save is not None:
  95. zip_dir('./logs/default/' + version_name, './' + version_name + '.zip')
  96. if os.path.exists(self.path_final_save + '/' + version_name + '.zip'):
  97. os.remove(self.path_final_save + '/' + version_name + '.zip')
  98. shutil.move('./' + version_name + '.zip', self.path_final_save)
  99. elif self.verbose:
  100. epoch = monitor_candidates.get("epoch")
  101. step = monitor_candidates.get("step")
  102. best_model_values = 'now best model:'
  103. for cou_best_model in self.best_k_models:
  104. best_model_values = ' '.join(
  105. (best_model_values, str(round(float(self.best_k_models[cou_best_model]), 4))))
  106. rank_zero_info(
  107. f"\nEpoch {epoch:d}, global step {step:d}: {self.monitor} ({float(current):f}) was not in "
  108. f"top {self.save_top_k:d}({best_model_values:s})")

基于pytorch lightning的机器学习模板, 用于对机器学习算法进行训练, 验证, 测试等, 目前实现了神经网路, 深度学习, k折交叉, 自动保存训练信息等.

Contributors (1)