You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

save_checkpoint.py 3.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. import os
  2. from pytorch_lightning.callbacks import ModelCheckpoint
  3. import pytorch_lightning
  4. import pytorch_lightning as pl
  5. import shutil
  6. import random
  7. from pytorch_lightning.utilities import rank_zero_info
  8. from utils import zip_dir
  9. class SaveCheckpoint(ModelCheckpoint):
  10. def __init__(self,
  11. max_epochs,
  12. seed=None,
  13. every_n_epochs=None,
  14. save_name=None,
  15. path_final_save=None,
  16. monitor=None,
  17. save_top_k=None,
  18. verbose=False,
  19. mode='min',
  20. no_save_before_epoch=0):
  21. """
  22. 通过回调实现checkpoint的保存逻辑, 同时具有回调函数中定义on_validation_end等功能.
  23. :param max_epochs:
  24. :param seed:
  25. :param every_n_epochs:
  26. :param save_name:
  27. :param path_final_save:
  28. :param monitor:
  29. :param save_top_k:
  30. :param verbose:
  31. :param mode:
  32. :param no_save_before_epoch:
  33. """
  34. super().__init__(every_n_epochs=every_n_epochs, verbose=verbose, mode=mode)
  35. random.seed(seed)
  36. self.seeds = []
  37. for i in range(max_epochs):
  38. self.seeds.append(random.randint(0, 2000))
  39. self.seeds.append(0)
  40. pytorch_lightning.seed_everything(seed)
  41. self.save_name = save_name
  42. self.path_final_save = path_final_save
  43. self.monitor = monitor
  44. self.save_top_k = save_top_k
  45. self.flag_sanity_check = 0
  46. self.no_save_before_epoch = no_save_before_epoch
  47. def on_validation_end(self, trainer: 'pl.Trainer', pl_module: 'pl.LightningModule') -> None:
  48. """
  49. 修改随机数逻辑,网络的随机种子给定,取样本的随机种子由给定的随机种子生成,保证即使重载训练每个epoch具有不同的抽样序列.
  50. 同时保存checkpoint.
  51. :param trainer:
  52. :param pl_module:
  53. :return:
  54. """
  55. if self.flag_sanity_check == 0:
  56. pytorch_lightning.seed_everything(self.seeds[trainer.current_epoch])
  57. self.flag_sanity_check = 1
  58. else:
  59. pytorch_lightning.seed_everything(self.seeds[trainer.current_epoch + 1])
  60. super().on_validation_end(trainer, pl_module)
  61. def _save_top_k_checkpoint(self, trainer: 'pl.Trainer', monitor_candidates) -> None:
  62. epoch = monitor_candidates.get("epoch")
  63. if self.monitor is None or self.save_top_k == 0 or epoch < self.no_save_before_epoch:
  64. return
  65. current = monitor_candidates.get(self.monitor)
  66. if self.check_monitor_top_k(trainer, current):
  67. self._update_best_and_save(current, trainer, monitor_candidates)
  68. if self.save_name is not None and self.path_final_save is not None:
  69. zip_dir('./logs/default/' + self.save_name, './' + self.save_name + '.zip')
  70. if os.path.exists(self.path_final_save + '/' + self.save_name + '.zip'):
  71. os.remove(self.path_final_save + '/' + self.save_name + '.zip')
  72. shutil.move('./' + self.save_name + '.zip', self.path_final_save)
  73. elif self.verbose:
  74. epoch = monitor_candidates.get("epoch")
  75. step = monitor_candidates.get("step")
  76. best_model_values = 'now best model:'
  77. for cou_best_model in self.best_k_models:
  78. best_model_values = ' '.join(
  79. (best_model_values, str(round(float(self.best_k_models[cou_best_model]), 4))))
  80. rank_zero_info(
  81. f"\nEpoch {epoch:d}, global step {step:d}: {self.monitor} ({float(current):f}) was not in "
  82. f"top {self.save_top_k:d}({best_model_values:s})")

基于pytorch lightning的机器学习模板, 用于对机器学习算法进行训练, 验证, 测试等, 目前实现了神经网路, 深度学习, k折交叉, 自动保存训练信息等.

Contributors (1)