|
- using Microsoft.VisualStudio.TestTools.UnitTesting;
- using NumSharp;
- using Tensorflow;
- using Tensorflow.Keras.Losses;
- using static Tensorflow.Binding;
- using static Tensorflow.KerasApi;
-
- namespace TensorFlowNET.Keras.UnitTest
- {
- [TestClass]
- public class CosineSimilarity
- {
- //https://keras.io/api/losses/regression_losses/
-
- NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 1.0f, 1.0f } };
- NDArray y_pred_float = new float[,] { { 1.0f, 0.0f }, { 1.0f, 1.0f } };
-
- [TestMethod]
-
- public void _Default()
- {
- //>>> # Using 'auto'/'sum_over_batch_size' reduction type.
- //>>> cosine_loss = tf.keras.losses.CosineSimilarity(axis = 1)
- //>>> # l2_norm(y_true) = [[0., 1.], [1./1.414], 1./1.414]]]
- //>>> # l2_norm(y_pred) = [[1., 0.], [1./1.414], 1./1.414]]]
- //>>> # l2_norm(y_true) . l2_norm(y_pred) = [[0., 0.], [0.5, 0.5]]
- //>>> # loss = mean(sum(l2_norm(y_true) . l2_norm(y_pred), axis=1))
- //>>> # = -((0. + 0.) + (0.5 + 0.5)) / 2
- //-0.5
- var loss = keras.losses.CosineSimilarity(axis : 1);
- var call = loss.Call(y_true_float, y_pred_float);
- Assert.AreEqual((NDArray)(-0.49999997f), call.numpy());
- }
-
- [TestMethod]
-
- public void _Sample_Weight()
- {
- //>>> # Calling with 'sample_weight'.
- //>>> cosine_loss(y_true, y_pred, sample_weight =[0.8, 0.2]).numpy()
- //- 0.0999
- var loss = keras.losses.CosineSimilarity();
- var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.8f, 0.2f });
- Assert.AreEqual((NDArray) (- 0.099999994f), call.numpy());
- }
-
- [TestMethod]
-
- public void _SUM()
- {
- //>>> # Using 'sum' reduction type.
- //>>> cosine_loss = tf.keras.losses.CosineSimilarity(axis = 1,
- //... reduction = tf.keras.losses.Reduction.SUM)
- //>>> cosine_loss(y_true, y_pred).numpy()
- //- 0.999
- var loss = keras.losses.CosineSimilarity(axis: 1,reduction : ReductionV2.SUM);
- var call = loss.Call(y_true_float, y_pred_float);
- Assert.AreEqual((NDArray)(-0.99999994f), call.numpy());
- }
-
- [TestMethod]
-
- public void _None()
- {
- //>>> # Using 'none' reduction type.
- //>>> cosine_loss = tf.keras.losses.CosineSimilarity(axis = 1,
- //... reduction = tf.keras.losses.Reduction.NONE)
- //>>> cosine_loss(y_true, y_pred).numpy()
- //array([-0., -0.999], dtype = float32)
- var loss = keras.losses.CosineSimilarity(axis :1, reduction: ReductionV2.NONE);
- var call = loss.Call(y_true_float, y_pred_float);
- Assert.AreEqual((NDArray)new float[] { -0f, -0.99999994f }, call.numpy());
- }
-
- }
- }
|