|
- using Microsoft.VisualStudio.TestTools.UnitTesting;
- using NumSharp;
- using static Tensorflow.KerasApi;
-
- namespace TensorFlowNET.UnitTest.Keras
- {
- /// <summary>
- /// https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers
- /// </summary>
- [TestClass]
- public class LayersTest : EagerModeTestBase
- {
- [TestMethod]
- public void Sequential()
- {
- var model = keras.Sequential();
- model.add(keras.Input(shape: 16));
- }
-
- [TestMethod]
- public void Functional()
- {
- var layers = keras.layers;
-
- var inputs = keras.Input(shape: 784);
- Assert.AreEqual((None, 784), inputs.TensorShape);
-
- var dense = layers.Dense(64, activation: keras.activations.Relu);
- var x = dense.Apply(inputs);
-
- x = layers.Dense(64, activation: keras.activations.Relu).Apply(x);
- var outputs = layers.Dense(10).Apply(x);
-
- var model = keras.Model(inputs, outputs, name: "mnist_model");
- model.summary();
- }
-
- /// <summary>
- /// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding
- /// </summary>
- [TestMethod, Ignore]
- public void Embedding()
- {
- var model = keras.Sequential();
- var layer = keras.layers.Embedding(7, 2, input_length: 4);
- model.add(layer);
- // the model will take as input an integer matrix of size (batch,
- // input_length).
- // the largest integer (i.e. word index) in the input should be no larger
- // than 999 (vocabulary size).
- // now model.output_shape == (None, 10, 64), where None is the batch
- // dimension.
- var input_array = np.array(new int[,]
- {
- { 1, 2, 3, 4 },
- { 2, 3, 4, 5 },
- { 3, 4, 5, 6 }
- });
- model.compile("rmsprop", "mse");
- var output_array = model.predict(input_array);
- Assert.AreEqual((32, 10, 64), output_array.TensorShape);
- }
-
- /// <summary>
- /// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
- /// </summary>
- [TestMethod]
- public void Dense()
- {
- // Create a `Sequential` model and add a Dense layer as the first layer.
- var model = keras.Sequential();
- model.add(keras.Input(shape: 16));
- model.add(keras.layers.Dense(32, activation: keras.activations.Relu));
- // Now the model will take as input arrays of shape (None, 16)
- // and output arrays of shape (None, 32).
- // Note that after the first layer, you don't need to specify
- // the size of the input anymore:
- model.add(keras.layers.Dense(32));
- Assert.AreEqual((-1, 32), model.output_shape);
- }
-
- [TestMethod]
- public void SimpleRNN()
- {
-
- }
- }
- }
|