|
- using Microsoft.VisualStudio.TestTools.UnitTesting;
- using NumSharp;
- using System;
- using Tensorflow;
- using Buffer = Tensorflow.Buffer;
-
- namespace TensorFlowNET.UnitTest
- {
- /// <summary>
- /// tensorflow\c\c_api_test.cc
- /// `class CApiGradientsTest`
- /// </summary>
- [TestClass]
- public class CApiGradientsTest : CApiTest, IDisposable
- {
- private Graph graph_ = new Graph();
- private Graph expected_graph_ = new Graph();
- private Status s_ = new Status();
-
- private void TestGradientsSuccess(bool grad_inputs_provided)
- {
- var inputs = new TF_Output[2];
- var outputs = new TF_Output[1];
- var grad_outputs = new TF_Output[2];
- var expected_grad_outputs = new TF_Output[2];
-
- BuildSuccessGraph(inputs, outputs);
- BuildExpectedGraph(grad_inputs_provided, expected_grad_outputs);
-
- AddGradients(grad_inputs_provided, "gradients", inputs, 2, outputs, 1,
- grad_outputs);
- EXPECT_EQ(TF_OK, TF_GetCode(s_));
-
- // Compare that the graphs match.
- GraphDef expected_gdef;
- GraphDef gdef;
- EXPECT_TRUE(GetGraphDef(expected_graph_, out expected_gdef));
- EXPECT_TRUE(GetGraphDef(graph_, out gdef));
- // Assert.IsTrue(expected_gdef.ToString().Equals(gdef.ToString()));
-
- // Compare that the output of the gradients of both graphs match.
- RunGraphsAndCompareOutputs(grad_outputs, expected_grad_outputs);
- }
-
- private bool GetGraphDef(Graph graph, out GraphDef graph_def)
- {
- graph_def = null;
- var s = new Status();
- var buffer = new Buffer();
- c_api.TF_GraphToGraphDef(graph, buffer, s);
- bool ret = TF_GetCode(s) == TF_OK;
- EXPECT_EQ(TF_OK, TF_GetCode(s));
- if (ret) graph_def = GraphDef.Parser.ParseFrom(buffer.Data);
- buffer.Dispose();
- s.Dispose();
- return ret;
- }
-
- private void RunGraphsAndCompareOutputs(TF_Output[] grad_outputs, TF_Output[] expected_grad_outputs)
- {
- var csession = new CSession(graph_, s_);
- var expected_csession = new CSession(expected_graph_, s_);
-
- var grad_outputs_vec = grad_outputs;
- csession.SetOutputs(grad_outputs_vec);
- csession.Run(s_);
- ASSERT_EQ(TF_OK, TF_GetCode(s_));
- var out0 = csession.output_tensor(0);
- var out1 = csession.output_tensor(1);
-
- var expected_grad_outputs_vec = expected_grad_outputs;
- expected_csession.SetOutputs(expected_grad_outputs_vec);
- expected_csession.Run(s_);
- ASSERT_EQ(TF_OK, TF_GetCode(s_));
- var expected_out0 = expected_csession.output_tensor(0);
- var expected_out1 = expected_csession.output_tensor(1);
-
- //CompareTensors(out0, expected_out0);
- //CompareTensors(out1, expected_out1);
- }
- /*void TestGradientsError(bool grad_inputs_provided)
- {
- var inputs = new TF_Output[1];
- var outputs = new TF_Output[1];
- var grad_outputs = new TF_Output[1];
-
- BuildErrorGraph(inputs, outputs);
-
- AddGradients(grad_inputs_provided, nullptr, inputs, 1, outputs, 1,
- grad_outputs);
-
- string expected_msg =
- "No gradient defined for op: TestOpWithNoGradient. Please see "
- "https://www.tensorflow.org/code/"
- "tensorflow/cc/gradients/README.md"
- " for instructions on how to add C++ gradients.";
- EXPECT_EQ(expected_msg, TF_Message(s_));
- }*/
-
- private void AddGradients(bool grad_inputs_provided, string prefix, TF_Output[] inputs, int ninputs,
- TF_Output[] outputs, int noutputs, TF_Output[] grad_outputs)
- {
- if (grad_inputs_provided)
- {
- var grad_inputs = new TF_Output[1];
- float[] grad_inputs_val = { 1.0f, 1.0f, 1.0f, 1.0f };
- var grad_inputs_op = FloatConst2x2(graph_, s_, grad_inputs_val, "GradInputs");
- grad_inputs[0] = new TF_Output(grad_inputs_op, 0);
-
- IntPtr[] handles = new IntPtr[2] { IntPtr.Zero, IntPtr.Zero };
- c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
- ninputs, grad_inputs, s_, handles);
-
- var op = new Operation(handles[0]);
- }
- else
- {
- //c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
- //ninputs, null, s_, grad_outputs);
- }
- }
-
- private void BuildSuccessGraph(TF_Output[] inputs, TF_Output[] outputs)
- {
- // Construct the following graph:
- // |
- // z|
- // |
- // MatMul
- // / \
- // ^ ^
- // | |
- // x| y|
- // | |
- // | |
- // Const_0 Const_1
- //
- var const0_val = new float[] { 1.0f, 2.0f, 3.0f, 4.0f };
- var const1_val = new float[] { 1.0f, 0.0f, 0.0f, 1.0f };
- var const0 = FloatConst2x2(graph_, s_, const0_val, "Const_0");
- var const1 = FloatConst2x2(graph_, s_, const1_val, "Const_1");
- var matmul = MatMul(graph_, s_, const0, const1, "MatMul");
- inputs[0] = new TF_Output(const0, 0);
- inputs[1] = new TF_Output(const1, 0);
- outputs[0] = new TF_Output(matmul, 0);
- EXPECT_EQ(TF_OK, TF_GetCode(s_));
- }
-
- private void BuildExpectedGraph(bool grad_inputs_provided, TF_Output[] expected_grad_outputs)
- {
- // The expected graph looks like this if grad_inputs_provided.
- // If grad_inputs_provided is false, Const_0 will be a OnesLike op.
- // ^ ^
- // dy| dx| // MatMul Gradient Graph
- // | |
- // MatMul_2 MatMul_1
- // ^ ^ ^ ^
- // | |----------| |
- // | ^ |
- // | dz| |
- // | | |
- // | Const_3 |
- // | |
- // | ^ |
- // | z| | // MatMul Forward Graph
- // | | |
- // | MatMul |
- // | / \ |
- // | ^ ^ |
- // | | | |
- // |---x| y|----|
- // | |
- // | |
- // Const_0 Const_1
- //
- float[] const0_val = { 1.0f, 2.0f, 3.0f, 4.0f };
- float[] const1_val = { 1.0f, 0.0f, 0.0f, 1.0f };
- var const0 = FloatConst2x2(expected_graph_, s_, const0_val, "Const_0");
- var const1 = FloatConst2x2(expected_graph_, s_, const1_val, "Const_1");
- var matmul = MatMul(expected_graph_, s_, const0, const1, "MatMul");
-
- Operation const3;
- if (grad_inputs_provided)
- {
- float[] const3_val = { 1.0f, 1.0f, 1.0f, 1.0f };
- const3 = FloatConst2x2(expected_graph_, s_, const3_val, "GradInputs");
- }
- else
- {
- const3 = OnesLike(expected_graph_, s_, matmul, "gradients/OnesLike");
- }
-
- var matmul1 = MatMul(expected_graph_, s_, const3, const1,
- "gradients/MatMul", false, true);
- var matmul2 = MatMul(expected_graph_, s_, const0, const3,
- "gradients/MatMul_1", true, false);
- expected_grad_outputs[0] = new TF_Output(matmul1, 0);
- expected_grad_outputs[1] = new TF_Output(matmul2, 0);
- }
-
- private Operation OnesLike(Graph graph, Status s, Operation input, string name)
- {
- var desc = TF_NewOperation(graph, "OnesLike", name);
- TF_AddInput(desc, new TF_Output(input, 0));
- var op = TF_FinishOperation(desc, s);
- EXPECT_EQ(TF_OK, TF_GetCode(s));
- return op;
- }
-
- private Operation FloatConst2x2(Graph graph, Status s, float[] values, string name)
- {
- var tensor = FloatTensor2x2(values);
- var desc = TF_NewOperation(graph, "Const", name);
- TF_SetAttrTensor(desc, "value", tensor, s);
- if (TF_GetCode(s) != TF_OK) return IntPtr.Zero;
- TF_SetAttrType(desc, "dtype", TF_FLOAT);
- var op = TF_FinishOperation(desc, s);
- EXPECT_EQ(TF_OK, TF_GetCode(s));
- return op;
- }
-
- private Tensor FloatTensor2x2(float[] values)
- {
- //long[] dims = { 2, 2 };
- //Tensor t = c_api.TF_AllocateTensor(TF_FLOAT, dims, 2, sizeof(float) * 4);
- //Marshal.Copy(values, 0, t, 4);
- Tensor t = new Tensor(new NDArray(values).reshape(2, 2));
- return t;
- }
-
- private Operation MatMul(Graph graph, Status s, Operation l, Operation r, string name,
- bool transpose_a = false, bool transpose_b = false)
- {
- var desc = TF_NewOperation(graph, "MatMul", name);
- if (transpose_a)
- {
- TF_SetAttrBool(desc, "transpose_a", true);
- }
- if (transpose_b)
- {
- TF_SetAttrBool(desc, "transpose_b", true);
- }
- TF_AddInput(desc, new TF_Output(l, 0));
- TF_AddInput(desc, new TF_Output(r, 0));
- var op = TF_FinishOperation(desc, s);
- EXPECT_EQ(TF_OK, TF_GetCode(s));
- return op;
- }
-
- [TestMethod]
- public void Gradients_GradInputs()
- {
- //TestGradientsSuccess(true);
- }
-
- [TestMethod]
- public void Gradients_NoGradInputs()
- {
- //TestGradientsSuccess(false);
- }
-
- [TestMethod]
- public void OpWithNoGradientRegistered_GradInputs()
- {
- //TestGradientsError(true);
- }
-
- [TestMethod]
- public void OpWithNoGradientRegistered_NoGradInputs()
- {
- //TestGradientsError(false);
- }
-
- public void Dispose()
- {
- graph_.Dispose();
- expected_graph_.Dispose();
- s_.Dispose();
- }
- }
- }
|