|
- /*****************************************************************************
- Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved.
-
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
-
- http://www.apache.org/licenses/LICENSE-2.0
-
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ******************************************************************************/
-
- using System;
- using System.Collections.Generic;
- using Tensorflow;
- using NumSharp;
- using static Tensorflow.Python;
- using System.IO;
- using TensorFlowNET.Examples.Utility;
-
- namespace TensorFlowNET.Examples
- {
- /// <summary>
- /// https://github.com/nicolov/naive_bayes_tensorflow
- /// </summary>
- public class NaiveBayesClassifier : IExample
- {
- public bool Enabled { get; set; } = true;
- public string Name => "Naive Bayes Classifier";
- public bool IsImportingGraph { get; set; } = false;
-
- public NDArray X, y;
- public Normal dist { get; set; }
- public bool Run()
- {
- PrepareData();
-
- fit(X, y);
-
- // Create a regular grid and classify each point
- float x_min = X.amin(0).Data<float>(0) - 0.5f;
- float y_min = X.amin(0).Data<float>(1) - 0.5f;
- float x_max = X.amax(0).Data<float>(0) + 0.5f;
- float y_max = X.amax(0).Data<float>(1) + 0.5f;
-
- var (xx, yy) = np.meshgrid(np.linspace(x_min, x_max, 30), np.linspace(y_min, y_max, 30));
- with(tf.Session(), sess =>
- {
- //var samples = np.vstack<float>(xx.ravel(), yy.ravel());
- //samples = np.transpose(samples);
- var array = np.Load<double[,]>(Path.Join("nb", "nb_example.npy"));
- var samples = np.array(array).astype(np.float32);
- var Z = sess.run(predict(samples));
- });
-
- return true;
- }
-
- public void fit(NDArray X, NDArray y)
- {
- var unique_y = y.unique<int>();
-
- var dic = new Dictionary<int, List<List<float>>>();
- // Init uy in dic
- foreach (int uy in unique_y.Data<int>())
- {
- dic.Add(uy, new List<List<float>>());
- }
- // Separate training points by class
- // Shape : nb_classes * nb_samples * nb_features
- int maxCount = 0;
- for (int i = 0; i < y.size; i++)
- {
- var curClass = y[i];
- var l = dic[curClass];
- var pair = new List<float>();
- pair.Add(X[i,0]);
- pair.Add(X[i, 1]);
- l.Add(pair);
- if (l.Count > maxCount)
- {
- maxCount = l.Count;
- }
- dic[curClass] = l;
- }
- float[,,] points = new float[dic.Count, maxCount, X.shape[1]];
- foreach (KeyValuePair<int, List<List<float>>> kv in dic)
- {
- int j = (int) kv.Key;
- for (int i = 0; i < maxCount; i++)
- {
- for (int k = 0; k < X.shape[1]; k++)
- {
- points[j, i, k] = kv.Value[i][k];
- }
- }
-
- }
- var points_by_class = np.array(points);
- // estimate mean and variance for each class / feature
- // shape : nb_classes * nb_features
- var cons = tf.constant(points_by_class);
- var tup = tf.nn.moments(cons, new int[]{1});
- var mean = tup.Item1;
- var variance = tup.Item2;
-
- // Create a 3x2 univariate normal distribution with the
- // Known mean and variance
- var dist = tf.distributions.Normal(mean, tf.sqrt(variance));
- this.dist = dist;
- }
-
- public Tensor predict(NDArray X)
- {
- if (dist == null)
- {
- throw new ArgumentNullException("cant not find the model (normal distribution)!");
- }
- int nb_classes = (int) dist.scale().shape[0];
- int nb_features = (int)dist.scale().shape[1];
-
- // Conditional probabilities log P(x|c) with shape
- // (nb_samples, nb_classes)
- var t1= ops.convert_to_tensor(X, TF_DataType.TF_FLOAT);
- var t2 = ops.convert_to_tensor(new int[] { 1, nb_classes });
- Tensor tile = tf.tile(t1, t2);
- var t3 = ops.convert_to_tensor(new int[] { -1, nb_classes, nb_features });
- Tensor r = tf.reshape(tile, t3);
- var cond_probs = tf.reduce_sum(dist.log_prob(r), 2);
- // uniform priors
- float[] tem = new float[nb_classes];
- for (int i = 0; i < tem.Length; i++)
- {
- tem[i] = 1.0f / nb_classes;
- }
- var priors = np.log(np.array<float>(tem));
-
- // posterior log probability, log P(c) + log P(x|c)
- var joint_likelihood = tf.add(ops.convert_to_tensor(priors, TF_DataType.TF_FLOAT), cond_probs);
- // normalize to get (log)-probabilities
-
- var norm_factor = tf.reduce_logsumexp(joint_likelihood, new int[] { 1 }, keepdims: true);
- var log_prob = joint_likelihood - norm_factor;
- // exp to get the actual probabilities
- return tf.exp(log_prob);
- }
-
- public void PrepareData()
- {
- #region Training data
- X = np.array(new float[,] {
- {5.1f, 3.5f}, {4.9f, 3.0f}, {4.7f, 3.2f}, {4.6f, 3.1f}, {5.0f, 3.6f}, {5.4f, 3.9f},
- {4.6f, 3.4f}, {5.0f, 3.4f}, {4.4f, 2.9f}, {4.9f, 3.1f}, {5.4f, 3.7f}, {4.8f, 3.4f},
- {4.8f, 3.0f}, {4.3f, 3.0f}, {5.8f, 4.0f}, {5.7f, 4.4f}, {5.4f, 3.9f}, {5.1f, 3.5f},
- {5.7f, 3.8f}, {5.1f, 3.8f}, {5.4f, 3.4f}, {5.1f, 3.7f}, {5.1f, 3.3f}, {4.8f, 3.4f},
- {5.0f, 3.0f}, {5.0f, 3.4f}, {5.2f, 3.5f}, {5.2f, 3.4f}, {4.7f, 3.2f}, {4.8f, 3.1f},
- {5.4f, 3.4f}, {5.2f, 4.1f}, {5.5f, 4.2f}, {4.9f, 3.1f}, {5.0f, 3.2f}, {5.5f, 3.5f},
- {4.9f, 3.6f}, {4.4f, 3.0f}, {5.1f, 3.4f}, {5.0f, 3.5f}, {4.5f, 2.3f}, {4.4f, 3.2f},
- {5.0f, 3.5f}, {5.1f, 3.8f}, {4.8f, 3.0f}, {5.1f, 3.8f}, {4.6f, 3.2f}, {5.3f, 3.7f},
- {5.0f, 3.3f}, {7.0f, 3.2f}, {6.4f, 3.2f}, {6.9f, 3.1f}, {5.5f, 2.3f}, {6.5f, 2.8f},
- {5.7f, 2.8f}, {6.3f, 3.3f}, {4.9f, 2.4f}, {6.6f, 2.9f}, {5.2f, 2.7f}, {5.0f, 2.0f},
- {5.9f, 3.0f}, {6.0f, 2.2f}, {6.1f, 2.9f}, {5.6f, 2.9f}, {6.7f, 3.1f}, {5.6f, 3.0f},
- {5.8f, 2.7f}, {6.2f, 2.2f}, {5.6f, 2.5f}, {5.9f, 3.0f}, {6.1f, 2.8f}, {6.3f, 2.5f},
- {6.1f, 2.8f}, {6.4f, 2.9f}, {6.6f, 3.0f}, {6.8f, 2.8f}, {6.7f, 3.0f}, {6.0f, 2.9f},
- {5.7f, 2.6f}, {5.5f, 2.4f}, {5.5f, 2.4f}, {5.8f, 2.7f}, {6.0f, 2.7f}, {5.4f, 3.0f},
- {6.0f, 3.4f}, {6.7f, 3.1f}, {6.3f, 2.3f}, {5.6f, 3.0f}, {5.5f, 2.5f}, {5.5f, 2.6f},
- {6.1f, 3.0f}, {5.8f, 2.6f}, {5.0f, 2.3f}, {5.6f, 2.7f}, {5.7f, 3.0f}, {5.7f, 2.9f},
- {6.2f, 2.9f}, {5.1f, 2.5f}, {5.7f, 2.8f}, {6.3f, 3.3f}, {5.8f, 2.7f}, {7.1f, 3.0f},
- {6.3f, 2.9f}, {6.5f, 3.0f}, {7.6f, 3.0f}, {4.9f, 2.5f}, {7.3f, 2.9f}, {6.7f, 2.5f},
- {7.2f, 3.6f}, {6.5f, 3.2f}, {6.4f, 2.7f}, {6.8f, 3.0f}, {5.7f, 2.5f}, {5.8f, 2.8f},
- {6.4f, 3.2f}, {6.5f, 3.0f}, {7.7f, 3.8f}, {7.7f, 2.6f}, {6.0f, 2.2f}, {6.9f, 3.2f},
- {5.6f, 2.8f}, {7.7f, 2.8f}, {6.3f, 2.7f}, {6.7f, 3.3f}, {7.2f, 3.2f}, {6.2f, 2.8f},
- {6.1f, 3.0f}, {6.4f, 2.8f}, {7.2f, 3.0f}, {7.4f, 2.8f}, {7.9f, 3.8f}, {6.4f, 2.8f},
- {6.3f, 2.8f}, {6.1f, 2.6f}, {7.7f, 3.0f}, {6.3f, 3.4f}, {6.4f, 3.1f}, {6.0f, 3.0f},
- {6.9f, 3.1f}, {6.7f, 3.1f}, {6.9f, 3.1f}, {5.8f, 2.7f}, {6.8f, 3.2f}, {6.7f, 3.3f},
- {6.7f, 3.0f}, {6.3f, 2.5f}, {6.5f, 3.0f}, {6.2f, 3.4f}, {5.9f, 3.0f}, {5.8f, 3.0f}});
-
- y = np.array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2);
-
-
- string url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/data/nb_example.npy";
- Web.Download(url, "nb", "nb_example.npy");
- #endregion
- }
-
- public Graph ImportGraph()
- {
- throw new NotImplementedException();
- }
-
- public Graph BuildGraph()
- {
- throw new NotImplementedException();
- }
-
- public void Train(Session sess)
- {
- throw new NotImplementedException();
- }
-
- public void Predict(Session sess)
- {
- throw new NotImplementedException();
- }
-
- public void Test(Session sess)
- {
- throw new NotImplementedException();
- }
- }
- }
|