|
- /*****************************************************************************
- Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved.
-
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
-
- http://www.apache.org/licenses/LICENSE-2.0
-
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ******************************************************************************/
-
- using Google.Protobuf;
- using NumSharp;
- using System;
- using System.Collections.Generic;
- using System.Diagnostics;
- using System.Drawing;
- using System.IO;
- using System.Linq;
- using System.Text;
- using Tensorflow;
- using TensorFlowNET.Examples.Utility;
- using static Tensorflow.Python;
- using Console = Colorful.Console;
-
- namespace TensorFlowNET.Examples.ImageProcess
- {
- /// <summary>
- /// In this tutorial, we will reuse the feature extraction capabilities from powerful image classifiers trained on ImageNet
- /// and simply train a new classification layer on top. Transfer learning is a technique that shortcuts much of this
- /// by taking a piece of a model that has already been trained on a related task and reusing it in a new model.
- ///
- /// https://www.tensorflow.org/hub/tutorials/image_retraining
- /// </summary>
- public class RetrainImageClassifier : IExample
- {
- public int Priority => 16;
-
- public bool Enabled { get; set; } = true;
- public bool IsImportingGraph { get; set; } = true;
-
- public string Name => "Retrain Image Classifier";
-
- const string data_dir = "retrain_images";
- string summaries_dir = Path.Join(data_dir, "retrain_logs");
- string image_dir = Path.Join(data_dir, "flower_photos");
- string bottleneck_dir = Path.Join(data_dir, "bottleneck");
- string output_graph = Path.Join(data_dir, "output_graph.pb");
- string output_labels = Path.Join(data_dir, "output_labels.txt");
- // The location where variable checkpoints will be stored.
- string CHECKPOINT_NAME = Path.Join(data_dir, "_retrain_checkpoint");
- string tfhub_module = "https://tfhub.dev/google/imagenet/inception_v3/feature_vector/3";
- string final_tensor_name = "final_result";
- float testing_percentage = 0.1f;
- float validation_percentage = 0.1f;
- float learning_rate = 0.01f;
- Tensor resized_image_tensor;
- Dictionary<string, Dictionary<string, string[]>> image_lists;
- int how_many_training_steps = 100;
- int eval_step_interval = 10;
- int train_batch_size = 100;
- int test_batch_size = -1;
- int validation_batch_size = 100;
- int intermediate_store_frequency = 0;
- int class_count = 0;
- const int MAX_NUM_IMAGES_PER_CLASS = 134217727;
- Operation train_step;
- Tensor final_tensor;
- Tensor bottleneck_input;
- Tensor cross_entropy;
- Tensor ground_truth_input;
- Tensor bottleneck_tensor;
- bool wants_quantization;
- float test_accuracy;
- NDArray predictions;
-
- public bool Run()
- {
- PrepareData();
-
- var graph = IsImportingGraph ? ImportGraph() : BuildGraph();
-
- with(tf.Session(graph), sess =>
- {
- Train(sess);
- });
-
- return test_accuracy > 0.75f;
- }
-
- /// <summary>
- /// Runs a final evaluation on an eval graph using the test data set.
- /// </summary>
- /// <param name="train_session"></param>
- /// <param name="module_spec"></param>
- /// <param name="class_count"></param>
- /// <param name="image_lists"></param>
- /// <param name="jpeg_data_tensor"></param>
- /// <param name="decoded_image_tensor"></param>
- /// <param name="resized_image_tensor"></param>
- /// <param name="bottleneck_tensor"></param>
- private (float, NDArray) run_final_eval(Session train_session, object module_spec, int class_count,
- Dictionary<string, Dictionary<string, string[]>> image_lists,
- Tensor jpeg_data_tensor, Tensor decoded_image_tensor,
- Tensor resized_image_tensor, Tensor bottleneck_tensor)
- {
- var (test_bottlenecks, test_ground_truth, test_filenames) = get_random_cached_bottlenecks(train_session, image_lists,
- test_batch_size, "testing", bottleneck_dir, image_dir, jpeg_data_tensor,
- decoded_image_tensor, resized_image_tensor, bottleneck_tensor, tfhub_module);
-
- var (eval_session, _, bottleneck_input, ground_truth_input, evaluation_step,
- prediction) = build_eval_session(class_count);
-
- var results = eval_session.run(new Tensor[] { evaluation_step, prediction },
- new FeedItem(bottleneck_input, test_bottlenecks),
- new FeedItem(ground_truth_input, test_ground_truth));
-
- print($"final test accuracy: {((float)results[0] * 100).ToString("G4")}% (N={len(test_bottlenecks)})");
-
- return (results[0], results[1]);
- }
-
- private (Session, Tensor, Tensor, Tensor, Tensor, Tensor)
- build_eval_session(int class_count)
- {
- // If quantized, we need to create the correct eval graph for exporting.
- var (eval_graph, bottleneck_tensor, resized_input_tensor, wants_quantization) = create_module_graph();
- var eval_sess = tf.Session(graph: eval_graph);
- Tensor evaluation_step = null;
- Tensor prediction = null;
-
- with(eval_graph.as_default(), graph =>
- {
- // Add the new layer for exporting.
- var (_, _, bottleneck_input, ground_truth_input, final_tensor) =
- add_final_retrain_ops(class_count, final_tensor_name, bottleneck_tensor,
- wants_quantization, is_training: false);
-
- // Now we need to restore the values from the training graph to the eval
- // graph.
- tf.train.Saver().restore(eval_sess, CHECKPOINT_NAME);
-
- (evaluation_step, prediction) = add_evaluation_step(final_tensor,
- ground_truth_input);
- });
-
- return (eval_sess, resized_input_tensor, bottleneck_input, ground_truth_input,
- evaluation_step, prediction);
- }
-
- /// <summary>
- /// Adds a new softmax and fully-connected layer for training and eval.
- ///
- /// We need to retrain the top layer to identify our new classes, so this function
- /// adds the right operations to the graph, along with some variables to hold the
- /// weights, and then sets up all the gradients for the backward pass.
- ///
- /// The set up for the softmax and fully-connected layers is based on:
- /// https://www.tensorflow.org/tutorials/mnist/beginners/index.html
- /// </summary>
- /// <param name="class_count"></param>
- /// <param name="final_tensor_name"></param>
- /// <param name="bottleneck_tensor"></param>
- /// <param name="quantize_layer"></param>
- /// <param name="is_training"></param>
- /// <returns></returns>
- private (Operation, Tensor, Tensor, Tensor, Tensor) add_final_retrain_ops(int class_count, string final_tensor_name,
- Tensor bottleneck_tensor, bool quantize_layer, bool is_training)
- {
- var (batch_size, bottleneck_tensor_size) = (bottleneck_tensor.TensorShape.Dimensions[0], bottleneck_tensor.TensorShape.Dimensions[1]);
- with(tf.name_scope("input"), scope =>
- {
- bottleneck_input = tf.placeholder_with_default(
- bottleneck_tensor,
- shape: bottleneck_tensor.TensorShape.Dimensions,
- name: "BottleneckInputPlaceholder");
-
- ground_truth_input = tf.placeholder(tf.int64, new TensorShape(batch_size), name: "GroundTruthInput");
- });
-
- // Organizing the following ops so they are easier to see in TensorBoard.
- string layer_name = "final_retrain_ops";
- Tensor logits = null;
- with(tf.name_scope(layer_name), scope =>
- {
- RefVariable layer_weights = null;
- with(tf.name_scope("weights"), delegate
- {
- var initial_value = tf.truncated_normal(new int[] { bottleneck_tensor_size, class_count }, stddev: 0.001f);
- layer_weights = tf.Variable(initial_value, name: "final_weights");
- variable_summaries(layer_weights);
- });
-
- RefVariable layer_biases = null;
- with(tf.name_scope("biases"), delegate
- {
- layer_biases = tf.Variable(tf.zeros((class_count)), name: "final_biases");
- variable_summaries(layer_biases);
- });
-
- with(tf.name_scope("Wx_plus_b"), delegate
- {
- logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases;
- tf.summary.histogram("pre_activations", logits);
- });
- });
-
- final_tensor = tf.nn.softmax(logits, name: final_tensor_name);
-
- // The tf.contrib.quantize functions rewrite the graph in place for
- // quantization. The imported model graph has already been rewritten, so upon
- // calling these rewrites, only the newly added final layer will be
- // transformed.
- if (quantize_layer)
- {
- throw new NotImplementedException("quantize_layer");
- /*if (is_training)
- tf.contrib.quantize.create_training_graph();
- else
- tf.contrib.quantize.create_eval_graph();*/
- }
-
- tf.summary.histogram("activations", final_tensor);
-
- // If this is an eval graph, we don't need to add loss ops or an optimizer.
- if (!is_training)
- return (null, null, bottleneck_input, ground_truth_input, final_tensor);
-
- Tensor cross_entropy_mean = null;
- with(tf.name_scope("cross_entropy"), delegate
- {
- cross_entropy_mean = tf.losses.sparse_softmax_cross_entropy(
- labels: ground_truth_input, logits: logits);
- });
-
- tf.summary.scalar("cross_entropy", cross_entropy_mean);
-
- with(tf.name_scope("train"), delegate
- {
- var optimizer = tf.train.GradientDescentOptimizer(learning_rate);
- train_step = optimizer.minimize(cross_entropy_mean);
- });
-
- return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
- final_tensor);
- }
-
- private void variable_summaries(RefVariable var)
- {
- with(tf.name_scope("summaries"), delegate
- {
- var mean = tf.reduce_mean(var);
- tf.summary.scalar("mean", mean);
- Tensor stddev = null;
- with(tf.name_scope("stddev"), delegate
- {
- stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)));
- });
- tf.summary.scalar("stddev", stddev);
- tf.summary.scalar("max", tf.reduce_max(var));
- tf.summary.scalar("min", tf.reduce_min(var));
- tf.summary.histogram("histogram", var);
- });
- }
-
- private (Graph, Tensor, Tensor, bool) create_module_graph()
- {
- var (height, width) = (299, 299);
-
- return with(tf.Graph().as_default(), graph =>
- {
- tf.train.import_meta_graph("graph/InceptionV3.meta");
- Tensor resized_input_tensor = graph.OperationByName("Placeholder"); //tf.placeholder(tf.float32, new TensorShape(-1, height, width, 3));
- // var m = hub.Module(module_spec);
- Tensor bottleneck_tensor = graph.OperationByName("module_apply_default/hub_output/feature_vector/SpatialSqueeze");// m(resized_input_tensor);
- var wants_quantization = false;
- return (graph, bottleneck_tensor, resized_input_tensor, wants_quantization);
- });
- }
-
- private (NDArray, long[], string[]) get_random_cached_bottlenecks(Session sess, Dictionary<string, Dictionary<string, string[]>> image_lists,
- int how_many, string category, string bottleneck_dir, string image_dir,
- Tensor jpeg_data_tensor, Tensor decoded_image_tensor, Tensor resized_input_tensor,
- Tensor bottleneck_tensor, string module_name)
- {
- var bottlenecks = new List<float[]>();
- var ground_truths = new List<long>();
- var filenames = new List<string>();
- class_count = image_lists.Keys.Count;
- if (how_many >= 0)
- {
- // Retrieve a random sample of bottlenecks.
- foreach (var unused_i in range(how_many))
- {
- int label_index = new Random().Next(class_count);
- string label_name = image_lists.Keys.ToArray()[label_index];
- int image_index = new Random().Next(MAX_NUM_IMAGES_PER_CLASS);
- string image_name = get_image_path(image_lists, label_name, image_index,
- image_dir, category);
- var bottleneck = get_or_create_bottleneck(
- sess, image_lists, label_name, image_index, image_dir, category,
- bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
- resized_input_tensor, bottleneck_tensor, module_name);
- bottlenecks.Add(bottleneck);
- ground_truths.Add(label_index);
- filenames.Add(image_name);
- }
- }
- else
- {
- // Retrieve all bottlenecks.
- foreach (var (label_index, label_name) in enumerate(image_lists.Keys.ToArray()))
- {
- foreach (var (image_index, image_name) in enumerate(image_lists[label_name][category]))
- {
- var bottleneck = get_or_create_bottleneck(
- sess, image_lists, label_name, image_index, image_dir, category,
- bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
- resized_input_tensor, bottleneck_tensor, module_name);
-
- bottlenecks.Add(bottleneck);
- ground_truths.Add(label_index);
- filenames.Add(image_name);
- }
- }
- }
-
- return (bottlenecks.ToArray(), ground_truths.ToArray(), filenames.ToArray());
- }
-
- /// <summary>
- /// Inserts the operations we need to evaluate the accuracy of our results.
- /// </summary>
- /// <param name="result_tensor"></param>
- /// <param name="ground_truth_tensor"></param>
- /// <returns></returns>
- private (Tensor, Tensor) add_evaluation_step(Tensor result_tensor, Tensor ground_truth_tensor)
- {
- Tensor evaluation_step = null, correct_prediction = null, prediction = null;
-
- with(tf.name_scope("accuracy"), scope =>
- {
- with(tf.name_scope("correct_prediction"), delegate
- {
- prediction = tf.argmax(result_tensor, 1);
- correct_prediction = tf.equal(prediction, ground_truth_tensor);
- });
-
- with(tf.name_scope("accuracy"), delegate
- {
- evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32));
- });
- });
-
- tf.summary.scalar("accuracy", evaluation_step);
- return (evaluation_step, prediction);
- }
-
- /// <summary>
- /// Ensures all the training, testing, and validation bottlenecks are cached.
- /// </summary>
- /// <param name="sess"></param>
- /// <param name="image_lists"></param>
- /// <param name="image_dir"></param>
- /// <param name="bottleneck_dir"></param>
- /// <param name="jpeg_data_tensor"></param>
- /// <param name="decoded_image_tensor"></param>
- /// <param name="resized_image_tensor"></param>
- /// <param name="bottleneck_tensor"></param>
- /// <param name="tfhub_module"></param>
- private void cache_bottlenecks(Session sess, Dictionary<string, Dictionary<string, string[]>> image_lists,
- string image_dir, string bottleneck_dir, Tensor jpeg_data_tensor, Tensor decoded_image_tensor,
- Tensor resized_input_tensor, Tensor bottleneck_tensor, string module_name)
- {
- int how_many_bottlenecks = 0;
- foreach (var (label_name, label_lists) in image_lists)
- {
- foreach (var category in new string[] { "training", "testing", "validation" })
- {
- var category_list = label_lists[category];
- foreach (var (index, unused_base_name) in enumerate(category_list))
- {
- get_or_create_bottleneck(sess, image_lists, label_name, index, image_dir, category,
- bottleneck_dir, jpeg_data_tensor, decoded_image_tensor,
- resized_input_tensor, bottleneck_tensor, module_name);
- how_many_bottlenecks++;
- if (how_many_bottlenecks % 300 == 0)
- print($"{how_many_bottlenecks} bottleneck files created.");
- }
- }
- }
- }
-
- private float[] get_or_create_bottleneck(Session sess, Dictionary<string, Dictionary<string, string[]>> image_lists,
- string label_name, int index, string image_dir, string category, string bottleneck_dir,
- Tensor jpeg_data_tensor, Tensor decoded_image_tensor, Tensor resized_input_tensor,
- Tensor bottleneck_tensor, string module_name)
- {
- var label_lists = image_lists[label_name];
- var sub_dir_path = Path.Join(bottleneck_dir, label_name);
- Directory.CreateDirectory(sub_dir_path);
- string bottleneck_path = get_bottleneck_path(image_lists, label_name, index,
- bottleneck_dir, category, module_name);
-
- if (!File.Exists(bottleneck_path))
- create_bottleneck_file(bottleneck_path, image_lists, label_name, index,
- image_dir, category, sess, jpeg_data_tensor,
- decoded_image_tensor, resized_input_tensor,
- bottleneck_tensor);
- var bottleneck_string = File.ReadAllText(bottleneck_path);
- var bottleneck_values = Array.ConvertAll(bottleneck_string.Split(','), x => float.Parse(x));
- return bottleneck_values;
- }
-
- private void create_bottleneck_file(string bottleneck_path, Dictionary<string, Dictionary<string, string[]>> image_lists,
- string label_name, int index, string image_dir, string category, Session sess,
- Tensor jpeg_data_tensor, Tensor decoded_image_tensor, Tensor resized_input_tensor, Tensor bottleneck_tensor)
- {
- // Create a single bottleneck file.
- print("Creating bottleneck at " + bottleneck_path);
- var image_path = get_image_path(image_lists, label_name, index, image_dir, category);
- if (!File.Exists(image_path))
- print($"File does not exist {image_path}");
-
- var image_data = File.ReadAllBytes(image_path);
- var bottleneck_values = run_bottleneck_on_image(
- sess, image_data, jpeg_data_tensor, decoded_image_tensor,
- resized_input_tensor, bottleneck_tensor);
- var values = bottleneck_values.Data<float>();
- var bottleneck_string = string.Join(",", values);
- File.WriteAllText(bottleneck_path, bottleneck_string);
- }
-
- /// <summary>
- /// Runs inference on an image to extract the 'bottleneck' summary layer.
- /// </summary>
- /// <param name="sess">Current active TensorFlow Session.</param>
- /// <param name="image_data">Data of raw JPEG data.</param>
- /// <param name="image_data_tensor">Input data layer in the graph.</param>
- /// <param name="decoded_image_tensor">Output of initial image resizing and preprocessing.</param>
- /// <param name="resized_input_tensor">The input node of the recognition graph.</param>
- /// <param name="bottleneck_tensor">Layer before the final softmax.</param>
- /// <returns></returns>
- private NDArray run_bottleneck_on_image(Session sess, byte[] image_data, Tensor image_data_tensor,
- Tensor decoded_image_tensor, Tensor resized_input_tensor, Tensor bottleneck_tensor)
- {
- // First decode the JPEG image, resize it, and rescale the pixel values.
- var resized_input_values = sess.run(decoded_image_tensor, new FeedItem(image_data_tensor, new Tensor(image_data, TF_DataType.TF_STRING)));
- // Then run it through the recognition network.
- var bottleneck_values = sess.run(bottleneck_tensor, new FeedItem(resized_input_tensor, resized_input_values));
- bottleneck_values = np.squeeze(bottleneck_values);
- return bottleneck_values;
- }
-
- private string get_bottleneck_path(Dictionary<string, Dictionary<string, string[]>> image_lists, string label_name, int index,
- string bottleneck_dir, string category, string module_name)
- {
- module_name = (module_name.Replace("://", "~") // URL scheme.
- .Replace('/', '~') // URL and Unix paths.
- .Replace(':', '~').Replace('\\', '~')); // Windows paths.
- return get_image_path(image_lists, label_name, index, bottleneck_dir,
- category) + "_" + module_name + ".txt";
- }
-
- private string get_image_path(Dictionary<string, Dictionary<string, string[]>> image_lists, string label_name,
- int index, string image_dir, string category)
- {
- if (!image_lists.ContainsKey(label_name))
- print($"Label does not exist {label_name}");
-
- var label_lists = image_lists[label_name];
- if (!label_lists.ContainsKey(category))
- print($"Category does not exist {category}");
- var category_list = label_lists[category];
- if (category_list.Length == 0)
- print($"Label {label_name} has no images in the category {category}.");
-
- var mod_index = index % len(category_list);
- var base_name = category_list[mod_index].Split(Path.DirectorySeparatorChar).Last();
- var sub_dir = label_name;
- var full_path = Path.Join(image_dir, sub_dir, base_name);
- return full_path;
- }
-
- /// <summary>
- /// Saves an graph to file, creating a valid quantized one if necessary.
- /// </summary>
- /// <param name="graph_file_name"></param>
- /// <param name="class_count"></param>
- private void save_graph_to_file(string graph_file_name, int class_count)
- {
- var (sess, _, _, _, _, _) = build_eval_session(class_count);
- var graph = sess.graph;
- var output_graph_def = tf.graph_util.convert_variables_to_constants(
- sess, graph.as_graph_def(), new string[] { final_tensor_name });
- File.WriteAllBytes(graph_file_name, output_graph_def.ToByteArray());
- }
-
- public void PrepareData()
- {
- // get a set of images to teach the network about the new classes
- string fileName = "flower_photos.tgz";
- string url = $"http://download.tensorflow.org/example_images/{fileName}";
- Web.Download(url, data_dir, fileName);
- Compress.ExtractTGZ(Path.Join(data_dir, fileName), data_dir);
-
- // download graph meta data
- url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/InceptionV3.meta";
- Web.Download(url, "graph", "InceptionV3.meta");
-
- // download variables.data checkpoint file.
- url = "https://github.com/SciSharp/TensorFlow.NET/raw/master/data/tfhub_modules.zip";
- Web.Download(url, data_dir, "tfhub_modules.zip");
- Compress.UnZip(Path.Join(data_dir, "tfhub_modules.zip"), "tfhub_modules");
-
- // Prepare necessary directories that can be used during training
- Directory.CreateDirectory(summaries_dir);
- Directory.CreateDirectory(bottleneck_dir);
-
- // Look at the folder structure, and create lists of all the images.
- image_lists = create_image_lists();
- class_count = len(image_lists);
- if (class_count == 0)
- print($"No valid folders of images found at {image_dir}");
- if (class_count == 1)
- print("Only one valid folder of images found at " +
- image_dir +
- " - multiple classes are needed for classification.");
- }
-
- private (Tensor, Tensor) add_jpeg_decoding()
- {
- // height, width, depth
- var input_dim = (299, 299, 3);
- var jpeg_data = tf.placeholder(tf.@string, name: "DecodeJPGInput");
- var decoded_image = tf.image.decode_jpeg(jpeg_data, channels: input_dim.Item3);
- // Convert from full range of uint8 to range [0,1] of float32.
- var decoded_image_as_float = tf.image.convert_image_dtype(decoded_image, tf.float32);
- var decoded_image_4d = tf.expand_dims(decoded_image_as_float, 0);
- var resize_shape = tf.stack(new int[] { input_dim.Item1, input_dim.Item2 });
- var resize_shape_as_int = tf.cast(resize_shape, dtype: tf.int32);
- var resized_image = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int);
- return (jpeg_data, resized_image);
- }
-
- /// <summary>
- /// Builds a list of training images from the file system.
- /// </summary>
- private Dictionary<string, Dictionary<string, string[]>> create_image_lists()
- {
- var sub_dirs = tf.gfile.Walk(image_dir)
- .Select(x => x.Item1)
- .OrderBy(x => x)
- .ToArray();
-
- var result = new Dictionary<string, Dictionary<string, string[]>>();
-
- foreach (var sub_dir in sub_dirs)
- {
- var dir_name = sub_dir.Split(Path.DirectorySeparatorChar).Last();
- print($"Looking for images in '{dir_name}'");
- var file_list = Directory.GetFiles(sub_dir);
- if (len(file_list) < 20)
- print($"WARNING: Folder has less than 20 images, which may cause issues.");
-
- var label_name = dir_name.ToLower();
- result[label_name] = new Dictionary<string, string[]>();
- int testing_count = (int)Math.Floor(file_list.Length * testing_percentage);
- int validation_count = (int)Math.Floor(file_list.Length * validation_percentage);
- result[label_name]["testing"] = file_list.Take(testing_count).ToArray();
- result[label_name]["validation"] = file_list.Skip(testing_count).Take(validation_count).ToArray();
- result[label_name]["training"] = file_list.Skip(testing_count + validation_count).ToArray();
- }
-
- return result;
- }
-
- public Graph ImportGraph()
- {
- Graph graph;
-
- // Set up the pre-trained graph.
- (graph, bottleneck_tensor, resized_image_tensor, wants_quantization) =
- create_module_graph();
-
- // Add the new layer that we'll be training.
- with(graph.as_default(), delegate
- {
- (train_step, cross_entropy, bottleneck_input,
- ground_truth_input, final_tensor) = add_final_retrain_ops(
- class_count, final_tensor_name, bottleneck_tensor,
- wants_quantization, is_training: true);
- });
-
- return graph;
- }
-
- public Graph BuildGraph()
- {
- throw new NotImplementedException();
- }
-
- public void Train(Session sess)
- {
- var sw = new Stopwatch();
-
- // Initialize all weights: for the module to their pretrained values,
- // and for the newly added retraining layer to random initial values.
- var init = tf.global_variables_initializer();
- sess.run(init);
-
- var (jpeg_data_tensor, decoded_image_tensor) = add_jpeg_decoding();
-
- // We'll make sure we've calculated the 'bottleneck' image summaries and
- // cached them on disk.
- cache_bottlenecks(sess, image_lists, image_dir,
- bottleneck_dir, jpeg_data_tensor,
- decoded_image_tensor, resized_image_tensor,
- bottleneck_tensor, tfhub_module);
-
- // Create the operations we need to evaluate the accuracy of our new layer.
- var (evaluation_step, _) = add_evaluation_step(final_tensor, ground_truth_input);
-
- // Merge all the summaries and write them out to the summaries_dir
- var merged = tf.summary.merge_all();
- var train_writer = tf.summary.FileWriter(summaries_dir + "/train", sess.graph);
- var validation_writer = tf.summary.FileWriter(summaries_dir + "/validation", sess.graph);
-
- // Create a train saver that is used to restore values into an eval graph
- // when exporting models.
- var train_saver = tf.train.Saver();
- train_saver.save(sess, CHECKPOINT_NAME);
-
- sw.Restart();
-
- for (int i = 0; i < how_many_training_steps; i++)
- {
- var (train_bottlenecks, train_ground_truth, _) = get_random_cached_bottlenecks(
- sess, image_lists, train_batch_size, "training",
- bottleneck_dir, image_dir, jpeg_data_tensor,
- decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
- tfhub_module);
-
- // Feed the bottlenecks and ground truth into the graph, and run a training
- // step. Capture training summaries for TensorBoard with the `merged` op.
- var results = sess.run(
- new ITensorOrOperation[] { merged, train_step },
- new FeedItem(bottleneck_input, train_bottlenecks),
- new FeedItem(ground_truth_input, train_ground_truth));
- var train_summary = results[0];
-
- // TODO
- train_writer.add_summary(train_summary, i);
-
- // Every so often, print out how well the graph is training.
- bool is_last_step = (i + 1 == how_many_training_steps);
- if ((i % eval_step_interval) == 0 || is_last_step)
- {
- results = sess.run(
- new Tensor[] { evaluation_step, cross_entropy },
- new FeedItem(bottleneck_input, train_bottlenecks),
- new FeedItem(ground_truth_input, train_ground_truth));
- (float train_accuracy, float cross_entropy_value) = (results[0], results[1]);
- print($"{DateTime.Now}: Step {i + 1}: Train accuracy = {train_accuracy * 100}%, Cross entropy = {cross_entropy_value.ToString("G4")}");
-
- var (validation_bottlenecks, validation_ground_truth, _) = get_random_cached_bottlenecks(
- sess, image_lists, validation_batch_size, "validation",
- bottleneck_dir, image_dir, jpeg_data_tensor,
- decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
- tfhub_module);
-
- // Run a validation step and capture training summaries for TensorBoard
- // with the `merged` op.
- results = sess.run(new Tensor[] { merged, evaluation_step },
- new FeedItem(bottleneck_input, validation_bottlenecks),
- new FeedItem(ground_truth_input, validation_ground_truth));
-
- (string validation_summary, float validation_accuracy) = (results[0], results[1]);
-
- validation_writer.add_summary(validation_summary, i);
- print($"{DateTime.Now}: Step {i + 1}: Validation accuracy = {validation_accuracy * 100}% (N={len(validation_bottlenecks)}) {sw.ElapsedMilliseconds}ms");
- sw.Restart();
- }
-
- // Store intermediate results
- int intermediate_frequency = intermediate_store_frequency;
- if (intermediate_frequency > 0 && i % intermediate_frequency == 0 && i > 0)
- {
-
- }
- }
-
- // After training is complete, force one last save of the train checkpoint.
- train_saver.save(sess, CHECKPOINT_NAME);
-
- // We've completed all our training, so run a final test evaluation on
- // some new images we haven't used before.
- (test_accuracy, predictions) = run_final_eval(sess, null, class_count, image_lists,
- jpeg_data_tensor, decoded_image_tensor, resized_image_tensor,
- bottleneck_tensor);
-
- // Write out the trained graph and labels with the weights stored as
- // constants.
- print($"Save final result to : {output_graph}");
- save_graph_to_file(output_graph, class_count);
- File.WriteAllText(output_labels, string.Join("\n", image_lists.Keys));
- }
-
- public void Predict(Session sess)
- {
- throw new NotImplementedException();
- }
-
- public void Test(Session sess)
- {
- throw new NotImplementedException();
- }
- }
- }
|