|
- using Microsoft.VisualStudio.TestTools.UnitTesting;
- using System;
- using System.Collections.Generic;
- using System.Linq;
- using NumSharp;
- using Tensorflow;
- using Tensorflow.Util;
- using Buffer = Tensorflow.Buffer;
- using static Tensorflow.Binding;
- using Tensorflow.UnitTest;
-
- namespace TensorFlowNET.UnitTest.Basics
- {
- [TestClass]
- public class OperationsTest : GraphModeTestBase
- {
- /// <summary>
- /// Port from tensorflow\c\c_api_test.cc
- /// `TEST(CAPI, GetAllOpList)`
- /// </summary>
- [TestMethod]
- public void GetAllOpList()
- {
- var handle = c_api.TF_GetAllOpList();
- using var buffer = new Buffer(handle);
- var op_list = OpList.Parser.ParseFrom(buffer.DangerousMemoryBlock.Stream());
-
- var _registered_ops = new Dictionary<string, OpDef>();
- foreach (var op_def in op_list.Op)
- _registered_ops[op_def.Name] = op_def;
-
- // r1.14 added NN op
- var op = _registered_ops.FirstOrDefault(x => x.Key == "NearestNeighbors");
- Assert.IsTrue(op_list.Op.Count > 1000);
- }
-
- [TestMethod]
- public void addInPlaceholder()
- {
- var a = tf.placeholder(tf.float32);
- var b = tf.placeholder(tf.float32);
- var c = tf.add(a, b);
-
- using(var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, 3.0f),
- new FeedItem(b, 2.0f));
- Assert.AreEqual((float)o, 5.0f);
- }
- }
-
- [TestMethod]
- public void addInConstant()
- {
- var a = tf.constant(4.0f);
- var b = tf.constant(5.0f);
- var c = tf.add(a, b);
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c);
- Assert.AreEqual((float)o, 9.0f);
- }
- }
-
- [TestMethod]
- public void isFinite()
- {
- var a = tf.constant(new[] { 1, np.nan, 2, np.nan, 3, np.nan, 4, np.nan });
- var b = tf.cast(tf.is_finite(a), tf.float32);
- var check = np.array(1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f);
-
- using (var sess = tf.Session())
- {
- var o = sess.run(b);
- Assert.IsTrue(o.array_equal(check));
- }
- }
-
- [TestMethod]
- public void isNan()
- {
- var a = tf.constant(new[] { 1, np.nan, 2, np.nan, 3, np.nan, 4, np.nan });
- var b = tf.cast(tf.is_nan(a), tf.float32);
- var check = np.array(0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f);
-
- using (var sess = tf.Session())
- {
- var o = sess.run(b);
- Assert.IsTrue(o.array_equal(check));
- }
- }
-
- [TestMethod]
- public void cumSumTest()
- {
- var a = tf.constant(new[] { 1, 1, 2, 3, 4, 5 });
- var b = tf.cumsum(a);
- var check = np.array(1, 2, 4, 7, 11, 16);
-
- using (var sess = tf.Session())
- {
- var o = sess.run(b);
- Assert.IsTrue(o.array_equal(check));
- }
-
- b = tf.cumsum(a, exclusive: true);
- check = np.array(0, 1, 2, 4, 7, 11);
-
- using (var sess = tf.Session())
- {
- var o = sess.run(b);
- Assert.IsTrue(o.array_equal(check));
- }
-
- b = tf.cumsum(a, reverse: true);
- check = np.array(16, 15, 14, 12, 9, 5);
-
- using (var sess = tf.Session())
- {
- var o = sess.run(b);
- Assert.IsTrue(o.array_equal(check));
- }
-
- b = tf.cumsum(a, exclusive:true, reverse: true);
- check = np.array(15, 14, 12, 9, 5, 0);
-
- using (var sess = tf.Session())
- {
- var o = sess.run(b);
- Assert.IsTrue(o.array_equal(check));
- }
- }
-
- [TestMethod]
- public void logicalOpsTest()
- {
- var a = tf.constant(new[] {1f, 2f, 3f, 4f, -4f, -3f, -2f, -1f});
- var b = tf.less(a, 0f);
- var c = tf.greater(a, 0f);
- var d = tf.cast(tf.logical_and(b, c), tf.int32);
- var check = np.array(new[] { 0, 0, 0, 0, 0, 0, 0, 0 });
-
- using (var sess = tf.Session())
- {
- var o = sess.run(d);
- Assert.IsTrue(o.array_equal(check));
- }
-
- d = tf.cast(tf.logical_not(b), tf.int32);
- check = np.array(new[] { 1, 1, 1, 1, 0, 0, 0, 0 });
-
- using (var sess = tf.Session())
- {
- var o = sess.run(d);
- Assert.IsTrue(o.array_equal(check));
- }
-
- d = tf.cast(tf.logical_or(b, c), tf.int32);
- check = np.array(new[] { 1, 1, 1, 1, 1, 1, 1, 1 });
-
- using (var sess = tf.Session())
- {
- var o = sess.run(d);
- Assert.IsTrue(o.array_equal(check));
- }
-
- d = tf.cast(tf.logical_xor(b, c), tf.int32);
- check = np.array(new[] { 1, 1, 1, 1, 1, 1, 1, 1 });
-
- using (var sess = tf.Session())
- {
- var o = sess.run(d);
- Assert.IsTrue(o.array_equal(check));
- }
- }
-
- [TestMethod]
- public void addOpTests()
- {
- const int rows = 2; // to avoid broadcasting effect
- const int cols = 10;
-
- #region intTest
- const int firstIntVal = 2;
- const int secondIntVal = 3;
-
- var firstIntFeed = Enumerable.Repeat(firstIntVal, rows * cols).ToArray();
- var secondIntFeed = Enumerable.Repeat(secondIntVal, rows * cols).ToArray();
- var intResult = firstIntFeed.Sum() + secondIntFeed.Sum();
-
- var a = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var b = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var c = tf.reduce_sum(tf.reduce_sum(tf.add(a, b), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator +(Tensor x, Tensor y)`
- c = tf.reduce_sum(tf.reduce_sum(a + b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator +(Tensor x, int y)`
- c = tf.reduce_sum(tf.reduce_sum(a + secondIntVal, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator +(int x, Tensor y)`
- c = tf.reduce_sum(tf.reduce_sum(secondIntVal + a, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
- #endregion
-
- #region floatTest
- const float firstFloatVal = 2.0f;
- const float secondFloatVal = 3.0f;
-
- var firstFloatFeed = Enumerable.Repeat(firstFloatVal, rows * cols).ToArray();
- var secondFloatFeed = Enumerable.Repeat(secondFloatVal, rows * cols).ToArray();
- var floatResult = firstFloatFeed.Sum() + secondFloatFeed.Sum();
-
- a = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.add(a, b), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
-
- // Testing `operator +(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(a + b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
-
- // Testing `operator +(Tensor x, float y)
- c = tf.reduce_sum(tf.reduce_sum(a + secondFloatVal, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
-
- // Testing `operator +(float x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(secondFloatVal + a, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
- #endregion
-
- #region doubleTest
- const double firstDoubleVal = 2.0;
- const double secondDoubleVal = 3.0;
-
- var firstDoubleFeed = Enumerable.Repeat(firstDoubleVal, rows * cols).ToArray();
- var secondDoubleFeed = Enumerable.Repeat(secondDoubleVal, rows * cols).ToArray();
- var doubleResult = firstDoubleFeed.Sum() + secondDoubleFeed.Sum();
-
- a = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.add(a, b), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
-
- // Testing `operator +(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(a + b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
-
- // Testing `operator +(Tensor x, double y)
- c = tf.reduce_sum(tf.reduce_sum(a + secondFloatVal, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
-
- // Testing `operator +(double x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(secondFloatVal + a, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
- #endregion
- }
-
- [TestMethod]
- public void subOpTests()
- {
- const int rows = 2; // to avoid broadcasting effect
- const int cols = 10;
-
- #region intTest
- const int firstIntVal = -2;
- const int secondIntVal = 3;
-
- var firstIntFeed = Enumerable.Repeat(firstIntVal, rows * cols).ToArray();
- var secondIntFeed = Enumerable.Repeat(secondIntVal, rows * cols).ToArray();
- var intResult = firstIntFeed.Sum() - secondIntFeed.Sum();
- var intResultTwo = -firstIntFeed.Sum();
-
- var a = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var b = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var c = tf.reduce_sum(tf.reduce_sum(tf.sub(a, b), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator -(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(a - b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator -(Tensor x, int y)
- c = tf.reduce_sum(tf.reduce_sum(a - secondIntVal, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator -(int x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(secondIntVal - a, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, Math.Abs(intResult));
- }
-
- // Testing `operator -(Tensor x)
- c = tf.reduce_sum(tf.reduce_sum(-a, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResultTwo);
- }
- #endregion
-
- #region floatTest
- const float firstFloatVal = -2.0f;
- const float secondFloatVal = 3.0f;
-
- var firstFloatFeed = Enumerable.Repeat(firstFloatVal, rows * cols).ToArray();
- var secondFloatFeed = Enumerable.Repeat(secondFloatVal, rows * cols).ToArray();
- var floatResult = firstFloatFeed.Sum() - secondFloatFeed.Sum();
- var floatResultTwo = -firstFloatFeed.Sum();
-
- a = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.sub(a, b), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
-
- // Testing `operator -(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(a - b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
-
- // Testing `operator -(Tensor x, float y)
- c = tf.reduce_sum(tf.reduce_sum(a - secondFloatVal, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
-
- // Testing `operator -(float x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(secondFloatVal - a, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, Math.Abs(floatResult));
- }
-
- // Testing `operator -(Tensor x)
- c = tf.reduce_sum(tf.reduce_sum(-a, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResultTwo);
- }
- #endregion
-
- #region doubleTest
- const double firstDoubleVal = -2.0;
- const double secondDoubleVal = 3.0;
-
- var firstDoubleFeed = Enumerable.Repeat(firstDoubleVal, rows * cols).ToArray();
- var secondDoubleFeed = Enumerable.Repeat(secondDoubleVal, rows * cols).ToArray();
- var doubleResult = firstDoubleFeed.Sum() - secondDoubleFeed.Sum();
- var doubleResultTwo = -firstDoubleFeed.Sum();
-
- a = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.sub(a, b), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
-
- // Testing `operator -(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(a - b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
-
- // Testing `operator -(Tensor x, double y)
- c = tf.reduce_sum(tf.reduce_sum(a - secondFloatVal, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
-
- // Testing `operator -(double x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(secondFloatVal - a, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, Math.Abs(doubleResult));
- }
-
- // Testing `operator -(Tensor x)
- c = tf.reduce_sum(tf.reduce_sum(-a, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResultTwo);
- }
- #endregion
- }
-
- private IEnumerable<int> MultiplyArray(IReadOnlyCollection<int> first, IReadOnlyCollection<int> second)
- {
- if(first.Count != second.Count)
- throw new ArgumentException("Arrays should be of equal size!");
-
- var firstEnumerator = first.GetEnumerator();
- var secondEnumerator = second.GetEnumerator();
- var result = new List<int>();
- while (firstEnumerator.MoveNext())
- {
- secondEnumerator.MoveNext();
- result.Add(firstEnumerator.Current * secondEnumerator.Current);
- }
-
- firstEnumerator.Dispose();
- secondEnumerator.Dispose();
-
- return result;
- }
- private IEnumerable<float> MultiplyArray(IReadOnlyCollection<float> first, IReadOnlyCollection<float> second)
- {
- if(first.Count != second.Count)
- throw new ArgumentException("Arrays should be of equal size!");
-
- var firstEnumerator = first.GetEnumerator();
- var secondEnumerator = second.GetEnumerator();
- var result = new List<float>();
- while (firstEnumerator.MoveNext())
- {
- secondEnumerator.MoveNext();
- result.Add(firstEnumerator.Current * secondEnumerator.Current);
- }
-
- firstEnumerator.Dispose();
- secondEnumerator.Dispose();
-
- return result;
- }
- private IEnumerable<double> MultiplyArray(IReadOnlyCollection<double> first, IReadOnlyCollection<double> second)
- {
- if(first.Count != second.Count)
- throw new ArgumentException("Arrays should be of equal size!");
-
- var firstEnumerator = first.GetEnumerator();
- var secondEnumerator = second.GetEnumerator();
- var result = new List<double>();
- while (firstEnumerator.MoveNext())
- {
- secondEnumerator.MoveNext();
- result.Add(firstEnumerator.Current * secondEnumerator.Current);
- }
-
- firstEnumerator.Dispose();
- secondEnumerator.Dispose();
-
- return result;
- }
-
- [TestMethod]
- public void mulOpTests()
- {
- const int rows = 2; // to avoid broadcasting effect
- const int cols = 10;
-
- #region intTest
- const int firstIntVal = 2;
- const int secondIntVal = 3;
-
- var firstIntFeed = Enumerable.Repeat(firstIntVal, rows * cols).ToArray();
- var secondIntFeed = Enumerable.Repeat(secondIntVal, rows * cols).ToArray();
- var intResult = MultiplyArray(firstIntFeed, secondIntFeed).Sum();
-
- var a = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var b = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var c = tf.reduce_sum(tf.reduce_sum(tf.multiply(a, b), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator *(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(a * b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator *(Tensor x, int y)
- c = tf.reduce_sum(tf.reduce_sum(a * secondIntVal, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator *(int x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(firstIntVal * b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
- #endregion
-
- #region floatTest
- const float firstFloatVal = 2.0f;
- const float secondFloatVal = 3.0f;
-
- var firstFloatFeed = Enumerable.Repeat(firstFloatVal, rows * cols).ToArray();
- var secondFloatFeed = Enumerable.Repeat(secondFloatVal, rows * cols).ToArray();
- var floatResult = MultiplyArray(firstFloatFeed, secondFloatFeed).Sum();
-
- a = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.multiply(a, b), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
-
- // Testing `operator *(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(a * b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
-
- // Testing `operator *(Tensor x, float y)
- c = tf.reduce_sum(tf.reduce_sum(a * secondFloatVal, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
-
- // Testing `operator *(float x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(firstFloatVal * b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
- #endregion
-
- #region doubleTest
- const double firstDoubleVal = 2.0;
- const double secondDoubleVal = 3.0;
-
- var firstDoubleFeed = Enumerable.Repeat(firstDoubleVal, rows * cols).ToArray();
- var secondDoubleFeed = Enumerable.Repeat(secondDoubleVal, rows * cols).ToArray();
- var doubleResult = MultiplyArray(firstDoubleFeed, secondDoubleFeed).Sum();
-
- a = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.multiply(a, b), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
-
- // Testing `operator *(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(a * b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
-
- // Testing `operator *(Tensor x, double y)
- c = tf.reduce_sum(tf.reduce_sum(a * secondFloatVal, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
-
- // Testing `operator *(double x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(firstFloatVal * b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
- #endregion
- }
-
- [Ignore]
- [TestMethod]
- public void divOpTests()
- {
- const int rows = 2; // to avoid broadcasting effect
- const int cols = 10;
-
- #region intTest
- const int firstIntVal = 6;
- const int secondIntVal = 3;
-
- var firstIntFeed = Enumerable.Repeat(firstIntVal, rows * cols).ToArray();
- var secondIntFeed = Enumerable.Repeat(secondIntVal, rows * cols).ToArray();
- var intResult = (int)(firstIntFeed.Sum() / (float)secondIntVal);
-
- var a = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var b = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var c = tf.reduce_sum(tf.reduce_sum(gen_math_ops.floor_div(a, b), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator /(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(a / b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator /(Tensor x, int y)
- c = tf.reduce_sum(tf.reduce_sum(a / secondIntVal, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator /(int x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(firstIntVal / b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
- #endregion
-
- #region floatTest
- const float firstFloatVal = 6.0f;
- const float secondFloatVal = 3.0f;
-
- var firstFloatFeed = Enumerable.Repeat(firstFloatVal, rows * cols).ToArray();
- var secondFloatFeed = Enumerable.Repeat(secondFloatVal, rows * cols).ToArray();
- var floatResult = MultiplyArray(firstFloatFeed, secondFloatFeed.Select(x => 1/x).ToArray()).Sum();
-
- a = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.divide(a, b), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
-
- // Testing `operator /(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(a / b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
-
- // Testing `operator /(Tensor x, float y)
- c = tf.reduce_sum(tf.reduce_sum(a / secondFloatVal, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
-
- // Testing `operator /(float x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(firstFloatVal / b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((float)o, floatResult);
- }
- #endregion
-
- #region doubleTest
- const double firstDoubleVal = 6.0;
- const double secondDoubleVal = 3.0;
-
- var firstDoubleFeed = Enumerable.Repeat(firstDoubleVal, rows * cols).ToArray();
- var secondDoubleFeed = Enumerable.Repeat(secondDoubleVal, rows * cols).ToArray();
- var doubleResult = MultiplyArray(firstDoubleFeed, secondDoubleFeed.Select(x => 1/x).ToArray()).Sum();
-
- a = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.divide(a, b), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
-
- // Testing `operator /(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(a / b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
-
- // Testing `operator /(Tensor x, double y)
- c = tf.reduce_sum(tf.reduce_sum(a / secondFloatVal, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
-
- // Testing `operator /(double x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(firstFloatVal / b, 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((double)o, doubleResult);
- }
- #endregion
- }
-
- [TestMethod]
- public void greaterThanOpTests()
- {
- const int rows = 2; // to avoid broadcasting effect
- const int cols = 10;
-
- #region intTest
- const int intThreshold = 10;
-
- var firstIntFeed = Enumerable.Range(0, rows * cols).ToArray();
- var secondIntFeed = Enumerable.Repeat(intThreshold, rows * cols).ToArray();
- var intResult = firstIntFeed.Count(elem => elem > intThreshold);
- var intResultTwo = firstIntFeed.Count(elem => elem < intThreshold);
-
- var a = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var b = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.greater(a, b), tf.int32), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator >(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a > b, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator >(Tensor x, int y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a > intThreshold, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator >(int x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(intThreshold > a, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResultTwo);
- }
- #endregion
-
- #region floatTest
- const float floatThreshold = 10.0f;
-
- var firstFloatFeed = Enumerable.Range(0, rows * cols).Select(elem => (float)elem).ToArray();
- var secondFloatFeed = Enumerable.Repeat(floatThreshold, rows * cols).ToArray();
- var floatResult = firstFloatFeed.Count(elem => elem > floatThreshold);
- var floatResultTwo = firstFloatFeed.Count(elem => elem < floatThreshold);
-
- a = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.greater(a, b), tf.int32), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResult);
- }
-
- // Testing `operator >(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a > b, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResult);
- }
-
- // Testing `operator >(Tensor x, float y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a > floatThreshold, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResult);
- }
-
- // Testing `operator >(float x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(floatThreshold > a, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResultTwo);
- }
- #endregion
-
- #region doubleTest
- const double doubleThreshold = 10.0;
-
- var firstDoubleFeed = Enumerable.Repeat(0, rows * cols).Select(elem => (double)elem).ToArray();
- var secondDoubleFeed = Enumerable.Repeat(doubleThreshold, rows * cols).ToArray();
- var doubleResult = firstDoubleFeed.Count(elem => elem > doubleThreshold);
- var doubleResultTwo = firstDoubleFeed.Count(elem => elem < doubleThreshold);
-
- a = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.greater(a, b), tf.int32), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResult);
- }
-
- // Testing `operator >(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a > b, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResult);
- }
-
- // Testing `operator >(Tensor x, double y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a > doubleThreshold, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResult);
- }
-
- // Testing `operator >(double x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(doubleThreshold > a, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResultTwo);
- }
- #endregion
- }
-
- [TestMethod]
- public void lessThanOpTests()
- {
- const int rows = 2; // to avoid broadcasting effect
- const int cols = 10;
-
- #region intTest
- const int intThreshold = 10;
-
- var firstIntFeed = Enumerable.Range(0, rows * cols).ToArray();
- var secondIntFeed = Enumerable.Repeat(intThreshold, rows * cols).ToArray();
- var intResult = firstIntFeed.Count(elem => elem < intThreshold);
- var intResultTwo = firstIntFeed.Count(elem => elem > intThreshold);
-
- var a = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var b = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.less(a, b), tf.int32), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator <(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a < b, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator <(Tensor x, int y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a < intThreshold, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator <(int x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(intThreshold < a, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResultTwo);
- }
- #endregion
-
- #region floatTest
- const float floatThreshold = 10.0f;
-
- var firstFloatFeed = Enumerable.Range(0, rows * cols).Select(elem => (float)elem).ToArray();
- var secondFloatFeed = Enumerable.Repeat(floatThreshold, rows * cols).ToArray();
- var floatResult = firstFloatFeed.Count(elem => elem < floatThreshold);
- var floatResultTwo = firstFloatFeed.Count(elem => elem > floatThreshold);
-
- a = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.less(a, b), tf.int32), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResult);
- }
-
- // Testing `operator <(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a < b, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResult);
- }
-
- // Testing `operator <(Tensor x, float y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a < floatThreshold, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResult);
- }
-
- // Testing `operator <(float x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(floatThreshold < a, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResultTwo);
- }
- #endregion
-
- #region doubleTest
- const double doubleThreshold = 10.0;
-
- var firstDoubleFeed = Enumerable.Repeat(0, rows * cols).Select(elem => (double)elem).ToArray();
- var secondDoubleFeed = Enumerable.Repeat(doubleThreshold, rows * cols).ToArray();
- var doubleResult = firstDoubleFeed.Count(elem => elem < doubleThreshold);
- var doubleResultTwo = firstDoubleFeed.Count(elem => elem > doubleThreshold);
-
- a = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.less(a, b), tf.int32), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResult);
- }
-
- // Testing `operator <(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a < b, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResult);
- }
-
- // Testing `operator <(Tensor x, double y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a < doubleThreshold, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResult);
- }
-
- // Testing `operator <(double x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(doubleThreshold < a, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResultTwo);
- }
- #endregion
- }
-
- [TestMethod]
- public void greaterOrEqualThanOpTests()
- {
- const int rows = 2; // to avoid broadcasting effect
- const int cols = 10;
-
- #region intTest
- const int intThreshold = 10;
-
- var firstIntFeed = Enumerable.Range(0, rows * cols).ToArray();
- var secondIntFeed = Enumerable.Repeat(intThreshold, rows * cols).ToArray();
- var intResult = firstIntFeed.Count(elem => elem >= intThreshold);
- var intResultTwo = firstIntFeed.Count(elem => elem <= intThreshold);
-
- var a = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var b = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.greater_equal(a, b), tf.int32), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator >=(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a >= b, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator >=(Tensor x, int y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a >= intThreshold, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator >=(int x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(intThreshold >= a, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResultTwo);
- }
- #endregion
-
- #region floatTest
- const float floatThreshold = 10.0f;
-
- var firstFloatFeed = Enumerable.Range(0, rows * cols).Select(elem => (float)elem).ToArray();
- var secondFloatFeed = Enumerable.Repeat(floatThreshold, rows * cols).ToArray();
- var floatResult = firstFloatFeed.Count(elem => elem >= floatThreshold);
- var floatResultTwo = firstFloatFeed.Count(elem => elem <= floatThreshold);
-
- a = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.greater_equal(a, b), tf.int32), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResult);
- }
-
- // Testing `operator >=(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a >= b, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResult);
- }
-
- // Testing `operator >=(Tensor x, float y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a >= floatThreshold, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResult);
- }
-
- // Testing `operator >=(float x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(floatThreshold >= a, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResultTwo);
- }
- #endregion
-
- #region doubleTest
- const double doubleThreshold = 10.0;
-
- var firstDoubleFeed = Enumerable.Repeat(0, rows * cols).Select(elem => (double)elem).ToArray();
- var secondDoubleFeed = Enumerable.Repeat(doubleThreshold, rows * cols).ToArray();
- var doubleResult = firstDoubleFeed.Count(elem => elem >= doubleThreshold);
- var doubleResultTwo = firstDoubleFeed.Count(elem => elem <= doubleThreshold);
-
- a = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.greater_equal(a, b), tf.int32), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResult);
- }
-
- // Testing `operator >=(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a >= b, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResult);
- }
-
- // Testing `operator >=(Tensor x, double y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a >= doubleThreshold, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResult);
- }
-
- // Testing `operator >=(double x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(doubleThreshold >= a, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResultTwo);
- }
- #endregion
- }
-
- [TestMethod]
- public void lessOrEqualThanOpTests()
- {
- const int rows = 2; // to avoid broadcasting effect
- const int cols = 10;
-
- #region intTest
- const int intThreshold = 10;
-
- var firstIntFeed = Enumerable.Range(0, rows * cols).ToArray();
- var secondIntFeed = Enumerable.Repeat(intThreshold, rows * cols).ToArray();
- var intResult = firstIntFeed.Count(elem => elem <= intThreshold);
- var intResultTwo = firstIntFeed.Count(elem => elem >= intThreshold);
-
- var a = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var b = tf.placeholder(tf.int32, shape: new TensorShape(rows, cols));
- var c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.less_equal(a, b), tf.int32), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator <=(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a <= b, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator <=(Tensor x, int y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a <= intThreshold, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResult);
- }
-
- // Testing `operator <=(int x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(intThreshold <= a, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstIntFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, intResultTwo);
- }
- #endregion
-
- #region floatTest
- const float floatThreshold = 10.0f;
-
- var firstFloatFeed = Enumerable.Range(0, rows * cols).Select(elem => (float)elem).ToArray();
- var secondFloatFeed = Enumerable.Repeat(floatThreshold, rows * cols).ToArray();
- var floatResult = firstFloatFeed.Count(elem => elem <= floatThreshold);
- var floatResultTwo = firstFloatFeed.Count(elem => elem >= floatThreshold);
-
- a = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float32, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.less_equal(a, b), tf.int32), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResult);
- }
-
- // Testing `operator <=(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a <= b, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResult);
- }
-
- // Testing `operator <=(Tensor x, float y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a <= floatThreshold, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResult);
- }
-
- // Testing `operator <=(float x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(floatThreshold <= a, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstFloatFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, floatResultTwo);
- }
- #endregion
-
- #region doubleTest
- const double doubleThreshold = 10.0;
-
- var firstDoubleFeed = Enumerable.Repeat(0, rows * cols).Select(elem => (double)elem).ToArray();
- var secondDoubleFeed = Enumerable.Repeat(doubleThreshold, rows * cols).ToArray();
- var doubleResult = firstDoubleFeed.Count(elem => elem <= doubleThreshold);
- var doubleResultTwo = firstDoubleFeed.Count(elem => elem >= doubleThreshold);
-
- a = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- b = tf.placeholder(tf.float64, shape: new TensorShape(rows, cols));
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(tf.less_equal(a, b), tf.int32), 1));
-
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResult);
- }
-
- // Testing `operator <=(Tensor x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a <= b, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))),
- new FeedItem(b, new NDArray(secondDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResult);
- }
-
- // Testing `operator <=(Tensor x, double y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(a <= doubleThreshold, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResult);
- }
-
- // Testing `operator <=(double x, Tensor y)
- c = tf.reduce_sum(tf.reduce_sum(tf.cast(doubleThreshold <= a, tf.int32), 1));
- using (var sess = tf.Session())
- {
- var o = sess.run(c,
- new FeedItem(a, new NDArray(firstDoubleFeed, new Shape(rows, cols))));
- Assert.AreEqual((int)o, doubleResultTwo);
- }
- #endregion
- }
-
- [Ignore("Not finished yet")]
- [TestMethod]
- public void map_fn()
- {
- var a = tf.constant(new[] { 1, 2, 3, 4 });
- var b = tf.constant(new[] { 17, 12, 11, 10 });
- var ab = tf.stack(new[] { a, b }, 1);
-
- Func<Tensor, Tensor> map_operation = (value_ab) =>
- {
- var value_a = value_ab[0];
- var value_b = value_ab[1];
- return value_a + value_b;
- };
-
- var map_result = tf.map_fn(map_operation, ab);
- }
- }
- }
|