|
- using Microsoft.VisualStudio.TestTools.UnitTesting;
- using System;
- using System.Linq;
- using Tensorflow;
- using Tensorflow.Keras.Optimizers;
- using Tensorflow.Keras.UnitTest.Helpers;
- using Tensorflow.NumPy;
- using static Tensorflow.Binding;
- using static Tensorflow.KerasApi;
-
- namespace TensorFlowNET.Keras.UnitTest.SaveModel;
-
- [TestClass]
- public class SequentialModelLoad
- {
- [TestMethod]
- public void SimpleModelFromAutoCompile()
- {
- var model = tf.keras.models.load_model(@"Assets/simple_model_from_auto_compile");
- model.summary();
-
- model.compile(new Adam(0.0001f), tf.keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" });
-
- // check the weights
- var kernel1 = np.load(@"Assets/simple_model_from_auto_compile/kernel1.npy");
- var bias0 = np.load(@"Assets/simple_model_from_auto_compile/bias0.npy");
-
- Assert.IsTrue(kernel1.Zip(model.TrainableWeights[2].numpy()).All(x => x.First == x.Second));
- Assert.IsTrue(bias0.Zip(model.TrainableWeights[1].numpy()).All(x => x.First == x.Second));
-
- var data_loader = new MnistModelLoader();
- var num_epochs = 1;
- var batch_size = 8;
-
- var dataset = data_loader.LoadAsync(new ModelLoadSetting
- {
- TrainDir = "mnist",
- OneHot = false,
- ValidationSize = 58000,
- }).Result;
-
- model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs);
- }
-
- [TestMethod]
- public void AlexnetFromSequential()
- {
- new SequentialModelSave().AlexnetFromSequential();
- var model = tf.keras.models.load_model(@"./alexnet_from_sequential");
- model.summary();
-
- model.compile(new Adam(0.001f), tf.keras.losses.SparseCategoricalCrossentropy(from_logits: true), new string[] { "accuracy" });
-
- var num_epochs = 1;
- var batch_size = 8;
-
- var dataset = new RandomDataSet(new Shape(227, 227, 3), 16);
-
- model.fit(dataset.Data, dataset.Labels, batch_size, num_epochs);
- }
-
- [TestMethod]
- public void ModelWithSelfDefinedModule()
- {
- var model = tf.keras.models.load_model(@"Assets/python_func_model");
- model.summary();
-
- model.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" });
-
- var data_loader = new MnistModelLoader();
- var num_epochs = 1;
- var batch_size = 8;
-
- var dataset = data_loader.LoadAsync(new ModelLoadSetting
- {
- TrainDir = "mnist",
- OneHot = false,
- ValidationSize = 55000,
- }).Result;
-
- model.fit(dataset.Train.Data, dataset.Train.Labels, batch_size, num_epochs);
- }
-
- [Ignore]
- [TestMethod]
- public void VGG19()
- {
- var model = tf.keras.models.load_model(@"D:\development\tf.net\models\VGG19");
- model.summary();
-
- var classify_model = keras.Sequential(new System.Collections.Generic.List<Tensorflow.Keras.ILayer>()
- {
- model,
- keras.layers.Flatten(),
- keras.layers.Dense(10),
- });
- classify_model.summary();
-
- classify_model.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(), new string[] { "accuracy" });
-
- var x = np.random.uniform(0, 1, (8, 512, 512, 3));
- var y = np.ones((8));
-
- classify_model.fit(x, y, batch_size: 4);
- }
- }
|