|
- using System;
- using System.Collections;
- using System.Collections.Generic;
- using System.Numerics;
- using System.Text;
- using static Tensorflow.Binding;
-
- namespace Tensorflow.NumPy
- {
- public partial class np
- {
- [AutoNumPy]
- public static NDArray cos(NDArray x) => new NDArray(math_ops.cos(x));
-
- [AutoNumPy]
- public static NDArray exp(NDArray x) => new NDArray(tf.exp(x));
-
- [AutoNumPy]
- public static NDArray floor(NDArray x) => new NDArray(math_ops.floor(x));
-
- [AutoNumPy]
- public static NDArray log(NDArray x) => new NDArray(tf.log(x));
-
- [AutoNumPy]
- public static NDArray mean(NDArray x) => new NDArray(math_ops.reduce_mean(x));
-
- [AutoNumPy]
- public static NDArray multiply(NDArray x1, NDArray x2) => new NDArray(tf.multiply(x1, x2));
-
- [AutoNumPy]
- public static NDArray maximum(NDArray x1, NDArray x2) => new NDArray(tf.maximum(x1, x2));
-
- [AutoNumPy]
- public static NDArray minimum(NDArray x1, NDArray x2) => new NDArray(tf.minimum(x1, x2));
-
- [AutoNumPy]
- public static NDArray prod(NDArray array, Axis? axis = null, Type? dtype = null, bool keepdims = false)
- => new NDArray(tf.reduce_prod(array, axis: axis));
-
- [AutoNumPy]
- public static NDArray prod<T>(params T[] array) where T : unmanaged
- => new NDArray(tf.reduce_prod(new NDArray(array)));
-
- [AutoNumPy]
- public static NDArray power(NDArray x, NDArray y) => new NDArray(tf.pow(x, y));
-
- [AutoNumPy]
- public static NDArray sin(NDArray x) => new NDArray(math_ops.sin(x));
-
- [AutoNumPy]
- public static NDArray sqrt(NDArray x) => new NDArray(tf.sqrt(x));
-
- [AutoNumPy]
- public static NDArray sum(NDArray x1, Axis? axis = null) => new NDArray(tf.math.sum(x1, axis));
- }
- }
|